Sahraeian et al. Deep convolutional neural networks for accurate somatic mutation detection.

## SUPPLEMENTARY INFORMATION

## Supplementary Figures



Supplementary Figure 1: Toy example of input matrix preparation for a given candidate somatic deletion. Sequence alignment information in a window of 7 bases around the candidate somatic mutation is extracted. The reference sequence is then augmented by adding gaps to account for insertions in the reads. The augmented alignment is then summarized into the reference matrix, the tumor count matrix, and the normal count matrix. The count matrices record the number of A/C/G/T and gap ('-') characters in each column of the alignment, while the reference matrix records the reference bases in each column. The count matrices are then normalized by coverage to reflect base frequencies in each column. Separate channels are reserved to record the tumor and normal coverages.



Supplementary Figure 2: Toy example of input matrix preparation for a given candidate somatic insertion. Sequence alignment information in a window of 7 bases around the candidate somatic mutation is extracted. The reference sequence is then augmented by adding gaps to account for insertions in the reads. The augmented alignment is then summarized into the reference matrix, the tumor count matrix, and the normal count matrix. The count matrices record the number of A/C/G/T and gap ('-') characters in each column of the alignment, while the reference matrix records the reference bases in each column. The count matrices are then normalized by coverage to reflect base frequencies in each column. Separate channels are reserved to record the tumor and normal coverages.



Supplementary Figure 3: Performance analysis of the Platinum tumor spike dataset. In this dataset, reads are spiked with frequencies sampled from a binomial distribution with means [0.05, 0.1, 0.2, 0.3], while normal sample is pure. (a) Precision-recall analysis: the confidence or quality scores are used to derive the precision-recall curves. The highest F1-score achieved by each algorithm is printed on the curve and marked with a solid circle. (b) Performance analysis for different AFs. (c) Performance analysis of INDEL accuracy (F1-score) for different INDEL sizes.



Supplementary Figure 4: Performance analysis of exome sample mixture. In this dataset, four tumor and normal purity scenarios (50%T:100%N, 70%T:95%N, 50%T:95%N and 25%T:95%N) are used. The confidence or quality scores are used to derive the precision-recall curves. The highest F1-score achieved by each algorithm is printed on the curve and marked with a solid circle. Here the training is on exome data for NeuSomatic, NeuSomatic-S, and SomaticSeq.



Supplementary Figure 5: Performance analysis of Target panel sample mixture. In this dataset, four tumor and normal purity scenarios (50%T:100%N, 70%T:95%N, 50%T:95%N and 25%T:95%N) are used. The confidence or quality scores are used to derive the precision-recall curves. The highest F1-score achieved by each algorithm is printed on the curve and marked with a solid circle. Here the training is on exome data for NeuSomatic, NeuSomatic-S, and SomaticSeq.



Supplementary Figure 6: Performance analysis of using models trained on whole-genome (Platinum data, genome mixture) and whole-exome (HG003-HG004 exome mixture) to test on exome mixture dataset. The confidence or quality scores are used to derive the precision-recall curves. The highest F1-score achieved by each algorithm is indicated in the legend and marked with a solid circle on the curve.



Supplementary Figure 7: Performance analysis of using models trained on whole-genome (Platinum data, genome mixture) and whole-exome (HG003-HG004 exome mixture) to test on target panel mixture dataset. The confidence or quality scores are used to derive the precision-recall curves. The highest F1-score achieved by each algorithm is indicated in the legend and marked with a solid circle on the curve.



Supplementary Figure 8: Size distribution of ground truth INDELs in Dream Stage 3, Dream Stage 4, Platinum two sample mixture, Platinum tumor spike, PacBio, and exome datasets. Negative sizes corresponds to deletions.



Supplementary Figure 9: Performance analysis of INDELs based on position and type of the predicted somatic mutations (while ignoring the accuracy of the exact predicted INDEL sequence) for Dream Stage 3, Dream Stage 4, Platinum two sample mixture, whole-exome, and Platinum tumor spike datasets. For the first four datasets, three tumor purity scenarios (70%, 50% and 25%) are used while normal sample has 95% purity. The confidence or quality scores are used to derive the precision-recall curves. The highest F1- score achieved by each algorithm is printed on the curve and marked with a solid circle.



Supplementary Figure 10: Performance analysis of INDELs based on position and type of the predicted somatic mutations (while ignoring the accuracy of the exact predicted INDEL sequence) for PacBio dataset on three tumor purity scenarios (50%, 30% and 20%) and 95% normal purity. The confidence or quality scores are used to derive the precision-recall curves. The highest F1- score achieved by each algorithm is printed on the curve and marked with a solid circle.



Supplementary Figure 11: Performance analysis of the sequence coverage impact on the whole-exome sample mixture dataset. In this example, tumor has 50% purity and normal has 95% purity. Tumor and normal alignments coverages are ranging from  $20 \times$  to  $100 \times$ . The confidence or quality scores are used to derive the precision-recall curves. The highest F1-score achieved by each algorithm is indicated in the legend and marked with a solid circle on the curve.



Supplementary Figure 12: Performance analysis of cross sample training for Dream challenge Stage 3 dataset. We tested each of the samples with tumor purities of 70%, 50%, and 25% with NeuSomatic models trained on different purities, as well as a model trained on collective inputs from all different purities. The confidence or quality scores are used to derive the precision-recall curves. The highest F1-score achieved by each algorithm is printed in the legend and marked with a solid circle on the curve.



Supplementary Figure 13: Different network architectures tested. (a-e) ResNet architectures with different number of pre-activation residual blocks with default  $3\times3$  conv layers. Here, strided convolutions are used with channel expansions. (f, g) Multiple customized residual blocks with  $3\times3$  and  $5\times5$  conv layers and some dilated convultions. Here, strided convolutions are used with channel expansions. (h) Four customized residual blocks with  $3\times3$  and  $5\times5$  conv layers and some dilated convultions. Here, strided convolutions are used with channel expansions. (h) Four customized residual blocks with  $3\times3$  and  $5\times5$  conv layers and some dilated convultions. Here, no strided convolutions are used. (i-m) NeuSomatic residual architecture with different residual blocks and fully-connected sizes.



