Supporting Information

Compound Shape Effects in Minor Groove Binding Affinity and Specificity for Mixed Sequence DNA

Pu Guo¹, Abdelbasset A. Farahat^{1,2}, Ananya Paul¹, Narinder K. Harika¹, David W. Boykin¹, W. David Wilson^{1*}

- 1. Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University, 50 Decatur St Se, Atlanta, GA 30303, USA.
- 2. Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt

Table of Contents

General Materials and Methods	S3-S27
Synthesis	\$3-\$22
Biophysical Experimental	S22-S27
Figure S1. Circular dichroism spectra	S27
Figure S2. Molecular structure with specific atom types used for	the DB2708
molecule	S28
Table S1. Thermal melting studies of DB2457 and analogues wit	h pure AT
and mixed DNA sequences	S29
Table S2. Fremod file of the DB2708 molecule	S30-S33
References	S33-S34
NMR spectra of Key Intermediates and Final Products	S35-S69

General materials and methods

Synthesis

All commercial reagents were used without further purification. All melting points were determined on a Mel-Temp 3.0 melting point instrument, and are uncorrected. TLC analysis was carried out on silica gel 60 F254 precoated aluminum sheets using UV light for detection. ¹HNMR spectra were recorded on a Bruker 400 MHz spectrometer using the indicated solvents. Mass spectra were obtained from the Georgia State University Mass Spectrometry Laboratory, Atlanta, GA. Elemental analysis were performed by Atlantic Microlab Inc., Norcross, GA.

Synthesis of 4-Bromo-N-alkyl (aryl)-2-nitroaniline (2a-n).

Amines (40 mmol) were added to 4-bromo-1-fluoro-2-nitrobenzene (4.4 g, 20 mmol) in ethanol (20 ml) and stirred at room temperature for 24 h. The reaction mixture was evaporated under vacuum. In case of aromatic amines, Cs_2CO_3 (6.5 g, 20 mmol) was added to the reaction mixture and heated at 120 °C in DMA (20 ml) for 24 h, ice water was added and the formed solid was filtered and dried. The products resulting from both aromatic and aliphatic amines were chromatographed on silica gel using hexanes/ethyl acetate as solvent.

4-Bromo-N-methyl-2-nitroaniline (2a).¹

4-Bromo-*N*-ethyl-2-nitroaniline (2b).²

Orange solid (3.47 g, 71 %), mp 92-93 °C (reported mp 86-89 °C; ¹HNMR (DMSOd₆): δ 8.16 (br s, 1 H), 8.15 (br s, 1 H), 7.64 (dd, J = 2, 9.2 Hz, 1 H), 7.03 (d, J = 9.2 Hz, 1 H), 3.38 (q, J = 6.8 Hz, 2 H), 1.29 (t, J = 7.2 Hz, 3 H); ESI-HRMS: m/z calculated for C₈H₁₀BrN₂O₂: 244.9920, found: 244.9913 (M⁺ + 1).

4-Bromo-N-isopropyl-2-nitroaniline (2c).

Orange solid (3.67 g, 72 %), mp 97-98 °C ; ¹HNMR (DMSO-d₆): δ 8.15 (br s, 1 H), 7.88 (d, J = 7.2 Hz, 1 H), 7.64 (d, J = 9.2 Hz, 1 H), 7.08 (d, J = 9.2 Hz, 1 H), 3.92 (m, 1 H), 1.25 (d, J = 6 Hz, 6 H); ESI-HRMS: m/z calculated for C₉H₁₂BrN₂O₂: 259.077, found: 259.066 (M⁺ + 1).

4-Bromo-N-isobutyl-2-nitroaniline (2d).

Orange solid (3.82 g, 70 %), mp 51-52 °C ; ¹HNMR (DMSO-d₆): δ 8.20 (br s, 1 H), 8.10 (br s, 1 H), 7.57 (d, J = 9.2 Hz, 1 H), 6.99 (d, J = 9.2 Hz, 1 H), 3.15 (d, J = 6 Hz, 2 H), 1.91 (m, 1 H), 0.93 (d, J = 6.4 Hz, 6 H); ESI-HRMS: m/z calculated for C₁₀H₁₃BrN₂O₂: 295.0058, found: 295.0060 (M⁺ + Na).

