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ABSTRACT 

Genome-wide studies in tumor cells have indicated that chromatin-modifying proteins are 

commonly mutated in human cancers. The lysine-specific methyltransferase 2C 

(KMT2C/MLL3) is a putative tumor suppressor in several epithelia and in myeloid cells. 

Here we show that downregulation of KMT2C in bladder cancer cells leads to extensive 

changes in the epigenetic status and the expression of DNA damage response and DNA 

repair genes. More specifically, cells with low KMT2C activity are deficient in homologous 

recombination-mediated double strand break DNA repair. Consequently, these cells suffer 

from substantially higher endogenous DNA damage and genomic instability. Finally, these 

cells seem to rely heavily on PARP1/2 for DNA repair, and treatment with the PARP1/2 

inhibitor Olaparib leads to synthetic lethality, suggesting that cancer cells with low KMT2C 

expression are attractive targets for therapies with PARP1/2 inhibitors. 

 

 

INTRODUCTION 

It is well established that epigenetic dysregulation is an integral component of cancer 

etiology and progression [1]. Therefore, it’s not surprising that numerous epigenetic 

modifiers, such as DNMT3A, EZH2 and the MLL proteins, are frequently found genetically 

altered in cancer [2, 3]. Lysine (K)-Specific Methyltransferase 2C (KMT2C, also known as 

MLL3) belongs to the mixed-lineage leukemia (MLL) family of histone methyltransferases 

which methylate the histone 3 tail at lysine 4 (H3K4) [4] as part of the Complex Proteins 

Associated with Set1 (COMPASS) complex [5]. Although originally identified as oncogenic 

fusions in leukemia [6], recent genome-wide mutation studies have revealed frequent, 

presumably loss-of-function, mutations in various members of the MLL family, including 

MLL2/KMT2D, MLL3/KMT2C and MLL4/KMT2B in a variety of malignancies, 

particularly solid tumors [7-11]. Mouse studies have also uncovered a tumor suppressor role 

for KMT2C in acute myeloid leukemia (AML) [12] and urothelial tumorigenesis [13]. 

Mechanistic studies of KMT2C in normal cells have focused primarily on its role in 

enhancer regulation [14, 15] by deposition of H3K4me1 marks. Interestingly, recent reports 

also indicate roles for KMT2C in transcription regulation, which are independent of its 

H3K4 monomethylation activity on enhancers [16, 17]. However, its role in tumorigenesis 

remains largely undefined.  
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Bladder cancer is the fifth most common human malignancy and the second most frequently 

diagnosed genitourinary tumor after prostate cancer [18]. The majority of malignant tumors 

arising in the urinary bladder are urothelial carcinomas. Superficial carcinoma accounts for 

approximately 75% of the newly diagnosed cases while the remaining 25% represents 

muscle-invasive bladder cancer [19]. The latter, often originating from superficial 

carcinoma, is a life threatening disease with high metastatic potential. Recent genome-wide 

studies on superficial and muscle-invasive urothelial carcinoma have indicated that 

epigenetic regulators, including KMT2C are commonly mutated in both types [11, 20]. Here 

we show that KMT2C is downregulated in neoplastic tissue in several epithelial cancers. As 

expected, KMT2C knockdown leads to epigenetic and expression changes. Of interest, genes 

involved in DNA damage response (DDR) and DNA repair, particularly homologous 

recombination (HR)-mediated DNA repair, are downregulated. This leads to increased DNA 

damage and chromosomal instability, highlighted by generation of micronuclei and 

numerical/regional chromosome losses. In our experiments, cells with reduced KMT2C 

expression are highly dependent on the alternative end joining (alt-EJ) pathway for repair of 

double strand breaks (DSBs), while inhibition of PARP1/2 causes synthetic lethality. 

 

 

RESULTS 

KMT2C is downregulated in human epithelial cancers 

Mutational data from published studies show that the majority of KMT2C mutations cluster 

within the plant homeodomains (PHD) 1-3 located in the N-terminus of the protein 

(Catalogue of Somatic Mutations in Cancer-COSMIC). KMT2C PHD domains act as 

“readers” of the histone methylation status, recognizing monomethylated H3K4 (H3K4me1) 

while the catalytic Su(var)3-9 and 'Enhancer of zeste' (SET) domain, located in the C-

terminus, are the “writer” that adds methyl- groups to complete the methylation process 

[21]. KMT2C is commonly mutated in high grade muscle-invasive urothelial carcinoma [7], 

in which, mutations were recently found equally distributed within the two major subtypes, 

luminal-papillary and basal-squamous [11]. Little is known however, about low grade/early 

stage tumors, including superficial papillomas. To address this issue, we sequenced the N- 

and C-terminus of the KMT2C transcript in tumors and matching normal tissues from a 

cohort of 72 patients diagnosed with superficial or muscle-invasive urothelial cancer of 

variable grade [22]. We identified mutations primarily within PHD fingers 1-3 (Figure 1A), 

which showed no statistical preference with respect to grade and stage (mutations were 
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found in 12/43 high grade vs. 4/29 low grade, and 9/32 invasive vs. 7/40 superficial tumors). 

Interestingly, a recent study on non-invasive bladder cancer also identified a high frequency 

(15%) of KMT2C likely loss-of-function mutations in non-invasive bladder cancer [20], 

indicating that KMT2C inactivation might occur early in carcinogenesis. In our mutation 

detection study, both frameshift and missense mutations were identified, the vast majority of 

which are predicted to be damaging (Figure 1A and Table EV1). Recently identified 

missense mutations within the PHD fingers 1-3 have been shown to disrupt the interaction 

between KMT2C and BAP1 leading to reduced recruitment of KMT2C to gene enhancers 

[1]. Our KMT2C expression analysis in 104 matched normal/cancer tissue pairs from an  

expanded bladder cancer patients cohort (n=138) (Appendix Tables S1, S2), revealed that, in 

comparison to normal tissues, KMT2C expression is downregulated in the majority of 

tumors both at the RNA and protein level (71/104, P<0.001; Figure 1B, C).  

 

KMT2C is mutated in several epithelial cancers [8] implying a general role as a tumor 

suppressor. To investigate this hypothesis, we performed a meta-analysis on publically 

available RNA-seq data from The Cancer Genome Atlas (TCGA) consortium [23-26]. We 

found that similarly to bladder cancer (BC), KMT2C is downregulated in comparison to 

normal tissue in colorectal adenocarcinoma (COAD), non-small cell lung cancer (NSCLC) 

and head and neck squamous cell carcinoma (HNSCC; Figure 1D). These data indicate that 

KMT2C downregulation is a rather common event in tumorigenesis in several human 

epithelial tissues. On the other hand, a recent report [27] and our own meta-analysis of non-

epithelial cancers with the use of the GEPIA web server [28] indicated that, in comparison to 

respective healthy tissue, KMT2C is expressed at higher levels in glioblastoma multiforme 

(GBM), brain lower grade glioma (LGG), diffuse large B-cell lymphomas (DLBL), acute 

myeloid leukemia (AML) and sarcomas (SARC; Appendix Figure S1). This is in agreement 

with the fact that KMT2C truncating mutations account for only 0.6% in these cancer types 

(2/397, 2/512, 0/41, 3/200 and 2/254 cases, respectively; not shown). 

 

Our meta-analysis of publicly available DNA methylation data [7] obtained from the 

MethHC database [29] indicate that two Illumina methylation detection probes (cg17322443 

and cg19258062) located within a CpG island (chr7:152435133-152437025, assembly 

GRCh38/hg38, ENCODE) spanning the KMT2C proximal promoter are subject to DNA 

methylation in bladder tumor samples, while remaining methylation-free in normal tissue 

(Figure EV1A, B), confirming a previously published report [30]. More importantly, the 
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same CpG island within the KMT2C proximal promoter is also hypermethylated in tumor 

samples from COAD, NSCLC and HNSCC (Figure EV1C). Collectively, these data indicate 

that both mutational inactivation and transcriptional downregulation via promoter 

methylation of KMT2C might contribute to reduced activity facilitating tumor development 

in several epithelial cancers. 

  

KMT2C loss affects enhancer activity and gene expression in a subset of genes  

To investigate its role in urothelial carcinoma cells, we used two independent shRNAs 

(KD1/KD2) to knock down KMT2C levels in human BC cell lines (Figure 2A). While the 

loss of KMT2C activity did not affect cell proliferation or apoptosis (Appendix Figure S2), 

RNA-seq experiments in HTB9 cells showed that, directly or indirectly, 3324 genes were 

transcriptionally affected upon KMT2C silencing (1.4-fold and higher change in expression 

levels). Of those, 1846 were downregulated while 1478 were upregulated. Gene ontology 

(GO) analysis indicated that many of the affected genes are involved in DDR, DNA repair, 

DNA replication, cell cycle control and apoptosis, all of which are considered hallmarks of 

cancer, and are associated with tumor aggressiveness [31] (Figure 2B). In order to study 

directly the role of KMT2C and to circumvent the lack of chromatin immunoprecipitation 

(ChIP)-grade anti-KMT2C antibodies, we exogenously expressed a Flag-tagged KMT2C 

protein (fKMT2C) in HTB9/KD1 cells (Figure 2C).  