Supplementary Figure 14: Run-time comparison of different somatic mutation detection algorithms. CPU core-hours are shown for predicting somatic mutations on a  $125 \times$  whole-exome sequencing dataset.



Supplementary Figure 15: Run-time comparison of different somatic mutation detection algorithms. CPU core-hours are shown for predicting somatic mutations on a  $30 \times$  whole-genome sequencing dataset.

## Supplementary Tables

| Method        | 50% Tumor<br>100% Normal     | 70% Tumor<br>95% Normal | 50% Tumor<br>95% Normal | 25% Tumor<br>95% Normal |  |
|---------------|------------------------------|-------------------------|-------------------------|-------------------------|--|
|               | RC PR F1   (%) (%) (%)       | RC PR F1   (%) (%) (%)  | RC PR F1   (%) (%) (%)  | RC PR F1   (%) (%) (%)  |  |
|               | SNV                          |                         |                         |                         |  |
| VarDict       | 97.9 92.1 94.9               | 72.5 93.0 81.5          | 72.3 92.5 81.2          | 68.9 91.8 78.7          |  |
| VarScan2      | $99.1 \ 92.2 \ 95.5$         | $96.2 \ 92.9 \ 94.5$    | $94.3 \ 93.3 \ 93.8$    | $52.9 \ 94.0 \ 67.7$    |  |
| MuTect2       | $89.9 \ 94.0 \ 91.9$         | $22.7 \ 92.8 \ 36.4$    | $22.6 \ 93.1 \ 36.4$    | $19.7 \ 93.8 \ 32.5$    |  |
| MuSE          | $97.8 \ 92.7 \ 95.2$         | $47.8 \ 94.3 \ 63.5$    | $41.0 \ 94.3 \ 57.2$    | $19.9 \ 93.9 \ 32.9$    |  |
| SomaticSniper | 95.8 <b>100</b> 97.9         | $90.1 \ 87.0 \ 88.5$    | $86.7 \ 87.2 \ 87.0$    | $38.3 \ 79.9 \ 51.8$    |  |
| Strelka       | $99.2 \ 92.3 \ 95.6$         | $98.7 \ 93.2 \ 95.9$    | $98.9 \ 92.8 \ 95.7$    | <b>97.0</b> 90.4 93.6   |  |
| SomaticSeq    | $98.1 \ 97.0 \ 97.5$         | $95.3 \ 96.6 \ 95.9$    | $94.7 \ 96.8 \ 95.7$    | $83.6 \ 96.7 \ 89.7$    |  |
| NeuSomatic-S  | 99.3 99.4 99.4               | 99.5 99.4 99.5          | 99.3 99.4 99.3          | 96.9 98.8 97.9          |  |
| NeuSomatic    | <b>99.5</b> 99.5 <b>99.5</b> | 99.6 99.5 99.6          | 99.5 99.5 99.5          | 97.0 99.0 98.0          |  |
|               | INDEL                        |                         |                         |                         |  |
| VarDict       | 74.0 95.8 83.5               | 57.2 95.1 71.4          | 54.6 94.8 69.3          | 49.3 89.2 63.5          |  |
| VarScan2      | 85.0 $98.3$ $91.1$           | $86.0 \ 98.1 \ 91.6$    | $77.0 \ 98.4 \ 86.4$    | 33.7 <b>98.5</b> 50.2   |  |
| MuTect2       | $66.5 \ 97.8 \ 79.2$         | $25.7 \ 97.2 \ 40.6$    | $24.8 \ 97.5 \ 39.5$    | $17.3 \ 97.9 \ 29.5$    |  |
| Strelka       | $92.5 \ 96.8 \ 94.6$         | $93.4 \ 96.9 \ 95.1$    | $91.1 \ 96.9 \ 93.9$    | $73.4 \ 96.7 \ 83.5$    |  |
| SomaticSeq    | 89.9 <b>99.3</b> 94.3        | 88.1 <b>99.3</b> 93.4   | 82.4 <b>99.3</b> 90.1   | 61.0 <b>98.5</b> 75.3   |  |
| NeuSomatic-S  | 95.7 97.0 96.3               | 96.5 97.3 96.9          | $95.5 \ 96.7 \ 96.1$    | 86.9 93.5 90.1          |  |
| NeuSomatic    | <b>95.8</b> 97.4 <b>96.6</b> | 96.9 97.5 97.2          | 95.7 96.8 96.3          | 87.7 93.9 90.7          |  |

Supplementary Table 1: Performance of different somatic mutation detection methods on Platinum two sample mix dataset. For each method we report the precision, recall and F1-score for the quality score threshold in precision-recall curve which achieves highest F1. (RC: Recall, PR: Precision, F1: F1-score)

Supplementary Table 2: Performance of different somatic mutation detection methods on Dream Challenge Stage 3 dataset. For each method we report the precision, recall and F1-score for the quality score threshold in precision-recall curve which achieves highest F1. (RC: Recall, PR: Precision, F1: F1-score)