4-Bromo-N-neopentyl-2-nitroaniline (2e).

Orange solid (3.67 g, 64 %), mp 67-68 °C ; ¹HNMR (DMSO-d₆): δ 8.19 (t, J = 5.6 Hz, 1 H), 8.16 (d, J = 2 Hz, 1 H), 7.63 (dd, J = 2, 9.2 Hz, 1 H), 7.16 (d, J = 9.2 Hz, 1 H), 3.20 (d, J = 5.6 Hz, 2 H), 0.98 (s, 9 H); ESI-HRMS: m/z calculated for C₁₁H₁₆BrN₂O₂: 287.0390, found: 287.0378 (M⁺ + 1).

4-Bromo-N-butyl-2-nitroaniline (2f).

Orange oil (3.43 g, 63 %); ¹HNMR (DMSO-d₆): δ 8.17 (br s, 1 H), 8.14 (br s, 1 H), 7.63 (d, J = 9.2 Hz, 1 H), 7.04 (d, J = 9.2 Hz, 1 H), 3.35 (m, 2 H), 1.58 (m, 2 H), 1.36 (m, 2 H), 0.91 (t, J = 7.2 Hz, 3 H); ESI-HRMS: m/z calculated for $C_{10}H_{14}BrN_2O_2$: 273.0233, found: 273.0221 (M⁺ + 1).

4-Bromo-N-(3-Methoxypropyl)-2-nitroaniline (2g).

Orange oil (4.1 g, 71 %); ¹HNMR (DMSO-d₆): δ 8.36 (t, *J* = 5.2 Hz, 1 H), 8.14 (d, *J* = 2.4 Hz, 1 H), 7.64 (dd, *J* = 2.4, 9.2 Hz, 1 H), 7.02 (d, *J* = 9.2 Hz, 1 H), 3.43 (m, 2 H), 3.37 (m, 2 H), 3.26 (s, 3H), 1.85 (p, *J* = 6 Hz, 2 H); ESI-HRMS: m/z calculated for C₁₀H₁₄BrN₂O₃: 289.0182, found: 289.0169 (M⁺ + 1).

4-Bromo-N-(2-methoxyethyl)-2-nitroaniline (2h).

Orange solid (3.68 g, 67 %), mp 73-74 °C ; ¹HNMR (DMSO-d₆): δ 8.21 (m, 1 H), 8.16 (d, J = 2.4 Hz, 1 H), 7.65 (dd, J = 2.4, 9.2 Hz, 1 H), 7.09 (d, J = 9.2 Hz, 1 H), 3.59 (m, 2 H), 3.52 (m, 2 H), 3.30 (s, 3 H); ESI-HRMS: m/z calculated for C₉H₁₁BrN₂O₃Na: 296.9851, found: 296.9862 (M⁺ + Na).

4-Bromo-N-cyclobutyl-2-nitroaniline (2i).

Orange solid (4.28 g, 79 %), mp 69-70 °C ; ¹HNMR (DMSO-d₆): δ 8.14 (t, *J* = 1.2 Hz, 1 H), 8.02 (d, *J* = 6 Hz, 1 H), 7.64 (dd, *J* = 2, 9.2 Hz, 1 H), 6.89 (d, *J* = 9.2 Hz, 1 H), 4.12 (m, 1 H), 2.42 (m, 2 H), 2.01 (m, 2H), 1.77 (m, 2 H); ESI-HRMS: m/z calculated for C₁₀H₁₂BrN₂O₂: 277.0077, found: 277.0064 (M⁺ + 1).

4-Bromo-N-cyclopentyl-2-nitroaniline (2j).