To gain further insight into the function of KMT2C in gene transcription regulation, we used 

fKMT2C-complemented HTB9/KD1 cells to map KMT2C binding genome-wide through 

ChIP-sequencing (ChIP-seq). In addition, to measure the epigenetic effects of KMT2C loss 

we performed ChIP-seq experiments for histone 3 lysine 27 acetylation (H3K27ac), histone 

3 lysine 4 trimethylation (H3K4me3) and histone 3 lysine 9 acetylation (H3K9ac) histone 

modifications on HTB9 KMT2C/KD1 and control Scr cells. ChIP-seq experiments 

performed with anti-Flag antibodies indicated that KMT2C binding sites are equally 

dispersed among promoter, gene body and intergenic regions (12417, 10882 and 9885 

peaks, respectively; Figure 2D).  

In agreement with its role in enhancer regulation, KMT2C colocalizes with the active 

enhancer mark H3K27ac on intergenic sites likely representing active enhancers [32] 

(Figure 2E). Our ChIP-Seq analysis identified 2808 genes proximally located to enhancers 

that are characterized by KMT2C binding and significant H3K27ac loss upon KMT2C 

silencing. GO analysis on genes of this group that are also downregulated upon KMT2C 
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silencing (1.5-fold or higher reduction) revealed an enrichment in processes such as focal 

adhesion and integrin-mediated adhesion as well as ErbB and Wnt signaling pathways 

(Figure 2F). More specifically, we identified genes that encode proteins which are critical 

for cell adherence to the epithelial basement membrane: ITGB1, ITGB6, RHOB, a putative 

tumor suppressor also commonly mutated in BC [7, 20], MMP7; Figure 2G); the 

extracellular matrix organization LOXL2, LOXL4,an epigenetically silenced putative tumor 

suppressor in bladder carcinoma [33], TIMP4), and epithelial development and 

differentiation (SMAD6, SOX2, EREG, WNT11, BMP2). Interestingly, KMT2D/MLL4, was 

recently reported to regulate the enhancers of genes involved in cell-cell and cell-matrix 

adhesion as well as in differentiation of keratinocytes affecting the expression of  ITGB2, 

ITGB4, LOXL1, LOXL2, SOX7, WNT10A genes by a similar way [34]. An analysis of 

transcription factor binding motifs in KMT2C peaks located at enhancers that are 

characterized by significant H3K27ac loss upon KMT2C silencing, identified JUNB, TEAD, 

RUNX1 and MAFA as the most enriched transcription factors (Figure 2H).  

 

KMT2C localizes at promoters and controls the expression of DNA damage response 

and repair genes 

Interestingly, our ChIP-seq experiments also revealed 12417 fKMT2C binding sites 

enriched at transcription start site proximal regions (TSS±1500 bp) that contain large 

domains of H3K4me3 H3K9ac and H3K27ac marks (Figure 3A, B). KMT2C silencing, was 

associated with transcriptional suppression of 1368 genes, which are characterized by 

promoter-only KMT2C binding. This finding indicates that besides enhancer regulation, 

KMT2C is also involved in promoter activation in cancer cells. Transcription factor binding 

motif analysis of fKMT2C-bound regions yielded a totally different set of transcription 

factors from those identified in enhancers. The most prominent of these is ELK1 (Figure 

3C), a prominent RAS/MAPK target controlling components of the basal transcriptional 

machinery, the spliceosome and the ribosome [35].  

Our ChIP-seq and RNA-seq data indicated that upon KMT2C silencing, the subgroup of 

genes showing reduced expression levels also show reduced H3K4me3 levels at the 

respective TSSs (Figure 3D). GO analysis on this group of the 1368 downregulated genes 

revealed several processes such as DDR and DSB repair by HR, which interestingly 

presented the highest score (see also Figure 2B). More specifically, KMT2C silencing was 

associated with decreased expression of key DDR components of DNA response (ATM, 
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ATR) and HR DNA repair pathway (BRCA1, BRCA2, RAD50, RAD51) (Figure 3E). 

Interestingly, restoration of KMT2C activity by means of exogenous expression of 

fKMT2C, also restored the expression levels of these genes (Figure 3F). 

Our own ChIP-seq data as well as ENCODE data indicate that KMT2C and the COMPASS 

complex component RBBP5 colocalize together with ELK1 upon the TSS of ATM, ATR, 

BRCA1 and BRCA2 genes (Figure 4A). Moreover, KMT2C levels modulate positively the 

H3K4me3 enrichment on TSS of these genes indicating an important role for this histone 

methyltransferase on their transcriptional activation. More specifically, upon KMT2C 

silencing, H3K4me3 levels were significantly reduced, whereas restoration of KMT2C 

activity also restored H3K4me3 levels. Promoter region immunoprecipitation either as direct 

binding or through long range enhancer interactions has previously been reported for both 

KMT2C and KMT2D [36, 37]. KMT2C binding upon the promoter region of the ATM, ATR, 

BRCA1 and BRCA2 genes is independently corroborated in a recently published analysis 

[38] (Appendix Figure S3). Interestingly in the same study, a 32% of KMT2C is located 

within promoter regions indicating roles for KMT2C beside enhancer H3K4 

monomethylation. 

This observation prompted us to knock down KMT2C expression in a wide panel of BC, 

COAD, HNSCC, and NSCLC cell lines which according to publically available data showed 

variable KMT2C expression levels (Figure 4B). Quantitative RT-PCR experiments revealed 

an invariable downregulation of DDR and HR components (Figure 4C). Finally, expression 

analysis of our cohort of bladder cancer tumors (Figure 4D), as well as  meta-analysis of 

publicly available TCGA expression data from BC, COAD, NSCLC and HNSCC indicated 

that KMT2C levels strongly correlate with the expression of the same genes (Figure 4E). 

Interestingly, a positive correlation between ATM, ATR, BRCA1, BRCA2 and KMT2C 

expression is also derived from TCGA data GBM, LGG, AML, DLBL, SARC and breast 

invasive carcinoma (BRIC) RNA-seq data (Appendix Figure S4). Altogether, these data 

indicate that KMT2C controls the epigenetic status of genes involved in DDR and DNA 

repair and directly or indirectly their expression levels, even in tissues in which a tumor 

suppressor role of KMT2C has yet to be established. Deficiencies in DNA repair due to 

germline or somatic mutations is a common event in cancer [39], while reduced expression 

of DNA repair components due to epigenetic control, primarily DNA methylation, is also 

observed [40, 41]. In this case, however, loss of KMT2C seems to affect en bloc the 

expression of multiple key components of the DDR and DNA repair pathways. 
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Bladder cancer cells lacking KMT2C are HR-deficient and present high levels of 

genomic instability 

The observation that KMT2C loss affects genes involved in DDR and DNA repair prompted 

an in depth cytogenetic analysis which revealed that both HTB9 and T24 cells lacking 

KMT2C show increased DNA damage as indicated by higher frequency of nuclear foci 

staining for the DNA damage marker γH2AX. DNA damage levels are comparable to those 

measured in BRCA1 knockdown cells (Figure 5A and Figure EV2A). Cisplatin is known to 

cause DSBs which in cells beyond the G1 phase are repaired by the HR machinery. To 

assess the contribution of HR in DSB repair, we treated HTB9 and T24 cells with cisplatin 

and immunostained against γH2AX and the HR repair protein RAD51. While both Scr 

control and KD cells showed the same frequency of γH2AX foci, RAD51-positive nuclei 

were significantly fewer in the latter (Figure 5B and Figure EV2B). Moreover, sister 

chromatid exchange (SCE) assays upon cisplatin treatment clearly demonstrated that, while 

Scr control cells are HR competent, their KD counterparts show low levels of HR DSB 

repair (Figure 5C and Figure EV2C). It is known that HR factors stabilize stalled forks by 

protecting them from nucleolytic degradation, help restarting DNA synthesis from stalled 

forks and repair DSBs generated by collapsed forks [42-46]. To investigate the ability of 

KMT2C/KD cells to resolve stalled forks in S phase, we used DNA fiber assays. In the 

presence of the DNA replication inhibitor hydroxyurea (HU), KMT2C/KD cells show a 

behavior similar to that of BRCA1-deficient cells, i.e. inability to resolve stalled forks 

(Figures 5D and Figure EV2D). These functional data indicate that loss of KMT2C leads to 

HR deficiency due to downregulation of multiple HR components, as well as 

compromisation of DNA replication under genotoxic stress.  