| Method                     | 100% Tumor<br>100% Normal        | 50% Tumor<br>100% Normal         | 70% Tumor<br>95% Normal                 | 50% Tumor<br>95% Normal                 | 25% Tumor<br>95% Normal          |
|----------------------------|----------------------------------|----------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------|
|                            | RC PR F1   (%) (%) (%)           | RC PR F1   (%) (%) (%)           | RC PR F1   (%) (%) (%)                  | RC PR F1   (%) (%) (%)                  | RC PR F1   (%) (%) (%)           |
|                            | SNV                              |                                  |                                         |                                         |                                  |
| VarDict                    | 81.9 85.8 83.8                   | 71.7 77.5 74.5                   | 69.9 79.4 74.4                          | 61.9 76.0 68.3                          | $35.9 \ 64.2 \ 46.1$             |
| VarScan2                   | $79.8 \ 87.4 \ 83.4$             | 61.1 $84.6$ $71.0$               | 64.4 $87.3$ $74.1$                      | $46.3 \ 84.6 \ 59.9$                    | $13.5 \ 53.1 \ 21.6$             |
| MuTect2                    | $86.4 \ 97.0 \ 91.4$             | $69.2 \ 98.3 \ 81.2$             | $47.5 \ 96.2 \ 63.6$                    | 37.7 <b>97.7</b> 54.4                   | 14.7 <b>99.7</b> 25.6            |
| MuSE                       | $89.8 \ 97.0 \ 93.3$             | $72.1 \ 94.4 \ 81.8$             | $59.4 \ 91.2 \ 71.9$                    | $49.1 \ 86.3 \ 62.6$                    | $20.9 \ 91.2 \ 34.0$             |
| SomaticSniper              | $75.7 \ 100 \ 86.2$              | $30.3 \ 100 \ 46.5$              | $48.6 \ 93.4 \ 63.9$                    | $27.5 \ 94.8 \ 42.7$                    | 2.2  94.6  4.3                   |
| Strelka                    | $89.9 \ 94.1 \ 91.9$             | $69.2 \ 91.9 \ 79.0$             | $77.4 \ 95.6 \ 85.5$                    | $66.6 \ 91.8 \ 77.2$                    | $38.7 \ 82.1 \ 52.6$             |
| SomaticSeq                 | 93.5 98.3 95.9                   | 78.7 97.6 87.1                   | 86.3 97.1 91.4                          | 74.5 <b>97.1</b> 84.3                   | $40.8 \ 94.4 \ 56.9$             |
| NeuSomatic-S               | $91.5 \ 97.4 \ 94.4$             | $75.7 \ 92.9 \ 83.4$             | 83.0 95.9 89.0                          | $73.5 \ 93.3 \ 82.2$                    | $47.9 \ 82.4 \ 60.6$             |
| NeuSomatic                 | <b>94.0</b> 98.5 <b>96.2</b>     | <b>79.5</b> 96.9 <b>87.3</b>     | 87.1 97.0 91.8                          | <b>77.3</b> 95.7 <b>85.5</b>            | <b>48.5</b> 87.0 <b>62.3</b>     |
|                            | INDEL                            |                                  |                                         |                                         |                                  |
| VarDict                    | 75.7 46.2 57.4                   | 68.2 $44.2$ $53.6$               | 68.9 $43.2$ $53.1$                      | $60.7 \ 42.9 \ 50.3$                    | 33.6 38.6 35.9                   |
| VarScan2                   | $55.7 \ 65.8 \ 60.3$             | $36.6 \ 63.8 \ 46.5$             | $41.2 \ 65.7 \ 50.6$                    | $27.1 \ 64.1 \ 38.1$                    | 6.5  36.5  11.0                  |
| MuTect2                    | $83.2 \ 92.9 \ 87.8$             | $68.7 \ 91.6 \ 78.5$             | $44.1 \ 93.6 \ 60.0$                    | $37.2 \ 90.6 \ 52.8$                    | 14.8 <b>94.3</b> 25.6            |
| Strelka                    | 68.6 $88.5$ $77.3$               | 41.5 $88.1$ $56.5$               | $52.1 \ 85.0 \ 64.6$                    | $39.0\ 79.2\ 52.2$                      | $13.6\ 73.9\ 22.9$               |
| SomaticSeq                 | 90.2 <b>95.0</b> 92.5            | 74.3 <b>94.5</b> 83.2            | 80.4 <b>94.7</b> 87.0                   | 69.6 <b>93.6</b> 79.8                   | $35.5 \ 93.8 \ 51.5$             |
| NeuSomatic-S<br>NeuSomatic | 84.5 90.2 87.2<br>90.7 96.4 93.5 | 72.5 89.5 80.1<br>81.2 90.3 85.5 | 78.9 88.5 83.4<br>85.2 <b>93.5</b> 89.2 | 71.4 88.9 79.2<br><b>79.4 90.1 84.4</b> | 54.9 76.7 64.0<br>57.3 81.6 67.3 |

Supplementary Table 3: Performance of different somatic mutation detection methods on Dream Challenge Stage 4 dataset. For each method we report the precision, recall and F1 score for the quality score threshold in precision-recall curve which achieves highest F1. (RC: Recall, PR: Precision, F1: F1-score)

| Method        | 100% Tumor<br>100% Normal    | 50% Tumor<br>100% Normal     | 70% Tumor<br>95% Normal      | 50% Tumor<br>95% Normal      | 25% Tumor<br>95% Normal      |
|---------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
|               | RC PR F1   (%) (%) (%)       |
|               | SNV                          |                              |                              |                              |                              |
| VarDict       | 76.7 78.5 77.6               | 43.7 80.1 56.6               | 57.0 74.1 64.4               | 39.6 71.6 51.0               | 12.9 61.8 21.4               |
| VarScan2      | $64.1 \ 78.1 \ 70.4$         | $32.3 \ 69.3 \ 44.1$         | $38.9\ 73.7\ 50.9$           | $21.4 \ 68.0 \ 32.5$         | 5.3  3.1  3.9                |
| MuTect2       | $68.5 \ 97.2 \ 80.3$         | $33.5 \ 98.2 \ 50.0$         | 36.3 <b>97.2</b> 52.8        | 21.8 <b>97.8</b> 35.6        | 4.8 <b>98.7</b> 9.1          |
| MuSE          | 78.0 $77.8$ $77.9$           | 43.4 $81.0$ $56.5$           | $42.2 \ 79.0 \ 55.0$         | $28.7 \ 77.9 \ 42.0$         | 8.5  83.0  15.4              |
| SomaticSniper | $46.7 \ 100 \ \ 63.7$        | 9.0 <b>100</b> 16.5          | $22.8 \ 89.4 \ 36.3$         | 7.7  86.8  14.1              | 0.4  83.3  0.8               |
| Strelka       | $68.8 \ 86.9 \ 76.8$         | $35.0\ 78.4\ 48.4$           | 50.2 77.6 $60.9$             | $33.0\ 72.5\ 45.4$           | $14.4 \ 18.2 \ 16.1$         |
| SomaticSeq    | $85.1 \ 95.9 \ 90.2$         | $52.0 \ 93.0 \ 66.7$         | $66.7 \ 93.4 \ 77.8$         | $48.1 \ 93.3 \ 63.5$         | $16.9 \ 86.2 \ 28.3$         |
| NeuSomatic-S  | $80.7 \ 92.7 \ 86.3$         | 45.2 83.2 58.6               | $61.5 \ 89.1 \ 72.8$         | 45.0 82.9 58.3               | $19.5 \ 53.2 \ 28.6$         |
| NeuSomatic    | 86.7 95.9 91.1               | <b>52.3</b> 92.4 <b>66.8</b> | <b>68.9</b> 94.0 <b>79.5</b> | <b>51.6</b> 90.3 <b>65.7</b> | <b>22.5</b> 71.4 <b>34.2</b> |
|               | INDEL                        |                              |                              |                              |                              |
| VarDict       | 74.9 52.6 61.8               | 43.9 52.5 47.8               | $56.9 \ 50.3 \ 53.4$         | 40.3 49.0 44.2               | 13.2 36.9 19.4               |
| VarScan2      | 50.4 $55.9$ $53.0$           | $19.7 \ 53.7 \ 28.8$         | 27.8 $49.9$ $35.7$           | $14.1 \ 41.2 \ 21.0$         | 3.2  12.9  5.1               |
| MuTect2       | $69.5 \ 94.7 \ 80.1$         | $36.1 \ 98.1 \ 52.8$         | $37.1 \ 97.1 \ 53.7$         | 24.1 <b>98.0</b> 38.7        | 5.8 <b>98.2</b> 11.0         |
| Strelka       | $59.2 \ 79.2 \ 67.8$         | 25.6 $81.1$ $38.9$           | $38.6 \ 72.6 \ 50.4$         | $24.2 \ \ 62.3 \ \ 34.9$     | 6.3  9.1  7.4                |
| SomaticSeq    | 85.0 <b>98.6</b> 91.3        | 48.1 <b>98.6</b> 64.6        | 63.3 <b>98.6</b> 77.1        | $44.8 \ 97.9 \ 61.5$         | $14.6 \ 94.8 \ 25.3$         |
| NeuSomatic-S  | 83.1 92.1 87.4               | 66.7 89.4 76.4               | 74.7 90.1 81.7               | 67.3 85.9 75.5               | 46.9 78.0 58.6               |
| NeuSomatic    | <b>89.8</b> 95.7 <b>92.6</b> | <b>71.6</b> 89.4 <b>79.5</b> | <b>78.8</b> 93.4 <b>85.5</b> | <b>71.4</b> 87.5 <b>78.6</b> | <b>48.0</b> 79.4 <b>59.9</b> |