Orange solid (3.76 g, 66 %), mp 92-93 °C ; ¹HNMR (DMSO-d₆): δ 8.13 (br s, 1 H), 7.96 (d, *J* = 6 Hz, 1 H), 7.64 (d, *J* = 9 Hz, 1 H), 7.07 (d, *J* = 9 Hz, 1 H), 4.03 (m, 1 H), 2.05 (m, 2 H), 1.69 (m, 2 H), 1.55 (m, 4 H); ESI-HRMS: m/z calculated for C₁₁H₁₄BrN₂O₂: 285.0233, found: 285.0227 (M⁺ + 1).

4-Bromo-N-cyclohexyl-2-nitroaniline (2k).³

Orange solid (4.02 g, 67 %), mp 115-116 (reported mp 108.5-109.5 °C); ¹HNMR (DMSO-d₆): δ 8.15 (t, J = 2 Hz, 1 H), 7.98 (d, J = 6 Hz, 1 H), 7.62 (dd, J = 2, 9.2 Hz, 1 H), 7.12 (d, J = 9.2 Hz, 1 H), 3.63 (m, 1 H), 1.93 (m, 2 H), 1.60 (m, 2H), 1.57 (m, 1 H), 1.35 (m, 4 H), 1.25 (m, 1 H); ESI-HRMS: m/z calculated for C₁₂H₁₆BrN₂O₂: 299.0390, found: 299.0376 (M⁺ + 1).

4-Bromo-N-(cyclopentylmethyl)-2-nitroaniline (2l).

Orange solid (3.52 g, 59 %), mp 98-99 °C ; ¹HNMR (DMSO-d₆): δ 8.19 (t, J = 5.2 Hz, 1 H), 8.14 (d, J = 2 Hz, 1 H), 7.62 (dd, J = 2, 9.2 Hz, 1 H), 7.06 (d, J = 9.2 Hz, 1 H), 3.26 (t, J = 6.4 Hz, 2 H), 2.21 (m, 1 H), 1.73 (m, 2 H), 1.61 (m, 2 H), 1.53 (m, 2 H), 1.29 (m, 2 H); ESI-HRMS: m/z calculated for C₁₂H₁₆BrN₂O₂: 299.0390, found: 299.0396 (M⁺ + 1).

4-Bromo-*N*-phenyl-2-nitroaniline (2m).⁴

Orange solid (2.98 g, 51 %), mp 73-74 °C (reported mp 65-66 °C) ; ¹HNMR (DMSOd₆): δ 9.44 (br s, 1 H), 8.23 (d, *J* = 2.8 Hz, 1 H), 7.63 (dd, *J* = 2.8, 9.2 Hz, 1 H), 7.43 (m, 2 H), 7.32 (d, *J* = 7.6 Hz, 2 H), 7.23 (d, *J* = 7.4 Hz, 1 H), 7.11 (d, *J* = 9.2 Hz, 1 H); ESI-HRMS: m/z calculated for C₁₂H₁₀BrN₂O₂: 292.9920, found: 292.9906 (M⁺ + 1).

4-Bromo-2-nitro-N-(o-tolyl)aniline (2n).

Orange solid (2.51 g, 41 %), mp 74-75 °C ; ¹HNMR (DMSO-d₆): δ 9.41 (br s, 1 H), 8.22 (d, *J* = 1.2 Hz, 1 H), 7.57 (d, *J* = 9.2 Hz, 1 H), 7.38 (d, *J* = 6.8 Hz, 1 H), 7.30 (m, 3 H), 6.58 (d, *J* = 9.2 Hz, 1 H), 2.17 (s, 3H).