Interestingly, stalled or collapsed replications forks are a major source of DSBs and 

endogenous genomic instability in dividing cells [47]. In cancer, oncogene-induced 

replication stress contributes critically to DNA damage while cancer cells with HR 

deficiency are characterized by extensive genomic instability [48, 49]. Chromosomal 

instability, as a type of genomic instability, has been also linked to HR deficiency and 

mitotic defects [50, 51]. In KMT2C/KD cells, the increased frequency of micronuclei, 

chromosome bridges, lagging chromosomes and chromosome congression (Figure 6A, B) 

imply gross defects in mitotic fidelity and genome integrity safeguarding. To assess the 

chromosomal status of KMT2C/KD cells, we used gross karyotypic analysis which revealed 

that both HTB9 and T24 KMT2C/KD cells had lower chromosomal count in total and per 

individual chromosome (Figure 6C, D). Moreover, chromosomal microarray analysis 
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(CMA) on HTB9 cells indicated that chromosomal losses were more frequent and more 

extensive than respective gains (Figure 6E, F).   

 

KMT2C loss leads to PARP1/2-dependence for DNA repair 

Our expression and cytogenetic data clearly indicate that the HR repair machinery is 

compromised in KMT2C/KD cells. HR deficiency is known to skew the balance towards 

canonical-nonhomologous end joining (c-NHEJ) with the participation of the TP53BP1 

protein [52]. However, the number of TP53BP1 foci in cisplatin-treated KMT2C/KD cells is 

comparable with Scr control cells (Figure 7A and Figure EV3A), possibly implying that the 

activity of c-NHEJ is not elevated. To this direction, we compared the activity of NHEJ 

pathway between KMT2C/KD1 and Scr control cells by counting chromosomal fusion 

events in a dicentric assay. Repair of DSBs induced by ionizing radiation (IR) in this assay 

generated chromosomal fusions with equal frequency between KMT2C/KD1 and Scr 

control cells (Figure 7B and Figure EV3B), implying that both employ non-HR mechanisms 

for DNA repair equally. It is widely accepted that ligase IV participates in the final stages of 

the c-NHEJ [53], while poly (adenosine diphosphate [ADP]–ribose) polymerase 1 (PARP1) 

is an integral component of the alt-EJ pathway [54, 55]. To assess the individual 

contribution of c-NHEJ and alt-EJ in DNA repair, we induced DSBs via IR in both Scr 

control and KMT2C/KD1 cells and measured the frequency of chromosomal fusions in the 

presence of the ligase IV inhibitor SCR7 [56] or the PARP1/2 inhibitor Olaparib [57]. 

Inhibition of PARP1/2 in KMT2C/KD cells led to a significant reduction (P<0.01) in the 

number of chromosome fusions, while ligase IV inhibition had a lesser effect (Figure 7C and 

Figure EV3C). This implies that KMT2C/KD cells rely heavily on alt-EJ for DSB repair. 

PARP1/2 inhibition in BRCA-deficient cells is known to lead to accumulation of 

chromosome fragments and radial structures, a phenotype associated with c-NHEJ [52, 58, 

59]. As Figure 7D indicates, blocking the alt-EJ pathway with Olaparib leads to significantly 

(P=0.021) more radial chromosomes in comparison to Scr controls, while simultaneous 

treatment with Olaparib and SCR7 ameliorated this phenotype. Comparable results were 

obtained when the c-NHEJ and alt-EJ pathways were genetically inhibited through shRNA 

knockdown of Ligase IV and III, respectively (Figure EV4A, B). This further supports the 

hypothesis that, in KMT2C/KD cells, the alt-EJ pathway plays a more important role in 

DSB repair.  
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Tumors with KMT2C loss are sensitive to PARP1/2 inhibition 

Previous reports have shown that HR-deficient cells are sensitive to PARP1/2 inhibitors [58, 

60]. In fact, recently published results from a Phase II clinical trial indicated that patients 

with castration-resistant prostate cancer that carry mutations in DNA repair genes, such as 

BRCA1/2, ATM, Fanconi Anemia components and CHEK2, show positive response to 

Olaparib, indicating a dependence on PARP1/2 for survival upon DNA damage [61]. In 

agreement with this, KMT2C/KD cells show increased sensitivity to Olaparib (Figure 8A). 

This observation was also confirmed in long term treatments in clonogenic assays with three 

different concentrations of Olaparib (Figure EV5). Moreover, generation of DSBs through 

IR is detrimental for Olaparib-treated KMT2C/KD cells, underscoring the dependence of 

these on PARP1/2 for DNA repair (Figure 8B). These findings are independently 

corroborated from publically available data from the cancerrxgene.org database [62] which 

show that cell lines from BC, NSCLC, HNSCC and COAD with reduced expression of 

KMT2C are more sensitive to PARPi (Figure 8C). 

To corroborate our finding in vivo, we used one cell line from each tumor type under study 

in xenograft experiments (HTB9/BC, H1437/NSCLC, T84/COAD and Cal-33/HNSCC). 

Although, T84 and Cal-33 KMT2C/KD cells grew somewhat slower in vivo in comparison 

to the respective Scr controls, KD1 cells are more sensitive to Olaparib which totally 

suppressed tumor grown in mice (Figure 8D). This was associated with reduced 

proliferation, high DNA damage and severe apoptosis in KD1 cells all cell lines tested 

(Figure 8E). Altogether, our in vitro and in vivo experiments indicate that KMT2C/KD cells 

rely heavily upon alt-EJ for DSB repair. Although, we cannot exclude alt-EJ-independent 

PARP1/2 functions in DNA repair, we hypothesize that upon inhibition of alt-EJ, 

KMT2C/KD cells rely exclusively upon c-NHEJ for DSB repair. This however, is either 

insufficient or too error prone to deal with elevated DNA damage, eventually leading to cell 

death.  

DISCUSSION 

Histone modifying enzymes have emerged as critical players in tumor biology in recent 

years. H3K4 methyltransferases have been implicated in tumorigenesis both as oncogenes 

and tumor suppressors in a variety of neoplasias. Bladder cancer presents some of the 

highest reported mutation rates in KMT2C and KMT2D, and to a lesser extent in KMT2B [7, 

11, 63]. A high percentage of reported mutations lead to truncated protein products with 

presumably impaired functionality. Recent reports, however, indicate that loss of the 
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catalytic activity of KMT2C and KMT2D has a less severe effect on transcription regulation 

than the respective complete gene knockout [16, 17], implying that these proteins may have 

additional roles in transcriptional regulation beyond H3K4 monomethylation. 

In support of this, loss of the catalytic activity of the Drosophila homolog Trithorax (Trr) 

has negligible effect on fly development, while its complete loss leads to embryonic lethality 

[64, 65]. Therefore, somatic mutations, even those truncating the protein from its catalytic 

activity, might not be the only MLL-related genetic event associated with cancer. These 

observations prompted us to focus our studies on the expression levels of KMT2C, and its 

role in already transformed cells. We report for the first time that the epigenetic regulator 

KMT2C is significantly downregulated in many different types of cancer. We thus speculate 

that loss-of-function mutations in combination with progressively reduced gene expression 

due to promoter methylation, limit KMT2C activity in cancer cells. Thus, in tumor 

evolution, promoter methylation of KMT2C may provide a selective advantage to emerging 

KMT2C mutated cells by reducing wild type protein levels. In support of this model, 

KMT2C mutations were recently identified as late events in sub-clones of lung 

adenocarcinomas during tumor evolution [66] and in metastatic breast cancer subclones 

[67].  