Supplementary Table 4: Performance of different somatic mutation detection methods on Platinum tumor spike dataset. For each method we report the precision, recall and F1-score for the quality score threshold in precision-recall curve which achieves highest F1. (RC: Recall, PR: Precision, F1: F1-score)

|                                                                                  | SNV                                                    |                                                                    |                                                        | IND                                            | $\mathbf{EL}$                                         |                                           |
|----------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|-------------------------------------------|
|                                                                                  | RC                                                     | PR                                                                 | F1                                                     | RC                                             | PR                                                    | F1                                        |
|                                                                                  | (%)                                                    | (%)                                                                | (%)                                                    | (%)                                            | (%)                                                   | (%)                                       |
| VarDict<br>VarScan2<br>MuTect2<br>MuSE<br>SomaticSniper<br>Strelka<br>SomaticSeq | $58.6 \\ 38.6 \\ 54.3 \\ 34.3 \\ 17.6 \\ 65.0 \\ 60.3$ | 96.8<br>99.1<br><b>99.8</b><br><b>99.8</b><br>97.7<br>94.0<br>99.7 | $73.0 \\ 55.6 \\ 70.3 \\ 51.1 \\ 29.8 \\ 76.9 \\ 75.1$ | 40.1<br>25.4<br>32.7<br>-<br>-<br>39.4<br>46.4 | 81.2<br>94.7<br><b>99.4</b><br>-<br>-<br>89.8<br>96.3 | 53.6<br>40.1<br>49.2<br>-<br>54.8<br>62.6 |
| NeuSomatic-S                                                                     | <b>71.9</b>                                            | 92.5                                                               | 80.9                                                   | $55.6 \\ 55.6$                                 | 81.1                                                  | 66.0                                      |
| NeuSomatic                                                                       | 71.6                                                   | 92.9                                                               | 80.9                                                   |                                                | 83.5                                                  | <b>66.7</b>                               |

Supplementary Table 5: Performance of different somatic mutation detection methods on whole-exome sample mix dataset. For each method we report the precision, recall and F1-score for the quality score threshold in precision-recall curve which achieves highest F1. (RC: Recall, PR: Precision, F1: F1-score)