4'-(alkylamino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3a-q).⁵⁻⁹

 K_2CO_3 (2.76 g, 20 mmol) in water (5 ml) and 4-cyanophenylboronic acid or its derivatives (11 mmol) methanol (10 ml) were added to a stirred solution of the bromo compound **2** (10 mmol) in dioxane (30 mL) and the mixture was deaerated under nitrogen for 20 min. Tetrakistriphenylphosphine palladium (0.46 g, 0.4 mmol) was added and the reaction mixture was vigorously stirred at 100 °C for 24 h. The solvent was evaporated under reduced pressure, the solid was partitioned between ethyl acetate (200 mL) and 2 M aqueous Na₂CO3 (25 mL) containing 5 mL of concentrated ammonia, to remove palladium residues, then washed with water, passed through celite to remove the catalyst, dried (sodium sulfate) and evaporated. The product was purified using column chromatography on silica gel, and hexanes/ethyl acetate as an eluent.

4'-(Methylamino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3a).¹

4'-(Ethylamino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3b).

Orange solid (2 g, 78 %), mp 121-122 °C; ¹HNMR (DMSO-d₆): δ 8.40 (br s, 1 H), 8.26 (br s, 1 H), 7.97 (d, J = 8.6 Hz, 1 H), 7.87 (br s, 4 H), 7.17 (d, J = 8.6 Hz, 1 H), 3.45 (q, J = 6.6 Hz, 2 H), 1.25 (t, J = 6.6 Hz, 3 H); ESI-HRMS: m/z calculated for C₁₅H₁₄N₃O₂: 268.1081, found: 268.1074 (M⁺ + 1).

4'-(Isopropylamino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3c).

Orange solid (1.99 g, 71 %), mp 110-111 °C; ¹HNMR (CDCl₃): δ 8.49 (d, J = 2.4 Hz, 1 H), 8.17 (br s, 1H), 7.73 (m, 3 H), 7.67 (d, J = 8.4 Hz, 2 H), 7.01 (d, J = 9.2 Hz, 1 H), 3.93 (m, 1 H), 1.39 (d, J = 6.4 Hz, 6 H); ESI-HRMS: m/z calculated for C₁₆H₁₆N₃O₂: 281.1243, found: 281.1250 (M⁺ + 1).

4'-(Isobutylamino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3d).

Orange solid (2.09 g, 71 %), mp 157-158 °C; ¹HNMR (DMSO-d₆): δ 8.41 (br s, 1 H), 8.36 (m, 1 H), 7.95 (d, J = 9 Hz, 1 H), 7.87 (m, 4H), 7.20 (d, J = 9 Hz, 1 H), 3.26 (t, J = 6.2 Hz, 2 H), 1.97 (m, 1 H), 0.97 (d, J = 6.4 Hz, 6 H); ESI-HRMS: m/z calculated for C₁₇H₁₈N₃O₂: 296.1394, found: 296.1380 (M⁺ + 1).

4'-(Neopentylamino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3e).

Orange solid (2.10 g, 68 %), mp 164-165 °C; ¹HNMR (DMSO-d₆): δ 8.42 (br s, 1 H), 8.34 (d, J = 5.2 Hz, 1 H), 7.97 (d, J = 9 Hz, 1 H), 7.89 (m, 4H), 7.30 (d, J = 9 Hz, 1 H), 3.27 (d, J = 5.6 Hz, 2 H), 1.01 (s, 9 H); ESI-HRMS: m/z calculated for C₁₈H₂₀N₃O₂: 310.1550, found: 310.1539 (M⁺ + 1).

4'-(Butylamino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3f).

Orange solid (2.15 g, 73 %), mp 130-131 °C; ¹HNMR (DMSO-d₆): δ 8.42 (br s, 1 H), 8.30 (m, 1 H), 7.98 (d, *J* = 9.2 Hz, 1 H), 7.88 (m, 4H), 7.20 (d, *J* = 9.2 Hz, 1 H),

3.43 (m, 2 H), 1.63 (m, 2 H), 1.40 (m, J = 7.2 Hz, 2 H), 0.94 (t, J = 7.2 Hz, 3 H); ESI-HRMS: m/z calculated for C₁₇H₁₈N₃O₂: 296.1394, found: 296.1379 (M⁺ + 1).

4'-((3-Methoxypropyl)amino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3g).