Functionally, KMT2C and the related KMT2D protein direct H3K4 monomethylation which 

poises enhancers for activation and transcription factor binding, thus regulating the 

transcription of neighbor genes [68, 69]. In addition to its catalytic role in H3K4me1 

deposition, KMT2C interacts with the histone acetyltransferase complex CBP/p300 and the 

H3K27 demethylase UTX to promote H3K27 acetylation and enhancer activation [68]. The 

precise control of transcriptional networks through enhancers is important for the tissue 

specific expression pattern of developmental genes and plays a crucial role in establishing 

and maintaining cell fate and identity [70]. Recent studies, however, have shown that 

alterations in enhancer epigenetic landscape also correlate with tumorigenesis [71-73]. The 

reduced expression of KMT2C in  bladder epithelial tumor cells leads to a substantial loss of 

H3K27 acetylation in a subset of active enhancers that control expression of genes involved 

in focal adhesion, adherens junctions, migration, epithelial cell development and 

differentiation. In a recent study by Lin-Shiao and colleagues, loss of KMT2D activity by 

shRNA silencing in primary neonatal human epidermal keratinocytes (NHEKs) and 

spontaneously immortalized human epidermal keratinocytes (HaCaTs) revealed an 

important regulatory role of KMT2D in enhancer of genes involved in the same processes 

[34]. This may imply that KMT2C and KMT2D proteins exert coordinated and synergistic 
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functions in enhancer elements and their loss during carcinogenesis deregulates cell 

adhesion and signaling with profound effects to tumor progression and invasion. Previous 

reports have shown that concomitant loss of KMT2C and the tumor suppressor protein TP53 

expedites tumor formation in mice [13], implying a preferential collaboration between the 

two. Our own meta-analysis of the publically available TCGA RNA-seq and mutation data 

failed to substantiate any consistent correlation between TP53 mutation status and KMT2C 

expression levels or mutation status (Appendix Figure S5A, B). Moreover, a similar meta-

analysis on cancer cell lines also failed to identify any correlation between TP53 mutation 

status and KMT2C expression (Appendix Figure S5C). Whether the reported connection 

between KMT2C and TP53 is species or tissue-specific, or whether a more universal 

connection between the proteins exists, are questions that would require further experiments 

to be addressed. 

Upon KMT2C reduction, profound gene expression changes are observed. Several genes 

involved in DDR and DNA repair are downregulated, seemingly due to loss of KMTC 

binding on their proximal promoters. Expression downregulation in these cases is associated 

with reduction in H3K4me3 levels. Although other H3K4 methyltransferases have been 

found to regulate promoter activity [74, 75], this is the first time that KMT2C is found upon 

promoter regions and implicated in transcription activation, including DDR and DNA repair 

proteins. Whether transcription factors mediating oncogenic programs in cancer cells, such 

as ELK1 downstream of the RAS/MAPK cascade, are responsible for KMT2C recruitment 

onto promoter regions is a hypothesis that warrants further investigation. It is relevant in this 

respect that the implication of KMT2C in transcriptional regulation of these genes is 

confirmed in published TCGA datasets. 

Cells with reduced KMT2C levels behave as HR-deficient despite the fact that BRCA 

proteins and other HR components are not mutated. HR deficiency as a result of epigenetic 

regulation of BRCA expression levels has also been described (reviewed by 

Konstantinopoulos and colleagues) [76]. On the other hand, the alt-EJ pathway assumes a 

critical role, potentially due to HR deficiency. This explains the increased sensitivity of 

KMT2C/KD cells to PARP1/2 inhibition and offers a promising treatment alternative for 

KMT2Clow cases. Because PARP1/2 participate in the repair of single stand breaks (SSB; 

also induced during DNA replication), we cannot exclude the possibility that the increased 

sensitivity of KMT2C/KD cells to PARPi is also due to unrepaired SSBs which contribute to 

excess DNA damage. Interestingly, synthetic lethality between PARP inhibition and 

BRCA1/2 loss has been solidly established and already exploited in the clinic [77] while a 
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similar link has been established in preclinical models lacking ATM [78]. Our results will 

hopefully trigger further studies aiming to investigate the relationship between the 

epigenetic landscape and DNA damage response. 

 

 

Material and Methods 

Human specimens: Bladder tissue specimens were obtained from 138 patients diagnosed 

with primary urothelial carcinoma of the bladder. Bladder cancer patients underwent 

transurethral resection of bladder tumors (TURBT) for non–muscle invasive bladder cancer 

(Ta, T1) or radical cystectomy (RC) for muscle-invasive bladder cancer (T2–T4). All 

patients were treated at “Laiko” General Hospital, Athens, Greece (Appendix Tables S1, 

S2). Whenever feasible, normal adjacent tissue specimens from 104 of the same patients 

were included in the study as reference samples, following pathologist’s evaluation for 

absence of CIS and dysplasia. Tissue samples (tumors and normal adjacent specimens) were 

sectioned into two mirror-image specimens, one of which was submitted to pathologist’s 

evaluation, while the other one was immediately frozen in liquid nitrogen and stored at −80 

°C until further processing. All patients were diagnosed with urothelial carcinoma on the 

basis of histopathological criteria, and none of the patients had received any kind of 

neoadjuvant therapy prior to surgery. No inclusion or exclusion criteria were used other than 

tissue quality after thawing. Our study was performed according to the ethical standards of 

the 1975 Declaration of Helsinki, as revised in 2008, and was approved by the ethics 

committee of “Laiko” General Hospital. Informed consent was obtained from all the 

participating patients.  

 

Sanger sequencing: Total RNA from bladder tissue from a previously described cohort22 

was reverse transcribed with random primers and used in PCR reactions to obtain 

overlapping amplicons 600–800 bp that cover the portion of KMT2C coding region of 

interest. The oligonucleotide sequences used are provided in Appendix Table S5. PCR 

fragments were sequenced in both strands with standard Sanger sequencing procedures. 

 

Cell culture: All cell lines were originally purchased from ATCC. Cells were cultured in 

Dulbecco’s Modified Eagle Medium (Sigma-Aldrich, cat. D6429) supplemented with 10% 

heat-inactivated fetal bovine serum (Biosera, cat. FB-1001/500) and penicillin 

(100 units/ml)/streptomycin (100 µg/ml) (Thermo Fischer Scientific, cat. 15140122) at 37 °C 



14	

 

with 5% CO2, with the exception of H1437and H1792 which were cultured in RPMI-1640 

medium (Sigma-Aldrich, cat. R8758). 

 

Lentivirus production, infection and shRNA knockdown: Scramble, anti-KMT2C and 

anti-BRCA1 short hairpin RNA-producing DNA sequences were cloned in PLKO.1-puro-

IRES-gfp plasmids. To produce replication-incompetent lentivirus, 293T cells were co-

transfected with either Lenti-Scr-GFP or lenti-shKMT2C-GFP constructs in combination 

with the pMD2.G and psPAX2 plasmids (Addgene, cat. #12259 and #12260) using the 

CaCl2 precipitation method. Twelve hours later, growth medium was replenished. Viral 

supernatants were harvested 36h & 70h post-transfection. Cell lines were infected overnight 

with filtered viral supernatants. Three days post infection, cells were selected with 5-

10µg/ml Puromycin (Sigma-Aldrich, cat. P8833) over a period of 7 days. TRCN0000008744 

and TRCN000000743 (Sigma-Aldrich) shRNA clones against KMT2C were used for 

generation of KMT2C/KD1 and KMT2C/KD2 cells respectively. TRCN0000039834 

(Sigma-Aldrich) shRNA clone against BRCA1 was used for generation of BRCA1/KD 

cells. Scramble, anti-DNA ligase III (TRCN0000048502) and anti-ligase IV 

(TRCN0000009847) short hairpin RNA-producing DNA sequences (Sigma-Aldrich)  were 

cloned in PLKO.1-blast plasmid ( Addgene: #26655). Lentiviral supernatants generated 

using these plasmids were used to infect HTB9 and T24 KMT2C/KD1 cell lines. Three days 

post infection, cells were selected with 10µg/ml blasticidin over a period of 12 days for the 

generation of KMT2C/KD1 cell lines with DNA ligase III or IV knockdown. 

 

 

ChIP-seq preparation and analysis: Chromatin was prepared from Scr control and 

KMT2C/KD HTB9 cells with the SimpleChIP® Enzymatic Chromatin IP Kit (Cell 

Signaling, cat. 9003) according to the manufacturer’s instructions. Libraries were prepared 

in Greek Genome Center (GGC) Biomedical Research Foundation of Academy of Athens 

(BRFAA) as previously described [79] and sequenced on the Illumina platform. Single-end 

85 bp reads for H3, H3K27ac, H3K4me3 and H3K9ac were generated with the NextSeq500 

in the GGC. All ChIP-seq data were aligned to human genome version GCCh37/hg19 with 

the use of bowtie2 (version 2.1.0) [80] and «--very-sensitive» parameter. Samtools (version 

0.1.19) [81] were used for data filtering and file format conversion. MACS (version 1.4.2) 

algorithm [82] was used for peak calling with H3 ChIP as control. Gene annotation and 

genomic distribution of the peaks identified by MACs was performed with BEDTools [83] 
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and graph representation (heatmaps) of the tag – read density around TSS  was performed 

with seqMiner (version 1.3.3) software [84]. ChIP-seq data have been deposited in the Short 

Read Archive (SRA) under the BioProject ID: PRJNA508740. 