| Method        | 50% Tumor<br>100% Normal     | 70% Tumor<br>95% Normal      | 50% Tumor<br>95% Normal      | 25% Tumor<br>95% Normal      |  |
|---------------|------------------------------|------------------------------|------------------------------|------------------------------|--|
|               | RC PR F1<br>(%) (%) (%)      | RC PR F1   (%) (%) (%)       | RC PR F1<br>(%) (%) (%)      | RC PR F1   (%) (%) (%)       |  |
|               | $\mathbf{SNV}$               |                              |                              |                              |  |
| VarDict       | 95.5 99.1 97.3               | 57.8 98.7 72.9               | 56.8 98.7 72.1               | 54.1 98.5 69.9               |  |
| VarScan2      | $98.0 \ 99.3 \ 98.7$         | $85.4 \ 99.3 \ 91.9$         | $84.0 \ 99.3 \ 91.1$         | $69.0 \ 99.4 \ 81.5$         |  |
| MuTect2       | $90.2 \ 99.3 \ 94.6$         | 7.0  97.7  13.1              | 7.0  97.9  13.1              | 6.4  98.5  12.1              |  |
| MuSE          | 2.2 <b>100</b> 4.4           | 0.1  87.5  0.2               | 0.2 <b>100</b> 0.3           | 0.1 <b>100</b> 0.2           |  |
| SomaticSniper | 95.1 <b>100</b> 97.5         | 77.9 <b>100</b> 87.6         | 76.1 <b>100</b> 86.4         | 45.8 <b>100</b> 62.9         |  |
| Strelka       | $97.6 \ 99.1 \ 98.4$         | $95.5 \ 97.8 \ 96.6$         | $93.6 \ 96.6 \ 95.1$         | $64.1 \ 93.1 \ 75.9$         |  |
| SomaticSeq    | $98.4 \ 99.0 \ 98.7$         | $87.5 \ 98.7 \ 92.8$         | $86.9 \ 98.8 \ 92.4$         | 80.6 98.4 88.6               |  |
| NeuSomatic-S  | $98.6 \ 99.5 \ 99.1$         | $98.6 \ 99.5 \ 99.0$         | <b>98.6</b> 99.3 <b>98.9</b> | <b>95.9</b> 98.1 <b>97.0</b> |  |
| NeuSomatic    | <b>98.9</b> 99.6 <b>99.3</b> | <b>98.7</b> 99.5 <b>99.1</b> | 98.3 99.5 <b>98.9</b>        | $95.7 \ 97.8 \ 96.7$         |  |
|               | INDEL                        |                              |                              |                              |  |
| VarDict       | 74.0 96.3 83.7               | 43.1 90.2 58.3               | 41.2 94.1 57.3               | 36.3 82.4 50.4               |  |
| VarScan2      | 78.0 <b>99.4</b> 87.4        | 68.2 <b>99.0</b> 80.8        | 65.2 <b>98.6</b> 78.5        | 48.1 <b>99.0</b> 64.8        |  |
| MuTect2       | $58.1 \ 98.0 \ 72.9$         | 7.5  80.0  13.7              | 7.5  69.6  13.5              | 5.6  82.8  10.5              |  |
| Strelka       | 80.8 98.3 <b>88.7</b>        | $73.1 \ 98.7 \ 84.0$         | $73.8 \ 90.8 \ 81.4$         | $61.2 \ 82.1 \ 70.1$         |  |
| SomaticSeq    | $79.7 \ 94.5 \ 86.4$         | $70.3 \ 94.7 \ 80.7$         | $70.6 \ 94.4 \ 80.7$         | $58.2 \ 94.0 \ 71.9$         |  |
| NeuSomatic-S  | 83.9 90.7 87.1               | 82.5 93.1 87.5               | 79.4 93.2 85.8               | 69.2 91.9 78.9               |  |
| NeuSomatic    | <b>86.2</b> 91.1 88.6        | <b>83.6</b> 93.7 <b>88.4</b> | <b>84.8</b> 92.1 <b>88.3</b> | <b>72.4</b> 89.6 <b>80.1</b> |  |

Supplementary Table 6: Performance of different somatic mutation detection methods on targeted panel dataset. For each method we report the precision, recall and F1-score for the quality score threshold in precision-recall curve which achieves highest F1. (RC: Recall, PR: Precision, F1: F1-score)

| Method        | 50% Tumor<br>100% Normal | 70% Tumor<br>95% Normal | 50% Tumor<br>95% Normal | 25% Tumor<br>95% Normal |  |
|---------------|--------------------------|-------------------------|-------------------------|-------------------------|--|
|               | RC PR F1<br>(%) (%) (%)  | RC PR F1<br>(%) (%) (%) | RC PR F1<br>(%) (%) (%) | RC PR F1<br>(%) (%) (%) |  |
|               | $\mathbf{SNV}$           |                         |                         |                         |  |
| VarDict       | 98.4 98.4 98.4           | 63.9 98.7 77.6          | 63.9 98.7 77.6          | 59.8 97.3 74.1          |  |
| VarScan2      | $98.4 \ 98.4 \ 98.4$     | $91.8 \ 98.2 \ 94.9$    | $91.8 \ 98.2 \ 94.9$    | $84.4 \ 99.0 \ 91.2$    |  |
| MuTect2       | $94.3 \ 98.3 \ 96.2$     | $10.7 \ 100 \ 19.3$     | 10.7 <b>100</b> 19.3    | 10.7 <b>100</b> 19.3    |  |
| MuSE          | 1.6 <b>100</b> 3.2       |                         |                         |                         |  |
| SomaticSniper | 97.5 <b>100</b> 98.8     | 87.7 <b>100</b> 93.4    | 86.9 <b>100</b> 93.0    | 63.1 <b>100</b> 77.4    |  |
| Strelka       | $98.4 \ 98.4 \ 98.4$     | $97.5 \ 98.3 \ 97.9$    | $97.5 \ 95.2 \ 96.4$    | $69.7 \ 94.4 \ 80.2$    |  |
| SomaticSeq    | $97.5 \ 98.3 \ 97.9$     | $91.8 \ 98.2 \ 94.9$    | $91.8 \ 98.2 \ 94.9$    | $91.8 \ 98.2 \ 94.9$    |  |
| NeuSomatic-S  | 99.2 100 99.6            | 99.2 100 99.6           | 99.2 100 99.6           | <b>98.4</b> 99.2 98.8   |  |
| NeuSomatic    | <b>99.2</b> 99.2 99.2    | <b>99.2</b> 99.2 99.2   | <b>99.2</b> 99.2 99.2   | $98.4\ 100\ 99.2$       |  |

Supplementary Table 7: Performance of different somatic mutation detection methods on PacBio dataset. For each method we report the precision, recall and F1-score for the quality score threshold in precision-recall curve which achieves highest F1. (RC: Recall, PR: Precision, F1: F1-score)

| Method 50% Tumor Puri<br>95% Normal Pur<br>SNV IN |                | Purit<br>Puri  | y<br>ty       |      | 30%<br>95%    | Tur<br>Nor   | nor I<br>mal | Purit<br>Puri | $\mathbf{y}$ ty |             | 20%<br>95%  | Tur<br>Nor  | nor I<br>mal | Purit<br>Puri | y<br>ty     |              |               |
|---------------------------------------------------|----------------|----------------|---------------|------|---------------|--------------|--------------|---------------|-----------------|-------------|-------------|-------------|--------------|---------------|-------------|--------------|---------------|
|                                                   |                | IND            | )EL           |      | SNV INDEL     |              |              | SNV           |                 |             | INDEL       |             |              |               |             |              |               |
|                                                   | RC PR          | F1             | RC            | PR   | F1            | RC           | PR           | F1            | RC              | PR          | F1          | RC          | PR           | F1            | RC          | PR           | F1            |
|                                                   | (%) (%         | ) (%)          | (%)           | (%)  | (%)           | (%)          | (%)          | (%)           | (%)             | (%)         | (%)         | (%)         | (%)          | (%)           | (%)         | (%)          | (%)           |
| VarDict                                           | 57.7 94.       | 3 71.6         | 23.3          | 49.5 | 31.7          | 49.4         | 82.5         | 61.8          | 10.2            | 10.0        | 10.1        | 45.7        | 55.0         | 49.9          | 7.0         | 0.7          | 1.3           |
| NeuSomatic-S                                      | <b>97.6 98</b> | <b>6 98.</b> 1 | L <b>83.8</b> | 88.7 | 7 <b>86.2</b> | 9 <b>3.4</b> | <b>98.7</b>  | 7 <b>95.9</b> | 58.1            | <b>69.6</b> | <b>63.3</b> | <b>74.6</b> | <b>97.5</b>  | <b>84.5</b>   | <b>26.6</b> | 4 <b>2.7</b> | 7 <b>32.7</b> |

