Supplementary Information for;

Multivariate Optimization of Tenax TA-Thermal Extraction for Determining Gaseous Phase Organophosphate Esters in Air Samples

Julius Matsiko,^{1,2} Honghua Li,¹ Pu Wang,¹Huizhong Sun,^{1,2} Shucheng Zheng,^{1,2} Dou

Wang,^{1,2} Weiwei Zhang,^{1,2} Yanfen Hao,^{1,2} Peijie Zuo,^{1,2} Yingming Li,¹ Qinghua Zhang,

^{1,2,3,*} Jianqing Zhang^{4,*} and Guibin Jiang ^{1,2}

¹State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for

Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³Institute of Environment and Health, Jianghan University, Wuhan 430056, China

⁴Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China

Corresponding author

*qhzhang@rcees.ac.cn, Tel: +86 10 6284 9818 (Q. Zhang)

*969676617@qq.com, Tel: +86 755-25531955 (J. Zhang)

Text S1

Instrumental analysis

Thermal desorption was performed using a commercial desorption unit, TDS-3 (Gerstel) connected to a programmed-temperature vapouriser (PTV) injector/cooled injection system (CIS -3) (Gerstel) by a heated transfer line. The CIS was equipped with a baffled glass liner and was cooled by liquid nitrogen for analyte trapping prior to injection into a chromatographic column for analytical separation and detection. Moreover, a baffled glass liner has been shown to provide good responses in a number of studies involving SVOCs.^{1,2,3} The temperature program for desorption was 30 °C (delay time of 0.2 minutes), then ramped at 130°C/minute to 290°C, held for 10 minutes. The desorption unit, TDS-3 was operated in a splitless mode. The temperature of the transfer line was set at 290°C. The CIS was cooled with liquid nitrogen to 20°C. After desorption and cryotrapping, cryo-desorption was carried out at 10°C per second from 20°C to 295°C, held for 6 minutes, for quantitative sample transfer into the chromatographic column for analyte separation. Meanwhile, the desorbed analytes were being carried in helium gas at 95mLmin⁻¹. The CIS was also operated in a splitless mode. The TDS-3 device was connected to a Shimadizu GC coupled to a MS (GCMS-QP2010 Ultra). Gas chromatography/mass spectrometry parameters have been reported in our previous study.¹