 

RNA-seq preparation and analysis: Library preparation for RNA-seq was carried out in 

the GGC of BRFAA. RNA was isolated from Scr control and KMT2C/KD cells and RNA-

seq libraries were prepared using the TruSeq RNA kit using 1 µg of total RNA. The libraries 

were constructed according to Illumina's protocols and equal amounts were mixed and run in 

the Illumina NextSeq500 in the GGC. Single-end 85 bp reads for three Scr control and three 

KMT2C/KD samples were generated. RNA-seq raw sequencing data were aligned to human 

genome version GCCh37/hg19 with the use of TopHat (version 2.0.9) [85] with the use of «-

-b2-very-sensitive» parameter. Samtools (version 0.1.19) [81] were used for data filtering 

and file format conversion, while HT-seq count (version 0.6.1p1) algorithm [86] was 

performed for assigning aligned reads into exons using the following command line «htseq-

count –s no –m intersection -nonempty». Finally differentially expressed genes were 

identified with the use of the DESeq R package [87] and genes with fold change cut off 1.5 

and p-adj≤0.05 were considered to be differentially expressed (DEGs). Gene ontology and 

pathway analysis was performed in the DEGs with the DAVID knowledge base [88] and 

Ingenuity Pathway Analysis software (IPA). Only pathways and biological processes with p-

value ≤0.05 were considered significantly enriched. RNA-seq data have been deposited in 

the Short Read Archive (SRA) under the BioProject ID: PRJNA508526. 

 

CMA analysis: The Chromosomal Microarray Analysis (CMA) was performed with the 

high resolution 2x400K G3 CGH+SNP microarray platform (G4842A, Design ID 028081, 

Agilent Technologies, Santa Clara, CA, USA). The specific platform features a total of 

292,097 oligonucleotide CGH probes covering the whole genome, with a median CGH 

probe spacing of 7kb, as well as 118,955 Single Nucleotide Polymorphism (SNP) probes for 

the detection of Copy-Neutral Loss of Heterozygosity (CN-LOH), resulting in a resolution 

of 5-10Mb for CN-LOH. The wet-lab protocol was according to the manufacturer’s 

instructions (Agilent Oligonucleotide Array-Based CGH for Genomic DNA Analysis), and 

consisted of enzymatic digestion of genomic DNA in parallel with a sex-matched reference 

DNA (Agilent Technologies, Santa Clara, CA, USA) with restriction enzymes AluI and 

RsaI, followed by differential labeling with Cy3 and Cy5 fluorescent dyes for sample and 

reference, respectively. Following purification, the combined labeled DNA samples were 
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applied to the microarray (hybridization for 40 hours at 67oC), washed and scanned at 3 

micron resolution on the Agilent High-Resolution Microarray Scanner (G2505C, Agilent 

Technologies, Santa Clara, CA, USA). The images were extracted and analyzed using the 

Agilent Feature Extraction software and the CytoGenomics v.3.0 software suite. The ADM-

1 aberration detection algorithm was utilized, and the minimum number of probes required 

for a call was set to 4. 

 

Real-time qPCR: For human tissue samples, total RNA was isolated, following the 

pulverization of 40-100 mg of bladder tissue specimens, with the use of TRI reagent 

(Molecular Research Center, Inc., Cincinnati, OH, USA) and reverse transcribed with 

MMLV reverse transcriptase (Invitrogen, Carlsbad, CA, USA) using oligo-dT primers. For 

cell lines, total RNA was isolated with the use of TRI reagent and reverse transcribed with 

PrimeScriptTM RT reagent Kit (Takara, RR037A) using oligo-dT and random primers. 

Quantitative PCR was performed in the 7500 Real-Time PCR System using the sequence 

detection software (Applied Biosystems, Carlsbad, CA, USA). The 10 µl reaction mixture 

consists of Kapa SYBR Fast Universal 2× qPCR Master Mix (Kapa Biosystems, Inc., 

Woburn, MA, USA). Melting curve analysis were performed following the amplification in 

order to distinguish specific reaction products from non-specific ones or primer-dimers. 

Gene expression analysis was carried out using the 2-∆∆CT relative quantification method 

[89]. Duplicate or triplicate reactions were performed for each tested sample, and the 

average CT was calculated for the quantification analysis. HPRT1 was used as an 

endogenous reference control. Oligonucleotide sequences are provided in Table S8. 

 

Immunofluorescence experiments: Cells were plated on poly-L-lysine (Sigma, cat. P1274) 

coated coverslips. Cells were fixed by 10 minute incubation in 4% paraformaldehyde (Alfa 

Aesar, 30525-89-4) at room temperature, permeabilized for 4 min in 1x PBS/0.5% Triton X-

100, washed with PBS and blocked in 1% bovine serum albumin (Applichem, cat. 

A1391,0100), 10% fetal bovine serum in PBS. Cells were incubated with primary antibody 

(Appendix Table S7) overnight at 4°C, followed by incubation with a fluorescent secondary 

antibody for 1 h at room temperature as previously described [90]. Antibody solutions were 

made in PBS with 1% bovine serum albumin. Coverslips were mounted on glass slides using 

VECTASHIELD Antifade Mounting Medium with 49,6-diamidino-2-phenylindole (DAPI) 

for DNA staining (Vektor, cat. H-1200). For DNA repair experiments cells were treated with 

2µΜ cisplatin for 6h. For tissue stainings, tumors were fixed in 4% formaldehyde at 4 °C, 
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thoroughly washed in PBS, placed in 30% sucrose overnight and frozen in optimal cutting 

temperature (OCT) compound (Tissue Tek, Sakura). Frozen 10 µm sections were obtained 

using a Leica (CM1950) cryostat. Sectioned tissues were washed three times in PBS, 

blocked for 1 h and incubated with primary and secondary antibodies as described. Image 

processing and foci counts were performed using ImageJ. 

 

Cytogenetics and FISH: Standard procedures were used for chromosome preparation and 

staining [91]. Briefly, cells were treated with 10µg/ml ColcemidTM (Thermo Fisher 

Scientific, catalog No. 15210040) for 1 hour, harvested, treated with 75 mM KCl for 20 

minutes, fixed in methanol/glacial acetic acid (3:1, v/v) and processed for cytogenetic 

analysis. Imaging and karyotyping were performed via microscopy and computer imaging 

techniques. At least thirty metaphases per cell line were karyotyped. Karyotypes were 

analyzed according to the International System for Human Cytogenetic Nomenclature 

(ISCN) 2013.  

 

MTT cell viability assays: For cell viability assays, cells were plated at 6-10 X 103 per well 

in 48-well plates and incubated with complete Dulbecco’s Modified Eagle Medium 

(DMEM) or RPMI 1640 medium containing different concentrations of Olaparib as 

indicated in the respective figure legend. Assays were performed using the standard MTT 

colorimetric assay (Sigma, cat. M5655) according to the manufacturer’s instructions. 

Measurements were analyzed using Graphpad Prism v6.  

 

Soft agar clonogenic assays: Basal anchorage-independent growth inhibition of Olaparib 

was assessed by a double-layer soft agar assay. Cells (5x104) were suspended in complete 

medium containing 0.35% agar and increasing Olaparib concentrations, and seeded in 

triplicate in 24-well plates onto a base layer of complete medium containing 1% agar. 

Medium was replenished every 3-5 days for 15-20 days, before colony counting. Image 

processing and colony counts were performed using ImageJ. 

 

 

Mice: Male NOD/SCID mice were purchased from the Jackson repository and bred in 

individually ventilated cages at the Animal House Facility of the Foundation for Biomedical 

Research Foundation of the Academy of Athens (Athens, Greece) under veterinarian 

supervision. All procedures for care and treatment of animals were approved by the 
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Institutional Committee on Ethics of Animal Experiments and the Greek Ministry of 

Agriculture. Cells were injected when mice reached the age of 4-6 weeks. For in vivo 

treatments, cells were injected in the flanks and when tumors reached a palpable size (2-3 

mm in diameter or dimension) mice were randomly assigned to groups. No exclusion 

criterion was applied. The Olaparib therapy group was intraperitoneally administered with 

either vehicle or Olaparib injection (AZD2281, MedChem express, at a dose of  50mg/kg in 

PBS solution containing 12.5% DMSO and 12.5% kolliphor) following the cycling dosing 

scheme OROOR (O: Olaparib or Vehicle, R: Rest) for 21 days. Tumors were dissected and 

weighed 24 hours after the last treatment. Tumor volume measurements were performed 

every three says using caliper. 