Supplementary Table 8: Performance of different somatic mutation detection methods on real dataset COLO-829.

| Method        | Number of Calls | Recall | <b>Extrapolated Precision</b> | Extrapolated F1 |
|---------------|-----------------|--------|-------------------------------|-----------------|
| VarDict       | 102712          | 94.1   | 37.6                          | 53.7            |
| VarScan2      | 62824           | 98.9   | 72.1                          | 83.4            |
| MuTect2       | 40405           | 96.9   | 94.7                          | 95.8            |
| MuSE          | 45857           | 99.8   | 92.8                          | 96.2            |
| SomaticSniper | 46500           | 99.3   | 90.5                          | 94.7            |
| Strelka2      | 42818           | 99.1   | 94.9                          | 97.0            |
| SomaticSeq    | 39431           | 98.9   | 99.1                          | 99.4            |
| NeuSomatic-S  | 35413           | 89.0   | 88.3                          | 88.7            |
| NeuSomatic    | 37843           | 99.6   | 99.9                          | 99.7            |

Supplementary Table 9: Performance of different somatic mutation detection methods on real dataset CLL1.

| Method        | Number of Calls | Recall | <b>Extrapolated Precision</b> | Extrapolated F1 |
|---------------|-----------------|--------|-------------------------------|-----------------|
| VarDict       | 33418           | 88.0   | 17.8                          | 29.6            |
| VarScan2      | 11781           | 90.4   | 52.2                          | 66.2            |
| MuTect2       | 4382            | 82.4   | 73.4                          | 77.6            |
| MuSE          | 7500            | 89.6   | 67.6                          | 77.0            |
| SomaticSniper | 8451            | 89.6   | 63.0                          | 74.0            |
| Strelka2      | 3575            | 90.2   | 86.6                          | 88.4            |
| SomaticSeq    | 3579            | 87.8   | 81.7                          | 84.7            |
| NeuSomatic-S  | 3224            | 88.4   | 81.8                          | 84.9            |
| NeuSomatic    | 2581            | 89.0   | 97.9                          | 93.2            |

Supplementary Table 10: Performance of different somatic mutation detection methods on real dataset TCGA-AZ-6601.

| Method        | Number of Calls | Recall | <b>Extrapolated Precision</b> | Extrapolated F1 |
|---------------|-----------------|--------|-------------------------------|-----------------|
| VarDict       | 3747            | 74.6   | 62.8                          | 68.2            |
| VarScan2      | 5041            | 98.2   | 63.9                          | 77.5            |
| MuTect2       | 3547            | 99.7   | 97.9                          | 98.8            |
| MuSE          | 3433            | 99.6   | 98.8                          | 99.2            |
| SomaticSniper | 1878            | 65.7   | 98.7                          | 78.8            |
| Strelka2      | 3799            | 100    | 93.7                          | 96.8            |
| SomaticSeq    | 5275            | 100    | 71.7                          | 83.5            |
| NeuSomatic-S  | 3636            | 99.7   | 86.0                          | 92.3            |
| NeuSomatic    | 3401            | 99.9   | 99.3                          | 99.6            |

Supplementary Table 11: List of 261 TCGA cancer samples used for Microsoft Azure experiment. Samples are taken across three cancer types: colorectal adenocarcinoma (COAD), ovarian serus adenocarcinoma (OV), and cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC).