Orange solid (2.14 g, 69 %), mp 75-76 °C; ¹HNMR (DMSO-d₆): δ 8.46 (t, J = 5.4 Hz, 1 H), 8.40 (d, J = 2 Hz, 1 H), 7.97 (d, J = 9.2 Hz, 1 H), 7.87 (m, 4H), 7.16 (d, J = 9.2 Hz, 1 H), 3.47 (m, 4 H), 3.28 (s, 3 H), 1.88 (m, 2 H); ESI-HRMS: m/z calculated for C₁₇H₁₈N₃O₃: 312.1343, found: 312.1320 (M⁺ + 1).

4'-((2-Methoxyethyl)amino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3h).

Orange solid (1.81 g, 61 %), mp 118-119 °C; ¹HNMR (DMSO-d₆): δ 8.38 (d, J = 1.6 Hz, 1 H), 8.31 (br s, 1 H), 7.95 (d, J = 7.6 Hz, 1 H), 7.86 (m, 4 H), 7.20 (m, 1 H), 3.59 (m, 4 H), 3.32 (s, 3 H); ESI-HRMS: m/z calculated for C₁₆H₁₅N₃O₃Na: 320.1011, found: 320.1001 (M⁺ + Na).

4'-(Cyclobutylamino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3i).

Orange solid (2.31 g, 79 %), mp 159-160 °C; ¹HNMR (DMSO-d₆): δ 8.39 (br s, 1 H), 8.14 (d, J = 5.2 Hz, 1 H), 7.95 (d, J = 8.6 Hz, 1 H), 7.87 (m, 4H), 7.03(d, J = 8.6 Hz, 1 H), 4.20 (m, 1 H), 2.46 (m, 2 H), 2.04 (m, 2 H), 1.80 (m, 2 H); ESI-HRMS: m/z calculated for C₁₇H₁₆N₃O₂: 294.1237, found: 294.1224 (M⁺ + 1).

4'-(Cyclopentylamino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3j).

Orange solid (2.19 g, 73 %), mp 166-167 °C; ¹HNMR (DMSO-d₆): δ 8.40 (br s, 1 H), 8.09 (d, J = 6.8 Hz, 1 H), 7.98 (d, J = 8.6 Hz, 1 H), 7.88 (m, 4H), 7.22 (d, J = 8.6 Hz, 1 H), 4.13 (m, 1 H), 2.09 (m, 2 H), 1.71 (m, 2 H), 1.64 (m, 4 H); ESI-HRMS: m/z calculated for C₁₈H₁₇N₃O₂: 307.1315, found: 307.1321 (M⁺ + 1).

4'-(Cyclohexylamino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3k).

Orange solid (2.50 g, 78 %), mp 192-193 °C; ¹HNMR (DMSO-d₆): δ 8.42 (br s, 1 H), 8.11 (d, *J* = 7.8 Hz, 1 H), 7.97 (d, *J* = 9 Hz, 1 H), 7.89 (m, 4H), 7.26 (d, *J* = 9 Hz, 1 H), 3.73 (m, 1 H), 1.98 (m, 2 H), 1.70 (m, 2 H), 1.59 (m, 1 H), 1.41 (m, 4H),

1.25 (m, 1H); ESI-HRMS: m/z calculated for $C_{19}H_{20}N_3O_2$: 322.1550, found: 322.1535 (M⁺ + 1).

4'-((Cyclopentylmethyl)amino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile(3l).

Orange solid (1.89 g, 59 %), mp 181-182 °C; ¹HNMR (CDCl₃): δ 8.49 (d, *J* = 2 Hz, 1 H), 8.27 (br s, 1 H), 7.76-7.67 (m, 5 H), 7.00 (d, *J* = 9.2 Hz, 1 H), 3.31 (m, 2 H), 2.32 (m, 1 H), 1.95 (m, 2 H), 1.68 (m, 2 H), 1.38 (m, 2 H), 0.87 (m, 2 H); ESI-HRMS: m/z calculated for C₁₉H₂₀N₃O₂: 322.1550, found: 322.1558 (M⁺ + 1).