 

Ionizing radiation experiments: Irradiation was carried out in a GammaCell 220 irradiator 

(Atomic Energy of Canada Ltd., Ottawa, Canada) at room temperature. For chromosomal 

fusion events analysis, cells synchronized at the G0/G1 phase by growing the cell cultures to 

confluency followed by serum deprivation for 48h (0.1% to 0.25% serum) [92]. Cells were 

exposed to ionizing radiation (6Gy) and incubated at 37 °C for 6 hours to recover. At 6h 

post-irradiation, cells were trypsinized and cultured with fresh medium for 30 hours. 

Subsequently, cells were treated with colcemid for 1h to arrest dividing cells at metaphase 

and processed for chromosome preparation and staining as previously described. For drug 

treatments, cells were exposed to 15µΜ Olaparib and/or 30µΜ SCR7 (MedChem Express, 

cat. HY-12742) 24h prior to irradiation until metaphase harvesting. For each experiment, 30 

metaphases were scored. Experiments were repeated thrice. Light microscopy was coupled 

to an image analysis system (MetaSystems, Altlussheim, Germany) to facilitate scoring.  

 

Protein extraction and western blot analysis: Cells were lysed in RIPA lysis buffer (150 

mM NaCl, 50 mM Tris-HCl pH 8, 1% Igepal, 0.5% sodium deoxycholate, 0.1% SDS) that 

was added with a protease inhibitor cocktail (Complete, Roche). A total protein amount of 

20 µg from each samples was denatured at 95 °C for 10 min in Laemmli buffer containing 

β-mercaptoethanol before electrophoresis. The primary antibodies that were used are 

described in Appendix Table S7. 

 

DNA fiber assay: Asynchronous cell cultures were treated with 25 µM IdU (Sigma-Aldrich, 

I7125) for 20 min, washed with PBS and exposed to 250 µM CldU (Sigma-Aldrich, C6891) 

for 20 min (-HU) or exposed to 250 µM CldU and 0.2 mM hydroxyurea for 60 min (+HU). 
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After exposure to CldU, cells were washed in PBS and harvested. Cells were then lysed and 

DNA fibers stretched onto glass slides and fixed as described [93]. Fibers were denatured 

with 2.5M HCl for 80 min, washed with PBS and blocked with 2% BSA in phosphate buffer 

saline for 30 min. The newly synthesized IdU and CldU tracts were visualized with anti 

BrdU antibodies recognizing IdU (1:50 BD Biosciences, 347580) and CldU (1:400 Abcam, 

ab6326), respectively. Images were taken at 60x magnification using a Leica DM RA2 

fluorescence microscope equipped with a Hamamatsu ORCA-Flash 4.0 V2 (sCMOS-

Monochrome, 4Mpixel) camera and analyzed using ImageJ software. Statistical analysis was 

carried out using GraphPad Prism. 

 

Sister chromatid exchange: Cells (1x105) were plated in a 10 cm dish. At 24 h, cells were 

treated with 5 µM cisplatin. At 3h post cisplatin treatment, cells were washed with fresh 

medium and treated with 5 mg/ml BrdU (Sigma-Aldrich, cat. B5002) for 40 hours followed 

by 0.2 µg/ml colchicine for 3 hours. Sister chromatid exchange assays were performed as 

previously described [94]. 

 

Statistical analysis: In human tissue samples, the normality of the distribution of 

MLL3/KMT2C expression in bladder tissue specimens was evaluated by Shapiro-Wilk test. 

The non-parametric Wilcoxon signed-rank test was used to analyze MLL3/KMT2C 

expression between bladder tumor specimens and matched adjacent normal tissues. Animals 

were randomly assigned into different groups. Group allocation and outcome assessment 

was not blinded. In two group comparisons, normality of distribution was determined by 

D’Agostino & Pearson omnibus normality test, Shapiro-Wilk normality test (paired t-test). 

For non-Gaussian sample distribution or small sample size, Mann-Whitney U tests was 

employed. Sample sizes met the minimum requirements of the respective statistical test 

used. A value of P<0.05 was considered as significant. Animals which did not develop 

tumors or did not live through the end of the treatment were excluded. Mann-Whitney U test 

was also employed for statistical evaluation of chromosome number differences in 

karyotyping experiments, and tumor volumes in mouse xenograft experiments. 
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Figure legends 

Figure 1. KMT2C downregulation in cancer tissue. 

(A) KMT2C mutations identified in our study cohort of human bladder cancers. Mutations in 

red are predicted to be damaging while those in black benign, according to the PolyPHEN-2 

algorithm (D and B, respectively in Table EV1) [95]. 

(B) Comparison of KMT2C expression in cancer/healthy matched tissue pairs (n=104) of the 

study cohort. Expression is presented as log(ratio tumor/healthy) in the Y axis. Data 

obtained from qRT-PCR analysis. P value calculated by Wilcoxon signed-rank test. 

(C) Immunofluorescence (top) and Western blot analysis (bottom) against KMT2C on 

representative human bladder cancers with variable KMT2C transcript levels: 11th, 4th, 93rd 

and 79th percentile for UCC30, 6, 7 and 29, respectively (Appendix Table S2), from the 

differential expression analysis of the study cohort Antibodies against KRT5 or KRT20 

were used to stain urothelial cells and DAPI as nuclear counterstain. β-actin is used as 

loading control in Western blots. Scale bars indicate 50 µm. 

(D) Comparison of KMT2C expression in human healthy and cancer tissue from bladder 

cancer (BC, n=136)), colorectal adenocarcinoma (COAD, n=128), non-small cell lung cancer 

(NSCLC, n=341), and head and neck squamous cell carcinoma (HNSCC, n=174) patients. 

For NSCLC analysis, separate cohorts from adenocarcinoma and squamous cell carcinoma 

were combined. Separate analysis of the two NSCLC subtypes (adenocarcinoma and 

squamous cell carcinoma) yielded the same results. For COAD, the Y axis is the log2(ratio 

tumor/normal) of KMT2C expression as assessed with Affymetrix microarray. All expression 

data were obtained from TCGA through cbioportal.org. P values calculated by Mann-

Whitney U test.	The middle lines inside the boxes indicate the median (50th percentile). The 

lower and the upper box boundaries represent the 25th percentile and the 75th percentile, 

respectively. The lower and upper whiskers extend to the lowest and highest value, 

respectively, within the 1.5× interquartile range (box height) from the box boundaries.	

 

  

Figure 2. KMT2C loss leads to extensive epigenetic changes in human bladder cancer 

cells. 

(A) KMT2C transcript (left) and protein (right) levels in human bladder cancer cell lines 

stably transduced with lentiviral vectors expressing shRNAs against KMT2C (KD1 and 

KD2) in comparison to Scr control cells expressing scrambled shRNAs (Scr). RBBP5, 
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another COMPASS complex protein used as internal control and b-actin as loading control. 

Transcript levels were assessed by qRT-PCR in triplicates and values shown represent 

mean±SEM. 

(B) Bar graph showing selected biological processes and signaling pathways obtained from 

Gene Ontology (GO) enrichment analysis for the 3324 differentially expressed genes 

between Scr control and KMT2C/KD1 HTB9 cells. Expression values were obtained from 

RNA-seq data. 

(C) Quantitative RT-PCR for KMT2C in HTB9/KD1 cells, and HTB9/KD1 cells stably 

transfected with a plasmid expressing a Flag-tagged full length KMT2C protein (fKMT2C). 

Expression levels are shown in the Y axis as respective ratios over KMT2C expression in Scr 

control cells (Scr expression corresponds to 1). Experiments were performed in triplicates 

and analyzed with Mann Whitney U test. Values shown represent mean±SEM. * designates 

P value<0.05. 

(D) Genome distribution of KMT2C peaks in HTB9/KD1 cells complemented with 

fKMT2C. Data obtained from ChIP-seq experiments. 

(E) Density plot indicating KMT2C binding and H3K27ac levels on active enhancers in Scr 

control and KD1 HTB9 cells. 

(F) Bar graph showing selected biological processes and signaling pathways obtained from 

Gene Ontology (GO) enrichment analysis for 253 genes in proximity to active enhancers 

affected by KMT2C knockdown and heatmap of their expression (>1.5-fold H3K27ac and 

mRNA downregulation). Data obtained from ChIP-seq and RNA-seq experiments. 

(G) Bedgraph indicating KMT2C binding and H3K27ac at a putative enhancer of the ITGB1 

locus before and after KMT2C knockdown in HTB9 cells. 

(H) Transcription factor binding motif analysis on active enhancers affected by KMT2C 

knockdown. Data obtained from ChIP-seq experiments. 

  

Figure 3. KMT2C controls the expression of DDR and DNA repair genes in BC cells. 

(A) Density plot indicating KMT2C binding and H3K4me3, H3K27ac and H3K9ac levels 

on transcription start sites (TSS) in HTB9 cells. 

