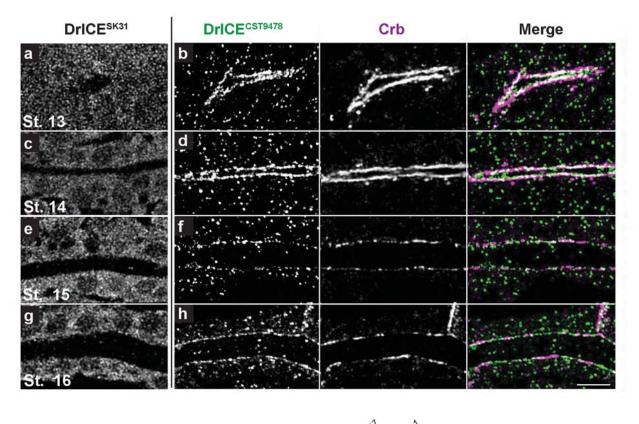
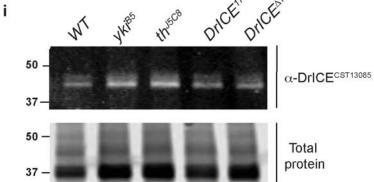
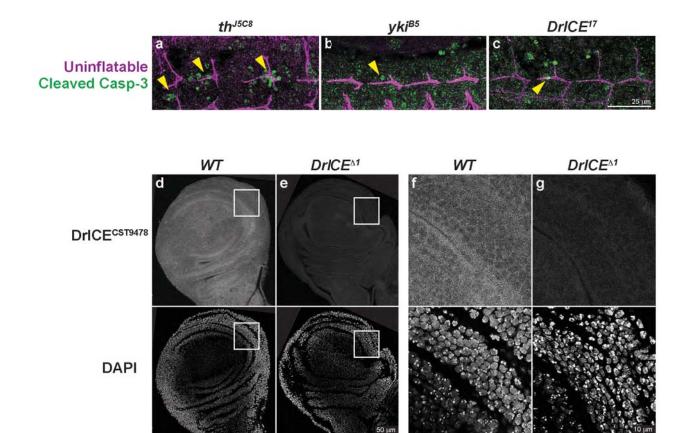
The Caspase-3 homolog DrICE regulates endocytic trafficking during *Drosophila* tracheal morphogenesis


Saoirse S. McSharry1 and Greg J. Beitel1*


Key words: caspase; non-apoptotic; endocytic trafficking; morphogenesis; epithelial tube; Drosophila; trachea

1Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA

Running title: Caspase-mediated regulation of endocytic trafficking


* Author for correspondence and lead contact: Greg J. Beitel, Hogan Hall, Rm. 2-100, Northwestern University, Evanston, IL 60208, U.S.A., beitel@northwestern.edu, Ph: (847) 467-7776, FAX: (847) 467-1380

Supplementary Fig. 1: Developmental profile of DrICE with Crumbs, and DrICE levels in *yorkie*^{B5}**. (a-h)** The α-DrICE^{SK31} antibody against full-length DrICE³ (a,c,e,g) reveals broad cytoplasmic staining during stages 13-16 (St.13- St. 16). Staining with the α-DrICE^{CST9478} antibody that was raised against a peptide that is cleaved during DrICE activation (Cell Signaling Technologies #9478) reveals a more restricted punctate pattern that is enriched at the tracheal apical surface (b, d, f, h; green) where it overlaps with staining for the apical marker Crumbs (Crb, b, d, f, h; magenta), particularly during tube expansion at stages 13 and 14 (b,d). Scale bar for a-h" in h", 5 μm.

(i) Western blot of stage 16 embryos using the α -DrICECST¹³⁰⁸⁵ antibody that recognizes full-length DrICE (Cell Signaling Technologies #13085). yki^{85} and th^{J5C8} mutations appear to increase DrICE protein levels, but based on quantification of the 47kDa DrICE full-length band relative to total protein from three experiments, only the yki^{85} difference is statistically significant (Fig. 1o). Note that DrICE protein levels in $DrICE^{17}$ homozygotes are not different than WT, which is consistent with $DrICE^{17}$ being a dominant negative allele that causes more severe tracheal phenotypes than the $DrICE^{\Delta T}$ null allele.