3'-Nitro-4'-(phenylamino)-[1,1'-biphenyl]-4-carbonitrile (3m).

Orange solid (1.85 g, 59 %), mp 187-188 °C; ¹HNMR (DMSO-d₆): δ 9.56 (br s, 1 H), 8.47 (d, J = 2 Hz, 1 H), 7.94 (dd, J = 2, 9.2 Hz, 1 H), 7.90 (m, 4 H), 7.48 (br s, 1 H), 7.45 (d, J = 7.6 Hz, 1 H), 7.37 (d, J = 7.6 Hz, 2 H), 7.26 (m, 2 H); ESI-HRMS: m/z calculated for C₁₉H₁₄N₃O₂: 316.1081, found: 316.1067 (M⁺ + 1).

3'-Nitro-4'-(o-tolylamino)-[1,1'-biphenyl]-4-carbonitrile (3n).

Orange solid (1.80 g, 55 %), mp 157-158 °C; ¹HNMR (DMSO-d₆): δ 9.53 (br s, 1 H), 8.48 (br s, 1 H), 7.88 (m, 5 H), 7.41 (d, J = 6.8 Hz, 1 H), 7.32 (m, 3 H), 7.73 (d, J = 8.8 Hz, 1 H), 2.21 (s, 3 H); ESI-HRMS: m/z calculated for C₂₀H₁₆N₃O₂: 330.1237, found: 330.1221 (M⁺ + 1).

3-Chloro-4'-(isopropylamino)-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (30).

Orange solid (1.73 g, 55 %), mp 146-147 °C; ¹HNMR (DMSO-d₆): δ 8.45 (d, J = 2 Hz, 1 H), 8.07 (br s, 1 H), 8.03 (m, 2 H), 7.98 (d, J = 8.4 Hz, 1 H), 7.85 (d, J = 8.4 Hz, 1 H), 7.21 (d, J = 9.2 Hz, 1 H), 4.04 (m, 1 H), 1.29 (d, J = 6 Hz, 6 H), ESI-HRMS: m/z calculated for C₁₆H₁₅ClN₃O₂: 316.0847, found: 316.0833 (M⁺ + 1).

4'-(Isopropylamino)-3'-nitro-3-(trifluoromethyl)-[1,1'-biphenyl]-4-carbonitrile (3p).

Orange solid (1.77 g, 51 %), mp 141-142 °C; ¹HNMR (DMSO-d₆): δ 8.53 (d, J = 2 Hz, 1 H), 8.23 (br s, 1 H), 8.22 (m, 2 H), 8.08 (dd, J = 2, 9.2 Hz, 1 H), 8.04 (d, J = 2

7.6 Hz, 1 H), 7.24 (d, J = 9.2 Hz, 1 H), 4.05 (m, 1 H), 1.30 (d, J = 6 Hz, 6 H), ESI-HRMS: m/z calculated for C₁₇H₁₅F₃N₃O₂: 350.1111, found: 350.1102 (M⁺ + 1).

4'-(Isopropylamino)-2-methyl-3'-nitro-[1,1'-biphenyl]-4-carbonitrile (3q).

Orange solid (1.79 g, 61 %), mp 135-136 °C; ¹HNMR (DMSO-d₆): δ 8.03 (d, J = 1.6 Hz, 1 H), 7.98 (d, J = 7.8 Hz, 1 H), 7.79 (br s, 1 H), 7.71 (d, J = 7.8 Hz, 1 H), 7.62 (dd, J = 1.6, 8.8 Hz, 1 H), 7.44 (d, J = 7.6 Hz, 1 H), 7.19 (d, J = 8.8 Hz, 1 H), 4.01 (m, 1 H), 2.31 (s, 3H), 1.30 (d, J = 6.8 Hz, 6 H), ESI-HRMS: m/z calculated for C₁₇H₁₈N₃O₂: 296.1394, found: 296.1379 (M⁺ + 1).