(B) Histogram indicating distribution of histone modifications around transcription start 

sites (TSS ± 5000 bp). Data obtained from ChIP-seq with antibodies against the indicated 

histone modifications. 

(C) Transcription factor binding motif analysis on TSS of genes transcriptionally affected by 

KMT2C knockdown.	Data obtained from ChIP-seq experiments. 
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(D) Boxplot indicating expression (left) and H3K4me3 levels (right) of genes with KMT2C 

presence on their promoters in Scr control and KMT2C/KD1 cells. Median comparison of 

Expr/K4m3 values was performed with two-tailed paired Wilcoxon rank sum test with 

continuity correction. The middle lines inside the boxes indicate the median (50th 

percentile). The lower and the upper box boundaries represent the 25th percentile and the 

75th percentile, respectively. The lower and upper whiskers extend to the lowest and highest 

value, respectively, within the 1.5× interquartile range (box height) from the box boundaries. 

(E) Heatmap comparison of the expression levels of genes implicated in DDR between 

control (Scr) and KMT2C knockdown (KD1) HTB9 cells (left). Expression data were 

obtained from RNA-seq experiments. Western blot analysis of selected proteins in control 

(Scr) and KMT2C knockdown (KD1 and KD2) HTB9 cells (right). 

(F) Expression level restoration of selected genes in KMT2C/KD1 HTB9 cells 

complemented with exogenously expressed flag-tagged KMT2C (fKMT2C). Data obtained 

by qRT-PCR. Experiments were performed in triplicates and values shown represent 

mean±SEM. 

  

Figure 4. KMT2C controls the expression of DDR and DNA repair genes in various 

cancers. 

(A) Bedgraphs indicating KMT2C and H3K4me3 binding at the TSS of indicated loci in 

HTB9 cells; also, from published studies available at the ENCODE, the binding of the 

COMPASS complex member RBBP5 and the transcription factor ELK1 is indicated in the 

same loci. 

(B) KMT2C expression (Y axis) in various human cell lines (X axis). Cell lines under study 

are indicated as red geometrical schemes. Data were obtained directly from the Broad 

Institute CCLE server. 

(C) Expression levels of indicated genes in indicated cell lines upon KMT2C knockdown. 

Expression is shown as log(KD1/Scr) in the Y axis. Remaining KMT2C transcript levels for 

all knockdown experiments can be found in Table EV2. Note that H1792 which show poor 

KD1 (~25%) also show no change in ATM, ATR, BRCA1 and BRCA2 expression (light red 

bar appearing last in each set). Experiments were performed in triplicates. In plots, bars 

represent mean±SEM. 

(D) Correlation in expression levels between KMT2C and indicated genes in our study 

cohort of superficial and muscle-invasive BC. Data obtained from qRT-PCR. Experiments 

were performed in duplicates. P values were calculated by Mann-Whitney U test. 
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(E) Correlation in expression levels between KMT2C and indicated genes in BC, COAD, 

NSCLC and HNSCC tumors. RNA-Seq data were obtained from the TCGA through 

cbioportal.org. Mann-Whitney U test was used. *** designates P value<0.001 and **** P 

value<0.0001. 

  

Figure 5. Cells lacking KMT2C are HR-deficient 

(A) Immunofluorescence of γH2AX foci (left) and quantitation (right) in control (Scr) and 

KMT2C knockdown (KMT2C/KD1 and KD2) HTB9 cells. BRCA1 knockdown 

(BRCA1/KD) is used as control. The Y axis indicates added percentage of cells with 1-5 and 

>5 foci for each cell type. Scale bars indicate 5 µm. All comparisons have been performed 

against Scr control cells. Values in the bargraph represent mean±SEM from 3 experiments. 

Student’s t-test was used. * designates P value<0.05 and ** designates P value<0.01. 

(B) Frequency of RAD51 foci in cisplatin-treated HTB9 control (Scr) and KMT2C 

knockdown (KD1) cells. The Y axis indicates added percentage of cells with 1-3 and 3 foci. 

Scale bars indicate 10 µm. Values in the bargraph represent mean±SEM from 3 

experiments. Student’s t-test was used. * designates P value<0.05 and ** designates P 

value<0.01. 

 (C) Sister chromatid exchange (SCE) assay with cisplatin-treated HTB9 control (Scr) and 

KMT2C knockdown (KD1) cells. Red arrowheads indicate sister chromatid exchange 

events. Results were obtained from 15 metaphases per group. Mann-Whitney U test was 

used. 

(D) DNA fiber assay on control (Scr) and KMT2C knockdown (KD1) HTB9 cells. BRCA1 

knockdown cells are used as controls. Experiments performed with or without hydroxyurea 

(HU) treatment under the conditions indicated in the schematic. Examples of DNA fibers 

from HTB9/KD1 cells are shown. The length of minimum 100 fibers from each condition 

was measured. Values in the plot are means ± SEM. Mann-Whitney U test was used. ** 

designates P value<0.01. 

  

Figure 6. KMT2C loss leads to genomic instability 

(A) Representative image (from HTB9/KD1 cells) and frequency of both HTB9 and T24 

control (Scr) and KMT2C/KD1 cells with micronuclei. Scale bar indicates 5 µm. Values 

represent mean±SEM from 3 experiments. Student’s t-test was used. ** designates P 

value<0.01 and **** P value<0.0001. 
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(B) Representative images (from HTB9 cells) and frequency of abnormal metaphases 

presenting lagging chromosomes, chromosome bridges and chromosome congression in 

HTB9 and T24 control (Scr) and KMT2C/KD1 cells. Scale bar indicates 5 µm. Values 

represent mean±SEM from 3 experiments. Student’s t-test was used. ** designates P 

value<0.01 and *** P value<0.001. 

(C) Karyotypic analysis and chromosomal count in control (Scr) and KMT2C/KD1 and 

KD2 cells. All comparisons performed against Scr control cells. Metaphases studied: HTB9 

Scr, n=20; HTB9 KD1, n=11; HTB9 KD2, n=12; T24 Scr, n=20; T24 KD1, n=15; T24 

KD2, n=12. Mann-Whitney U test was used. **** designates P value<0.0001 

(D) Average chromosome count ration KD/Scr obtained from Giemsa-stained metaphase 

spreads of HTB9 and T24 KD1 and KD2 cells. Number of metaphases studied: HTB9 Scr, 

n=20; HTB9 KD1, n=11; HTB9 KD2, n=12; T24 Scr, n=20; T24 KD1, n=15; T24 KD2, 

n=12. Mann-Whitney U test was used. * designates P value <0.05, ** P value <0.01 and 

*** P value <0.001. 

(E) Fragment size of gains and losses obtained from CMA analysis on HTB9/KD1 and KD2 

cells. Mann-Whitney U test was used. One sample from each cell type was used in CMA 

analysis. 

(F) Copy number gains and losses of HTB9 KD1 and KD2 cells in comparison to HTB9/Scr 

controls. Data obtained from CMA. Values as presented as log(KD1/Scr) in the Y axis. The 

horizontal red line indicates log value 0, which corresponds to no change. Note that for the 

majority of chromosomes there are losses in the KD1 cells.  

 

 Figure 7. KMT2C loss leads to PARP1/2 dependence for DNA repair 

(A) Frequency of TP53BP1 foci in cisplatin-treated HTB9 control (Scr) and KMT2C 

knockdown (KD1) cells. Size bars in microscopy panels correspond to 5 µm. In the plot, 

bars represent mean ±SEM from n=3 experiments. 

(B) Frequency of chromosome fusions obtained from IR-treated (schematic) HTB9 control 

(Scr) and KMT2C knockdown (KD1) cells. Representative karyotypes are shown. Size bars 

in karyotype panels correspond to 10 µm. White arrows indicate chromosome fusion events. 

In the plot, bars represent mean ±SEM from n=3 experiments. 

 (C) Frequency of chromosome fusions in IR-treated HTB9 control (Scr) and KMT2C 

knockdown (KD1) cells upon treatment with SCR7 (30µM) and Olaparib (15 µM). Bars 

represent mean ±SEM from n=3 experiments. *** designates P value<0.001.  
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(D) Frequency of radial chromosomes in IR-treated HTB9 control (Scr) and KMT2C 

knockdown (KD1) cells upon treatment with SCR7 (30 µM), Olaparib (15 µM) or both. 

Representative karyotypes are shown. Size bars in karyotype panels correspond to 10 µm. 

White arrows indicate radial structures. In the plot, bars represent mean ±SEM from n=3 

experiments. * designates P value<0.05 and *** P value<0.001. 

Throughout the figure, Mann Whitney U test was used. 