| Cancer Type | Sample IDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COAD        | TCGA-A6-2672<br>TCGA-AA-3713<br>TCGA-AU-6004<br>TCGA-AZ-6601<br>TCGA-CK-4952<br>TCGA-CM-5861<br>TCGA-D5-6927<br>TCGA-DM-A1D4<br>TCGA-G4-6299<br>TCGA-G4-6628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TCGA-A6-6653<br>TCGA-AD-5900<br>TCGA-AY-6197<br>TCGA-CA-6716<br>TCGA-CK-5913<br>TCGA-CM-6162<br>TCGA-D5-6928<br>TCGA-DM-A1DA<br>TCGA-G4-6304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TCGA-AA-3492<br>TCGA-AD-6889<br>TCGA-AZ-4315<br>TCGA-CA-6717<br>TCGA-CK-5916<br>TCGA-CM-6674<br>TCGA-D5-6930<br>TCGA-F4-6570<br>TCGA-G4-6309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TCGA-AA-3510<br>TCGA-AD-6895<br>TCGA-AZ-6598<br>TCGA-CA-6718<br>TCGA-CM-678<br>TCGA-CM-6678<br>TCGA-D5-6931<br>TCGA-F4-6703<br>TCGA-G4-6586                                                                                                                                                                                                                                                                                                                                                                  | TCGA-AA-3663<br>TCGA-AD-6964<br>TCGA-AZ-6599<br>TCGA-CK-4950<br>TCGA-CM-4746<br>TCGA-D5-6540<br>TCGA-DM-A0XD<br>TCGA-F4-6856<br>TCGA-G4-6588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CESC        | $\begin{array}{c} \mathrm{TCGA-C5-A2LS}\\ \mathrm{TCGA-C5-A7CG}\\ \mathrm{TCGA-C5-A7CM}\\ \mathrm{TCGA-C5-A7X3}\\ \mathrm{TCGA-B-A3LQ}\\ \mathrm{TCGA-EA-A1QS}\\ \mathrm{TCGA-EA-A3QD}\\ \mathrm{TCGA-EA-A3QD}\\ \mathrm{TCGA-EA-A39}\\ \mathrm{TCGA-EA-A5ZE}\\ \mathrm{TCGA-EK-A2H0}\\ \mathrm{TCGA-EK-A2PL}\\ \mathrm{TCGA-EK-A2PL}\\ \mathrm{TCGA-EK-A2RJ}\\ \mathrm{TCGA-EK-A2RJ}\\ \mathrm{TCGA-EK-A2RJ}\\ \mathrm{TCGA-EK-A3GJ}\\ \mathrm{TCGA-EK-A3GJ}\\ \mathrm{TCGA-EK-A3GJ}\\ \mathrm{TCGA-FU-A3HY}\\ \mathrm{TCGA-FU-A3HY}\\ \mathrm{TCGA-FU-A3HY}\\ \mathrm{TCGA-IR-A3LF}\\ \mathrm{TCGA-JW-A5VL}\\ \mathrm{TCGA-JW-A5VL}\\ \mathrm{TCGA-JX-A3Q8}\\ \mathrm{TCGA-Q1-A5R1}\\ \mathrm{TCGA-Q1-A73S}\\ \mathrm{TCGA-WL-A834}\\ \end{array}$ | $\begin{array}{l} {\rm TCGA-C5-A2LX}\\ {\rm TCGA-C5-A7CH}\\ {\rm TCGA-DG-A2KH}\\ {\rm TCGA-DG-A2KH}\\ {\rm TCGA-DS-A5RQ}\\ {\rm TCGA-EA-A3HQ}\\ {\rm TCGA-EA-A3QE}\\ {\rm TCGA-EA-A3QE}\\ {\rm TCGA-EA-A43B}\\ {\rm TCGA-EA-A43B}\\ {\rm TCGA-EK-A2H1}\\ {\rm TCGA-EK-A2H1}\\ {\rm TCGA-EK-A2H1}\\ {\rm TCGA-EK-A2RB}\\ {\rm TCGA-EK-A2RB}\\ {\rm TCGA-EK-A2RB}\\ {\rm TCGA-EK-A2RK}\\ {\rm TCGA-EK-A2RK}\\ {\rm TCGA-EK-A2RK}\\ {\rm TCGA-EK-A2RK}\\ {\rm TCGA-EK-A3GK}\\ {\rm TCGA-EK-A3GK}\\ {\rm TCGA-EK-A3GK}\\ {\rm TCGA-EK-A3GK}\\ {\rm TCGA-EK-A3GK}\\ {\rm TCGA-EK-A3GK}\\ {\rm TCGA-FU-A3NI}\\ {\rm TCGA-FU-A3NI}\\ {\rm TCGA-FU-A3NI}\\ {\rm TCGA-IR-A3L7}\\ {\rm TCGA-IR-A3LH}\\ {\rm TCGA-JW-A5VH}\\ {\rm TCGA-JW-A5PK}\\ {\rm TCGA-JW-A5PK}\\ {\rm TCGA-JX-A5QV}\\ {\rm TCGA-LP-A5U2}\\ {\rm TCGA-Q1-A5R2}\\ {\rm TCGA-R2-A69V}\\ \end{array}$ | $\begin{array}{l} {\rm TCGA-C5-A2M1}\\ {\rm TCGA-C5-A7CJ}\\ {\rm TCGA-C5-A7UC}\\ {\rm TCGA-DG-A2KK}\\ {\rm TCGA-DS-A7WF}\\ {\rm TCGA-EA-A3HR}\\ {\rm TCGA-EA-A3Y4}\\ {\rm TCGA-EA-A5FO}\\ {\rm TCGA-EA-A6QX}\\ {\rm TCGA-EK-A2IP}\\ {\rm TCGA-EK-A2IP}\\ {\rm TCGA-EK-A2RC}\\ {\rm TC$ | TCGA-C5-A2M2<br>TCGA-C5-A7CK<br>TCGA-C5-A7UE<br>TCGA-DG-A2KL<br>TCGA-DG-A2KL<br>TCGA-EA-A3HT<br>TCGA-EA-A3HT<br>TCGA-EA-A410<br>TCGA-EA-A509<br>TCGA-EA-A78R<br>TCGA-EK-A2PG<br>TCGA-EK-A2RB<br>TCGA-EK-A2RB<br>TCGA-EK-A2RN<br>TCGA-EK-A2RN<br>TCGA-EK-A2RN<br>TCGA-EK-A3GN<br>TCGA-FU-A2QG<br>TCGA-FU-A3TX<br>TCGA-FU-A3TX<br>TCGA-FU-A3LB<br>TCGA-IR-A3LB<br>TCGA-IR-A3LB<br>TCGA-IR-A3LK<br>TCGA-IR-A3PZ<br>TCGA-LP-A4AV<br>TCGA-LP-A7HU<br>TCGA-Q1-A6DT<br>TCGA-Q1-A73Q<br>TCGA-UC-A7PD                 | $\begin{array}{l} {\rm TCGA-C5-A3HF}\\ {\rm TCGA-C5-A7CL}\\ {\rm TCGA-C5-A7CH}\\ {\rm TCGA-DS-A7WI}\\ {\rm TCGA-DS-A7WI}\\ {\rm TCGA-EA-A3HU}\\ {\rm TCGA-EA-A3HU}\\ {\rm TCGA-EA-A5ZD}\\ {\rm TCGA-EK-A2GZ}\\ {\rm TCGA-EK-A2GZ}\\ {\rm TCGA-EK-A2RP}\\ {\rm TCGA-EK-A2RP}\\ {\rm TCGA-EK-A2RP}\\ {\rm TCGA-EK-A2RO}\\ {\rm TC$ |
| OV          | $\begin{array}{c} {\rm TCGA-04-1332} \\ {\rm TCGA-09-0366} \\ {\rm TCGA-13-0723} \\ {\rm TCGA-13-0765} \\ {\rm TCGA-13-0807} \\ {\rm TCGA-13-0893} \\ {\rm TCGA-13-0893} \\ {\rm TCGA-13-0912} \\ {\rm TCGA-13-1405} \\ {\rm TCGA-13-1405} \\ {\rm TCGA-13-1498} \\ {\rm TCGA-23-1021} \\ {\rm TCGA-23-1021} \\ {\rm TCGA-23-1124} \\ {\rm TCGA-24-1413} \\ {\rm TCGA-24-1425} \\ {\rm TCGA-24-1436} \\ {\rm TCGA-24-1436} \\ {\rm TCGA-24-1562} \\ \end{array}$                                                                                                                                                                                                                                                                                     | $\begin{array}{c} {\rm TCGA-04-1336} \\ {\rm TCGA-04-1349} \\ {\rm TCGA-09-0369} \\ {\rm TCGA-13-0724} \\ {\rm TCGA-13-0791} \\ {\rm TCGA-13-0884} \\ {\rm TCGA-13-0894} \\ {\rm TCGA-13-0920} \\ {\rm TCGA-13-1411} \\ {\rm TCGA-13-1418} \\ {\rm TCGA-13-1488} \\ {\rm TCGA-13-1499} \\ {\rm TCGA-23-1022} \\ {\rm TCGA-24-1026} \\ {\rm TCGA-24-1416} \\ {\rm TCGA-24-1463} \\ {\rm TCGA-24-1616} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} {\rm TCGA-04-1343} \\ {\rm TCGA-04-1361} \\ {\rm TCGA-10-0930} \\ {\rm TCGA-13-0726} \\ {\rm TCGA-13-0795} \\ {\rm TCGA-13-0885} \\ {\rm TCGA-13-0897} \\ {\rm TCGA-13-0924} \\ {\rm TCGA-13-0924} \\ {\rm TCGA-13-1412} \\ {\rm TCGA-13-1489} \\ {\rm TCGA-13-1506} \\ {\rm TCGA-23-1117} \\ {\rm TCGA-24-0980} \\ {\rm TCGA-24-1417} \\ {\rm TCGA-24-1427} \\ {\rm TCGA-24-1464} \\ {\rm TCGA-25-1315} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} {\rm TCGA-04-1346} \\ {\rm TCGA-04-1362} \\ {\rm TCGA-10-0933} \\ {\rm TCGA-13-0755} \\ {\rm TCGA-13-0800} \\ {\rm TCGA-13-0803} \\ {\rm TCGA-13-0903} \\ {\rm TCGA-13-1403} \\ {\rm TCGA-13-1403} \\ {\rm TCGA-13-1481} \\ {\rm TCGA-13-1491} \\ {\rm TCGA-13-1507} \\ {\rm TCGA-23-1118} \\ {\rm TCGA-24-1103} \\ {\rm TCGA-24-1103} \\ {\rm TCGA-24-1103} \\ {\rm TCGA-24-1418} \\ {\rm TCGA-24-1428} \\ {\rm TCGA-24-1428} \\ {\rm TCGA-24-1469} \\ {\rm TCGA-25-1316} \\ \end{array}$ | $\begin{array}{c} {\rm TCGA-04-1347} \\ {\rm TCGA-04-1542} \\ {\rm TCGA-10-0935} \\ {\rm TCGA-13-0760} \\ {\rm TCGA-13-0804} \\ {\rm TCGA-13-0800} \\ {\rm TCGA-13-0910} \\ {\rm TCGA-13-0910} \\ {\rm TCGA-13-1404} \\ {\rm TCGA-13-1404} \\ {\rm TCGA-13-1497} \\ {\rm TCGA-13-1509} \\ {\rm TCGA-23-1123} \\ {\rm TCGA-24-1104} \\ {\rm TCGA-24-1424} \\ {\rm TCGA-24-1424} \\ {\rm TCGA-24-1425} \\ {\rm TCGA-24-1470} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Supplementary Table 12: Performance analysis of different network architectures shown in Supplementary Figure 13. Here, all the networks are assessed with batch size of 1000 and after 600 epochs training.