Synthesis of the diamine (4a-q).

SnCl₂. 2H₂O (4.5 g, 20 mmol) was added to a suspension of the nitro compound **3** (5 mmol) in Ethanol (30 ml). The reaction mixture was refluxed for 12 h and concentrated under reduced pressure. The formed residue was neutralized by sodium hydroxide solution in an ice bath. The formed precipitate was filtered, dried under vacuum at room temperature and then dissolved in acetone (50 ml) and filtered. The filtrate was evaporated under reduced pressure and dried under vacuum at room temperature discover pressure and dried under vacuum at room temperature and then dissolved in acetone (50 ml) and filtered.

Synthesis of the bisnitrile compounds (6a-t).¹⁰⁻¹⁴

Sodium metabisulphite (1.14 g, 6 mmol) was added to a solution of the diamines **3ar** (3 mmol) and the aldehydes¹⁵ **5a-d** (3 mmol) in DMSO (10 mL) and the mixture was heated at 130 °C for 30 min. The reaction mixture was poured into water, filtered and dried. Purification was by crystallization from acetone.

4-(5-(5-(4-Cyanophenyl)-1-methyl-1H-benzo[d]imidazol-2-yl)thiophen-2yl)benzonitrile (6a).¹⁰

4-(5-(5-(4-Cyanophenyl)-1-ethyl-1H-benzo[d]imidazol-2-yl)thiophen-2-yl)benzonitrile (6b).

Yellow solid (0.78 g, 61 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.06 (br s, 1 H), 7.97 (m, 9 H), 7.81 (m, 2 H), 7.71 (m, 1 H), 4.60 (br s, 2 H), 1.44 (br s, 3 H); ESI-HRMS: m/z calculated for C₂₇H₁₉N₄S: 431.1325, found: 431.1320 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-isopropyl-1H-benzo[d]imidazol-2-yl)thiophen-2-yl)benzonitrile (6c).

Yellow solid (0.73 g, 55 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.08 (br s, 1 H), 7.98 (m, 3 H), 7.92 (m, 7 H), 7.64 (m, 2 H), 5.18 (m, 1 H), 1.69 (d, *J* = 6.4 Hz, 6 H); ESI-HRMS: m/z calculated for C₂₈H₂₁N₄S: 445.1487, found: 445.1494 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-isobutyl-1H-benzo[d]imidazol-2-yl)thiophen-2-yl)benzonitrile (6d).

Yellow solid (0.70 gm, 51 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.06 (br s, 1 H), 7.95 (m, 8 H), 7.84 (m, 3 H), 7.69 (d, *J* = 7.2 Hz, 1 H), 4.43 (d, *J* = 6.8 Hz, 2 H), 2.17 (m, 1 H), 0.89 (d, *J* = 4.8 Hz, 6 H); ESI-HRMS: m/z calculated for C₂₉H₂₃N₄S: 459.1638, found: 459.1615 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-neopentyl-1H-benzo[d]imidazol-2-yl)thiophen-2-yl)benzonitrile (6e).

Yellow solid (0.86 gm, 61 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.07 (br s, 1 H), 7.96 (m, 4 H), 7.93 (m, 5 H), 7.85 (m, 2 H), 7.68 (d, *J* = 8.4 Hz, 1 H), 4.54 (s, 2

H), 0.83 (s, 9 H); ESI-HRMS: m/z calculated for $C_{30}H_{25}N_4S$: 473.1794, found: 473.1782 (M⁺ + 1).

4-(1-Butyl-2-(5-(4-cyanophenyl)thiophen-2-yl)-1H-benzo[d]imidazol-5yl)benzonitrile (6f).