Experimental Factors and their letter codes								Experimental Factor Levels and their codes									
								Low (-1)		Center (0)		High (+1)					
Desorption Flow (A)								20		60		100					
Desorption Temperature (B)								260 290			320						
TDS Transfer Temperature (C)								260) 290 320								
Desorption Time (D)								5	10 15								
Cryof	ocusing	g Tem _l	peratur	e (E)				-100	00 -20 60								
Cryoc	lesorpti	ion Tei	mperati	ure (F)			260		290		320					
Cryoc	lesorpti	ion Tir	ne (G)					2		6		10					
	Expe	riment	al facto	or setti	ings at e	ach rur	ı			Respons	se Factors (C	Compound S	pecific Chro	matographic	c Areas)		
Run	А	В	С	D	E	F	G	TEP	TPP	TNBP	TCEP	TCIPP	TDCIPP	TBOEP	TPHP	EHDPP	TEHP
1	100	320	320	5	60	260	2	451704.5	1056466.0	675385.5	133531.5	88479.5	45542.0	28719.5	253084.5	453589.0	1211914.5
2	100	260	260	15	60	320	2	526735.5	1286762.0	830984.0	178161.0	109761.0	63169.0	61049.0	352863.5	621392.5	1719607.0
3	20	260	320	15	60	260	2	408225.0	1384418.0	1135416.0	244902.0	145930.0	93538.0	61170.0	499499.0	930945.0	2315544.0
4	20	260	320	5	60	320	10	640922.5	1687884.0	1129207.5	220883.5	144792.5	79661.5	55578.5	425920.0	696135.5	2046014.0
5	100	260	320	15	-100	260	10	723155.5	1881437.5	1251537.0	242739.5	158709.5	90071.0	69104.5	439617.5	927317.5	2632893.0
6 ^a	60	290	290	10	-20	290	6.	308746.5	1324942.5	926822.5	266503.5	124268.5	122458.0	139601.0	626554.5	1313301.0	3161711.0
7	60	290	290	5	-100	260	10	226337,0	1307480.5	1028516.0	288552.5	148598.0	98278.5	69579.0	526802.5	962212.5	2492056.5
8 ^a	60	290	290	10	-20	290	6	289871,0	1455719.0	802766.0	282503.5	112137.0	106589.0	140179.0	560532.0	1001512.5	2744051.5
9	100	260	320	5	-100	320	2	384496,0	1025152.0	650979.5	56484.0	75923.5	11046.5	4290.5	57860.5	103947.0	378548.5
10	20	320	260	5	60	320	2	385844.5	1115201.0	774053.0	79814.5	89805.5	13996.5	4086.5	70800.5	136561.0	846249.5
11ª	60	290	290	10	-20	290	6	263023,0	1144365.0	694889.0	287697.0	112258.0	111610.0	123315.0	490482.0	991590.0	2412535.0
12	20	260	260	5.0	-100	260	2	539502.5	1462634.0	910382.0	128325.5	103434.0	26100.5	9539.0	142639.5	314977.5	1315715.5
13	100	320	260	15	-100	260	2	316586.5	1407336.5	1058002.0	289870.0	146214.5	111634.0	84859.5	563080.5	1125788.0	2908618.5
14	20	260	260	15	-100	320	10	255369.5	1198366.5	705135.5	12251.0	47336.0	3121.0	1669.0	17755.0	24012.5	98961.0
15	20	320	260	15	60	260	10	309795,0	851746.0	524690.0	28150.0	62033.0	6275.0	779.0	20107.0	39216.0	437800.0
16	20	320	320	15	-100	320	2	300141.5	1365388.5	942845.0	300560.0	134072.5	121387.5	93982.5	597146.5	1141368.0	2759217.5
17	100	320	260	5	-100	320	10	793397,0	2077767.5	1455719.5	328124.0	187987.5	134800.5	114968.0	754426.5	1463732.0	3619735.0
18	100	260	260	5	60	260	10	408328.5	1401793.0	990983.0	209843.0	123675.0	82130.0	61808.5	448626.0	802767.5	2182119.5
19	100	320	320	15	60	320	10	272184,0	1121369.5	928838.0	236523.5	131648.0	86856.5	53871.5	441180.0	856743.0	2071634.0

^a refers to the center points of the screening design.

Table S1. Experimental factors, codes, and levels in the 2^{7-3} eighth fractional factorial design and the corresponding average compound peak areas.