Supplementary Fig. 2: Cleaved caspase staining in Diap1/th embryos and $DrICE^{\Delta t}$ imaginal discs. (a-c) Maximum projections of anti-cleaved caspase-3 staining, considered a marker of apoptotic cells,⁴ shows that trachea of stage 13 th^{J5C8} embryos have noticeably more cleaved caspase-3 staining than either (b) yki^{B5} or (c) $DrICE^{17}$ embryos. As thJ5C8 embryos also have a decreased total number of tracheal cells (Fig. 1m), these data support the conclusion that missing in the dorsal trunk segments in th^{J5C8} embryos (Fig. 1i) result from increased tracheal cell apoptosis. Scale bar for a-c in c, 25 μ m.

(d-g) Staining WT (W^{1118}) late larval wing imaginal discs with DrICE^{CST9478} (low magnification view in e; magnification of the boxed region is shown in f) reveals a pattern of subcellular localization similar to embryonic tracheal cells. (e, g) DrICE^{CST9478} staining is absent in $DrICE^{\Delta 1}$ mutant wing discs, supporting the conclusion that the DrICE^{CST9478} signal present in $DrICE^{\Delta 1}$ mutant embryos (Fig. 2h) results from maternal contribution of DrICE. Bottom row shows DAPI staining of tissue. Scale bar for d- in bottom of e, 50 μ m; for f-g in bottom of g, 10 μ m.

Supplementary Table 1: Resources used in experimental analysis

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Guinea pig anti-uninflatable (1:800)	Rob Ward	
α-DrICE ^{CST9478} Rabbit anti-cleaved Drosophila ICE	Cell Signaling	9478S
Asp230 (1:100)	Technology (CST)	
α-DrICE ^{CST13085S} Rabbit anti-Drosophila ICE (1:100)	Cell Signaling	13085S
	Technology (CST)	
Mouse anti-Crumbs extracellular domain (1:25)	Developmental Studies	Cq4-s
	Hybridoma Bank	
	(DSHB) at the	
	University of Iowa	
Mouse anti-2A12 (1:1)		
Rabbit anti-Serp (1:400)		
IRDye 800CW goat anti-Rabbit 0.5mg	Li-Cor	926-32211
Guinea-pig anti-DrICE (SK31)	Pascal Meier	SK31
Rat anti-Clathrin (Chc) (1:40)	Matthias Behr	n/a
Mouse anti-Rab5 (1:100)	BD Biosciences	610281
Mouse anti-Rab7 (1:50)	Developmental Studies	Rab7
	Hybridoma Bank	
	(DSHB) at the	
Marra anti Dale 44 (4.400)	University of Iowa	DDDC40050
Mouse anti-Rab11 (1:100)	Fisher Scientific	BDB610656
Guinea pig anti-Melanotransferrin	Christos Samakovilis	n/a
Rabbit anti-Kune-Kune (1:500)	1	
Rabbit anti-Dlg (1:500)	Woods et al 1996 ²	
Goat anti-mouse IgG (H+L) highly cross-adsorbed	Life Technologies	A32723
secondary antibody Alexa Fluor 488 Plus		
Goat anti-mouse IgM (H+L) highly cross-adsorbed	Life Technologies	A10680
secondary antibody Alexa Fluor 488		
Goat anti-rabbit IgG (H+L) highly cross-adsorbed	Life Technologies	A32733
secondary antibody Alexa Fluor Plus 647		
Goat anti-guinea pig IgG (H+L) highly cross-adsorbed	Life Technologies	A11075
secondary antibody Alexa Fluor 568		
IRDye 800CW Goat anti-Rabbit 0.5 mg	Li-Cor	926-32211
Critical Commercial Assays		
REVERT Total protein stain kit	Fisher Scientific	NC1145693
Pre-cast gel 4-15%, 15 well	Bio Rad	4561086
Software and Algorithms		1
Fiji (ImageJ) SpotCounter plugin		
		1
Volocity Demo 5.5.1		
Volocity Demo 5.5.1		

References for Supplemental Figure Legends

- 1. Nelson, K.S., Furuse, M. & Beitel, G.J. The Drosophila Claudin Kune-kune is required for septate junction organization and tracheal tube size control. *Genetics* **185**, 831-839 (2010).
- 2. Woods, D.F., Hough, C., Peel, D., Callaini, G. & Bryant, P.J. Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia. *The Journal of cell biology* **134**, 1469-1482 (1996).
- 3. Ditzel, M. *et al.* Inactivation of effector caspases through nondegradative polyubiquitylation. *Molecular cell* **32**, 540-553 (2008).
- 4. Baer, M.M. *et al.* The role of apoptosis in shaping the tracheal system in the Drosophila embryo. *Mechanisms of development* **127**, 28-35 (2010).