 

 Figure 8. KMT2C loss leads to PARP1/2 dependence in vitro and in vivo 

(A) MTT assays on untreated control (Scr) and KMT2C/KD cells. BRCA1/KD cells are 

used as controls. Values represent mean±SEM from 3 experiments. 

(B) MTT assays with IR-treated control (Scr) and KMT2C/KD1 cells treated with 15 µM 

Olaparib. Values represent mean±SEM from 3 experiments. 

(C) Boxplot indicating Olaparib IC50 of BLCA, HNSCC, COAD and NSCLC cell lines 

from publically available data (https://www.cancerrxgene.org/). KMT2C high and low 

indicates that KMT2C expression of the cell line is at the top or bottom 50% of the cohort 

respectively (data obtained from cbioportal.org; Cancer Cell Line Encyclopedia). Mann 

Whitney U test was used. 

(D) Tumor volume obtained from xenografts of control and KMT2C/KD1 cells treated with 

vehicle or Olaparib. The number of mice analyzed for each cohort and raw measurements 

are provided in Appendix Table S3. The following tumor weight averages (in grams) were 

obtained ± S.E.M. for vehicle and Olaparib, respectively: HTB9/Scr, 0.791±0.155 and 

0.468±0.097; HTB9/KD1, 0862±0.156 and 0.072±0.023; T84/Scr, 1.032±0.217 and 

0.413±0.097; T84/KD1, 0.562±0.159 and 0.105±0.032; H1437/Scr, 0.661±0.133 and 

0.780±0.133; H1437/KD1, 0.723±0.099 and 0.363±0.108; Cal-33/Scr, 0.439±0.051 and 

0.301±0.029; Cal-33/KD1, 0.584±0.224 and 0.05±0.016. Statistically significant pairwise 

comparison with respective vehicle for each day is indicated with star. Mann Whitney U test 

was used. * designates P value<0.05. All statistical values including those between Scr and 

KD1 cells are provided in Appendix Table S4. 

(E) Immunohistochemistry with the indicated antibodies on tumor sections from control 

(Scr) and KMT2C/KD1 HTB9 cells grown subcutaneously in NOD/SCID mice which were 

treated with vehicle or Olaparib. Statistically significant pairwise comparison with 

respective vehicle is indicated with stars on top of each column. All other statistically 

significant comparisons are indicated with squared brackets connecting pairs under 

comparison. In microscopy images, scale bars indicate 50µm. In bargraphs, values 
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correspond to mean±SEM from n=3 experiments. Student’s t-test was used for the analysis. 

* designates P value<0.05. 
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Expanded View 

Expanded View Figure legends 

 

Figure EV1. KMT2C promoter methylation in human cancers. 

(A) Schematic of the upstream promoter region of the KMT2C locus indicating the position 

and sequence of methylation detection probes within the CpG island (located at 

chr7:152435133-152437025, assembly GRCh38/hg38) that encompasses the KMT2C 

promoter region.  

(B) Comparison of the methylation levels of the above probes in tumor samples and normal 

bladder tissue. Methylation data were obtained from TCGA through the MethHC database 

for n=21 healthy/tumor pairs. Wilcoxon matched-pairs signed rank test was used. 

(C) Tumor vs. normal paired comparison of the methylation levels in the KMT2C promoter 

in various cancer types; cg1: cg17322443; cg2: cg19258062. Methylation data were 

obtained from the MethHC database(Huang et al., 2014). BC: n=21, COAD: n=21, NSCLC: 

n=70, HNSCC: n=50. For NSCLC analysis, separate cohorts from adenocarcinoma and 

squamous cell carcinoma were combined. Separate analysis of the two NSCLC subtypes 

yielded the same results. Wilcoxon matched-pairs signed rank test was used. * designates P 

value<0.05 and **** P value<0.0001.  

 

Figure EV2. Cells lacking KMT2C are HR-deficient 

(A) Immunofluorescence of γH2AX foci and quantitation in control (Scr) and KMT2C 

knockdown (KMT2C/KD1 and KD2) T24 cells. BRCA1 knockdown (BRCA1/KD) is used 

as control. Scale bars indicate 10 µm. Values in the plot correspond to mean±SEM. Data 

from 3 experiments were analyzed with student’s t-test. * designates P value<0.05 and ** 

designates P value<0.01. Remaining protein levels of BRCA1 are also shown for both 

HTB9 (referring to Figure 5A) and T24 are also shown. 

(B) Frequency of RAD51 foci in cisplatin-treated T24 control (Scr) and KMT2C knockdown 

(KD1) cells. Scale bars indicate 10 µm. Values in the plot correspond to mean±SEM. Data 

from 3 experiments were analyzed with student’s t-test. * designates P value<0.05 and ** 

designates P value<0.01. 

(C) Sister chromatid exchange assay with cisplatin-treated T24 control (Scr) and KMT2C 

knockdown (KD1) cells. Results were obtained from 15 metaphases per group. White 

arrowheads indicate sister chromatid exchange events. 
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(D) DNA fiber assay on control (Scr) and KMT2C knockdown (KD1) T24 cells. BRCA1 

knockdown cells are used as controls. Experiments performed with or without hydroxyurea 

(HU) treatment under the conditions indicated in Figure 5D. The length of minimum 100 

fibers from each condition was measured. Red horizontal lines indicate the median tract 

length in each group.  

 

Figure EV3. KMT2C loss leads to PARP1/2 dependence for DNA repair. 

(A) Frequency of TP53BP1 foci in cisplatin-treated T24 control (Scr) and KMT2C 

knockdown (KD1) cells. Size bars in microscopy panels correspond to 10 µm. In the plot, 

bars represent mean ±SEM from n=3 experiments. 

(B) Frequency of chromosome fusions obtained from IR-treated (schematic) T24 control 

(Scr) and KMT2C knockdown (KD1) cells. Representative karyotypes are shown. Size bars 

in karyotype panels correspond to 5 µm. White arrows indicate chromosome chromosome 

fusions. In the plot, bars represent mean ±SEM from n=3 experiments. 

 (C) Frequency of chromosome fusions in IR-treated T24 control (Scr) and KMT2C 

knockdown (KD1) cells upon treatment with SCR7 and Olaparib. Bars represent mean 

±SEM from n=3 experiments. Throughout the figure, Mann Whitney U test was used. 

 

Figure EV4. KMT2C loss leads to PARP1/2 dependence for DNA repair. 

A, B Frequency of radial structures in IR-treated HTB9/KD1 (A) and T24/KD1 (B) cells 

upon Ligase III and IV knockdown (top left), and western blot analysis indicating respective 

leftover protein levels (top right). Representative karyotypes are shown. Values in the plot 

indicate mean±SEM. Analysis of 3 experiments was performed using student’s t-test. * 

designates P value <0.05 and *** P value <0.001. 

 

Figure EV5. In vitro clonogenic assays indicating PARPi sensitivity of KMT2C/KD 

cells. 

Representative photographs (left) and number of colonies (Y axis) generated by HTB9 and 

T24 (Scr and KMT2C/KD1) cells treated with increasing concentrations of Olaparib (X 

axis). Cells were seeded and grown for 20 days at which point the experiment was 

concluded and dishes were photographed. Values in the plot indicate mean number of 

colonies±SEM. Analysis of 3 experiments was performed using student’s t-test.  * 

designates P value<0.05, ** designates P value<0.01 and *** designates P value <0.001.  
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with	the	individual	consent	agreement	used	in	the	study,	such	data	should	be	deposited	in	one	of	the	major	public	access-
controlled	repositories	such	as	dbGAP	(see	link	list	at	top	right)	or	EGA	(see	link	list	at	top	right).
21.	Computational	models	that	are	central	and	integral	to	a	study	should	be	shared	without	restrictions	and	provided	in	a	
machine-readable	form.		The	relevant	accession	numbers	or	links	should	be	provided.	When	possible,	standardized	
format	(SBML,	CellML)	should	be	used	instead	of	scripts	(e.g.	MATLAB).	Authors	are	strongly	encouraged	to	follow	the	
MIRIAM	guidelines	(see	link	list	at	top	right)	and	deposit	their	model	in	a	public	database	such	as	Biomodels	(see	link	list	
at	top	right)	or	JWS	Online	(see	link	list	at	top	right).	If	computer	source	code	is	provided	with	the	paper,	it	should	be	
deposited	in	a	public	repository	or	included	in	supplementary	information.

22.	Could	your	study	fall	under	dual	use	research	restrictions?	Please	check	biosecurity	documents	(see	link	list	at	top	
right)	and	list	of	select	agents	and	toxins	(APHIS/CDC)	(see	link	list	at	top	right).	According	to	our	biosecurity	guidelines,	
provide	a	statement	only	if	it	could.
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