	Experime	ental Factors	and Letter	Codes	Experimental Factor Levels and their codes								
	1				Low (-1)	1	Center (0)		High (+1)		_		
	Desorpti	on Flow (A)			20		60		100				
	Cryofocu	ising Temper	ature (B)		-100 -20				60				
	Cryodese	orption Temp	erature (C)		260 290				320				
	Experime	ental factor se	ettings at ea	ich run									
]	s))					
Run	А	В	С]	ГЕР	TPP		T	NBP	TCEP		TC	CIPP
				Actual	Predicted	Actual	Predicted	Actual	Predicted	Actual	Predicted	Actual	Predicted
1	20.0	-20.0	320.0	922208.0	1170880.0	2341327.0	3001260.0	1516043.5	1917380.0	312759.5	374208.0	159056.5	197382.0
2	60.0	-100.0	260.0	857785.0	877999.0	2238820.0	2621740.0	1414727.5	1722920.0	237028.5	258081.0	160049.0	190166.0
3	20.0	-100.0	290.0	710402.0	615658.0	2474229.5	2230460.0	1761650.5	1607190.0	294577.0	251074.0	193083.5	184836.0
4	100.0	-20.0	320.0	1695451.5	1620920.0	4424775.5	4563920.0	2803856.5	2957600.0	590934.0	568484.0	290491.0	312360.0
5 ^a	60.0	-20.0	290.0	1507348.0	1606140.0	4047543.5	4484590.0	2580844.5	2936570.0	498191.0	548977.0	272580.0	314910.0
6 ^a	60.0	-20.0	290.0	1588502.5	1606140.0	4340267.5	4484590.0	2805147.0	2936570.0	519892.5	548977.0	291682.0	314910.0
7	100.0	-20.0	260.0	1629748.5	1381080.0	4598243.0	3938310.0	2980115.0	2578780.0	613775.5	552327.0	328037.5	289713.0
8	20.0	60.0	290.0	617384.0	388925.0	3503504.5	3226480.0	2353480.5	2260340.0	478381.0	437985.0	252880.0	244672.0
9	60.0	60.0	320.0	481635.5	461421.0	4113335.5	3730420.0	2992992.5	2684800.0	671822.5	650770.0	321764.5	291648.0
10	60.0	60.0	260.0	236390.5	390320.0	3567739.0	3983910.0	2731648.5	2978530.0	684918.5	702864.0	328521.5	358599.0
11	100.0	-100.0	290.0	941389.0	1169850.0	2952669.0	3229690.0	1955490.5	2048630.0	207962.0	248358.0	209483.5	217692.0
12	60.0	-100.0	320.0	1114979.5	961050.0	3466242.5	3050070.0	2352306.0	2105430.0	353064.0	335118.0	269365.5	239288.0
13	100.0	60.0	290.0	314529.5	409273.0	4032421.5	4276190.0	3075998.5	3230460.0	778378.5	821881.0	370401.5	378649.0
14	20.0	-20.0	260.0	1182047.0	1256580.0	3591177.0	3452030.0	2361172.0	2207430.0	342973.0	365423.0	259728.0	237859.0
15 ^a	60.0	-20.0	290.0	1722575.0	1606140.0	5065956.0	4484590.0	3423728.0	2936570.0	628848.0	548977.0	380469.0	314910.0
Run	А	В	С	TD	CIPP	TBOEP		TI	PHP	EH	IDPP	TI	EHP
				Actual	Predicted	Actual	Predicted	Actual	Predicted	Actual	Predicted	Actual	Predicted
1	20.0	-20.0	320.0	112062.5	136903.0	116688.0	109911.0	470025.0	564627.0	1057562.5	1195010.0	3310298.0	3938950.0
2	60.0	-100.0	260.0	38897.0	42543.6	18023.0	6039.5	153062.0	144445.0	463195.0	488782.0	2217466.0	2727000.0
3	20.0	-100.0	290.0	69213.5	58102.9	40123.5	31391.8	308220.0	297996.0	714784.0	626298.0	3327482.5	3121420.0
4	100.0	-20.0	320.0	235183.5	227719.0	221664.5	200949.0	999300.0	980459.0	2158696.0	2095800.0	6533647.0	6837110.0
5 ^a	60.0	-20.0	290.0	198883.0	219836.0	157377.0	174225.0	812895.0	922826.0	1881157.5	2122790.0	6119793.0	6921490.0
6 ^a	60.0	-20.0	290.0	205903.5	219836.0	159285,0	174225.0	823900.5	922826.0	1992677.0	2122790.0	6740108.0	6921490.0
7	100.0	-20.0	260.0	219622.5	194782.0	163279.5	170057.0	870684.5	776083.0	2086644.0	1949190.0	6206228.5	5577570.0
8	20.0	60.0	290.0	196239.5	175045.0	121144.0	115938.0	796777.5	693559.0	1581362.0	1469500.0	5166159.0	5047030.0
9	60.0	60.0	320.0	262223.5	258577.0	234485.5	246469.0	1029696.0	1038310.0	2527982.5	2502400.0	7560157.0	7050630.0
10	60.0	60.0	260.0	259307.0	273037.0	247585.5	232077.0	1009825.5	1094200.0	2618338.0	2667300.0	7450197.0	7872790.0
11	100.0	-100.0	290.0	50428.0	71622.3	15071.0	20277.3	254986.5	358205.0	451951.0	563815.0	3112110.0	3231230.0
12	60.0	-100.0	320.0	125466.0	111736.0	60761.5	76270.4	631771.5	547394.0	1056406.5	1007440.0	4840960.0	4418370.0
13	100.0	60.0	290.0	320904.0	332015.0	323235.5	331967.0	1393097.0	1403320.0	3305604.5	3394090.0	8877605.5	9083670.0
14	20.0	-20.0	260.0	107645.0	115109.0	35465.0	56180.2	403102.0	421943.0	924965.0	987865.0	4632754,0	4329290.0
15 ^a	60.0	-20.0	290.0	254722.5	219836.0	206013.0	174225.0	1131682.0	922826.0	2494531.5	2122790.0	7904560,0	6921490.0

^a refers to the center points of the screening design.

Table S2. Box-Behnken response surface design matrix and the corresponding average (actual and model predicted) compound peak areas

Table S3

Analysis of variance (ANOVA) of the response surface regression model for EHDPP.