| id | Network<br>architecture                   | Network<br>parameters | Seconds per<br>epoch of 1M<br>candidates | GPU<br>Memory<br>(GB) | SNV<br>F1-score<br>(%) | INDEL<br>F1-score<br>(%) |
|----|-------------------------------------------|-----------------------|------------------------------------------|-----------------------|------------------------|--------------------------|
| a  | 8 ResNet blocks (ResNet-18)               | 13.6M                 | 446                                      | 5                     | 89.65                  | 86.87                    |
| b  | 6 ResNet blocks                           | 5.2M                  | 157                                      | 3.7                   | 89.28                  | 86.50                    |
| с  | 4 ResNet blocks                           | $7.4\mathrm{M}$       | 209                                      | 3.5                   | 89.18                  | 87.15                    |
| d  | 12 ResNet blocks                          | $19.9 \mathrm{M}$     | 686                                      | 5.2                   | 89.43                  | 86.34                    |
| e  | 16 ResNet blocks (ResNet-34)              | 23.8M                 | 853                                      | 7                     | 87.99                  | 84.87                    |
| f  | 4 "3-5-residual" blocks with strided conv | $12.9 \mathrm{M}$     | 366                                      | 9.4                   | 89.82                  | 86.87                    |
| g  | 8 "3-5-residual" blocks with strided conv | 24.7M                 | 418                                      | 9.4                   | 89.88                  | 87.15                    |
| h  | 4 "3-5-residual" blocks w/o strided conv  | $0.9 \mathrm{M}$      | 70                                       | 7.2                   | 88.30                  | 86.44                    |
| i  | 4 "3-3-NeuSomatic" blocks                 | 0.6M                  | <b>45</b>                                | <b>2.4</b>            | 89.43                  | 86.80                    |
| j  | 4 "5-5-NeuSomatic" blocks                 | 1.1M                  | 176                                      | 9.2                   | 89.59                  | 86.85                    |
| k  | 4 "3-5-NeuSomatic" blocks (fc=240)        | $0.9 \mathrm{M}$      | 117                                      | 9.3                   | 89.64                  | 86.92                    |
| 1  | 4 "3-5-NeuSomatic" blocks (fc=120)        | $0.7 \mathrm{M}$      | 115                                      | 9.3                   | 89.23                  | 86.44                    |
| m  | 4 "3-5-NeuSomatic" blocks (fc= $360$ )    | 1.0M                  | 115                                      | 9.3                   | 89.30                  | 86.90                    |