Source	Sum of squares	Degrees of freedom	Mean square	F-ratio	p-value
A:Desorption flow	1.73373E12	1	1.73373E12	28.33	0.0031
B:Cryofocusing Temperature	6.74721E12	1	6.74721E12	110.25	0.0001
C:Cryodesorption Temperature	6.25705E10	1	6.25705E10	1.02	0.3584
AA	4.77031E11	1	4.77031E11	7.79	0.0384
AB	9.87117E11	1	9.87117E11	16.13	0.0102
AC	9.16439E8	1	9.16439E8	0.01	0.9074
BB	2.3063E11	1	2.3063E11	3.77	0.1099
BC	1.16816E11	1	1.16816E11	1.91	0.2256
CC	1.5727E11	1	1.5727E11	2.57	0.1698
Lack of fit	1.197E12	6	1.996E11	1.869	0.389
Pure error	2,135E11	2	1.068E11		
Total error	3.05997E11	5	6.11994E10		
Total (corr.)	1.07139E13	14			

R-squared = 97.1439 percent R-squared (adjusted for d.f.) = 92.003 percent Standard Error of Est. = 247385. Mean absolute error = 112933. Durbin-Watson statistic = 1.48657 (P=0.2925) Lag 1 residual autocorrelation = 0.0000359516

Table S3. Analysis of variance (ANOVA) of the response surface regression model for EHDPP.

No	Compound	Practical Abbrevia tion (PRAB)	B.p (°C)	Structure	CAS Number	MW	Log K _{ow}	Кос	Vapour Pressure (Pa)	Log K _{OA}
1	Triethyl phosphate	TEP	216		78-40-0	182.16	0.80	36	5.25E+01	6.1
2	Tri-n-propyl phosphate	TPP	254		513-08-6	224.24	1.87	676	5.77E-01	6.4
3	Tri-n-butyl phosphate	TNBP	289		126-73-8	266.32	3.60	977	1.71E00	8.2
4	Tris(2- chloroethyl) phosphate	TCEP	351		115-96-8	285.49	1.47	150	1.44E-02	7.4
5	Tris(2- chloroisopro pyl)phosphat e	TCIPP	342		13674-84-5	327.56	2.59	275	2.69E-03	8.2
6	Tris(1,3- dichloro-2- propyl) phosphate	TDCIPP	457		13674-87-8	430.90	3.27	1440	5.43E-06	10.6
7	Tris(2- butoxyethyl) phosphate	TBOEP	414		78-51-3	398.48	3.75	1020	3.33E-06	13.1
8	Triphenyl phosphate	ТРНР	370		115-86-6	326.29	4.59	2630	8.37E-03	8.5
9	2-Ethylhexyl diphenyl phosphate	EHDPP	375		1241-94-7	362.40	5.73	9499	6.20E-04	11.3
10	Tris(2- ethylhexyl) phosphate	TEHP	220		78-42-2	434.64	9.49	617000	1.10E-05	15.0

Table S4. Names, abbreviations, structures and other properties of the target compounds

Figure S1.Total Ion Chromatograms (TIC) laboratory blank tube (A), intermediate calibration concentration level (B) and real air sample collected from the car (C)

Figure S2. Box-Benken Design plot (A) and Matrix codes (B).

Figure S3. Scatter plot illustrating the relationship the modelled and experimental/validated peak areas.

Figure S4. Calibration set up (A) and calibration curves (B, n=3) for the two tested QC-IC pumps.

References

1. Matsiko, J. et al. Stir bar sorptive extraction and thermal desorption - gas chromatography/mass spectrometry for determining phosphorus flame retardants in air samples. *Anal. Methods* **10**, 1918-1927 (2018).

León, V.M., Álvarez, B., Cobollo, M.A., Muñoz, S. & Valor, I. Analysis of 35 priority semivolatile compounds in water by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry:
I. Method optimisation. *J. Chromatogr.*, A **999**, 91-101 (2003).

3. Cacho, J.I., Campillo, N., Viñas, P. & Hernández-Córdoba, M. Stir bar sorptive extraction coupled to gas chromatography–mass spectrometry for the determination of bisphenols in canned beverages and filling liquids of canned vegetables. *J. Chromatogr.*, *A* **1247**, 146-153 (2012).