Yellow solid (0.70 gm, 51 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.06 (br s, 1 H), 7.97 (m, 4 H), 7.93 (m, 4 H), 7.88 (d, J = 4 Hz, 1 H), 7.81 (d, J = 4 Hz, 1 H), 7.79 (br s, 1 H), 7.70 (d, J = 8 Hz, 1 H), 4.56 (t, J = 7.2 Hz, 2 H), 1.79 (m, 2 H), 1.36 (m, 2 H), 0.90 (t, J = 7.2 Hz, 3 H); ESI-HRMS: m/z calculated for C₃₀H₂₅N₄S: 459.1638, found: 459.1637 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-(3-methoxypropyl)-1H-benzo[d]imidazol-2-

yl)thiophen-2-yl)benzonitrile (6g).

Yellow solid (0.69 gm, 49 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.05 (br s, 1 H), 7.92 (m, 9 H), 7.71 (m, 3 H), 4.59 (br s, 2 H), 3.36 (br s, 2 H), 3.22 (s, 3 H), 2.06 (br s, 2 H); ESI-HRMS: m/z calculated for C₂₉H₂₃N₄OS: 475.1587, found: 475.1567 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-(2-methoxyethyl)-1H-benzo[d]imidazol-2yl)thiophen-2-yl)benzonitrile (6h).

Yellow solid (0.92 gm, 67 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.06 (br s, 1H), 7.95 (m, 4 H), 7.92 (m, 4 H), 7.88 (m, 2 H), 7.78 (d, *J* = 8.8Hz, 1 H), 7.69 (d, *J* = 8 Hz, 1 H), 4.72 (br s, 2H), 3.81 (br s, 2 H), 3.21 (s, 3 H); ESI-HRMS: m/z calculated for C₂₈H₂₁N₄OS: 461.1614, found: 461.1611 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-cyclobutyl-1H-benzo[d]imidazol-2-yl)thiophen-2-yl)benzonitrile (6i).

Yellow solid (0.83 gm, 61 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.10 (br s, 1 H), 8.02 (d, J = 8.8 Hz, 2 H), 7.97 (m, 3 H), 7.92 (m, 4 H), 7.88 (d, J = 3.7 Hz, 1 H), 7.73 (d, J = 3.7 Hz, 1 H), 7.69 (d, J = 7.6 Hz, 1 H), 5.44 (m, 1 H), 2.84 (m, 2 H),

2.56 (m, 2 H), 1.91 (m, 2 H); ESI-HRMS: m/z calculated for $C_{29}H_{21}N_4S$: 457.1481, found: 457.1469 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-cyclopentyl-1H-benzo[d]imidazol-2-yl)thiophen-2-yl)benzonitrile (6j).

Yellow solid (0.63 gm, 45 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.09 (br s, 1 H), 7.93 (m, 8 H), 7.83 (m, 2 H), 7.73 (br s, 1 H), 7.65 (br s, 1 H), 5.31 (m, 1 H), 2.23 (m, 4 H), 2.06 (m, 2 H), 1.78 (m, 2 H); ESI-HRMS: m/z calculated for C₃₀H₂₃N₄S: 471.1638, found: 471.1630 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-cyclohexyl-1H-benzo[d]imidazol-2-yl)thiophen-2-yl)benzonitrile (6k).

Yellow solid (0.83 gm, 61 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.07 (d, *J* = 6 Hz, 1 H), 7.98 (m, 9 H), 7.79 (d, *J* = 8.8 Hz, 1 H), 7.62 (m, 2 H), 4.69 (m, 1 H), 2.35 (m, 2 H), 1.97 (m, 4 H), 1.69 (m, 1 H), 1.46 (m, 3 H); ESI-HRMS: m/z calculated for C₂₉H₂₁N₄S: 485.1784, found: 485.1785 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-(cyclopentylmethyl)-1H-benzo[d]imidazol-2yl)thiophen-2-yl)benzonitrile (6l).

Yellow solid (0.58 gm, 40 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.06 (br s, 1 H), 7.96 (m, 3 H), 7.93 (m, 4 H), 7.82 (m, 4 H), 7.69 (d, *J* = 7.2 Hz, 1 H), 4.55 (d, *J* = 4.8 Hz, 2 H), 2.38 (m, 1 H), 1.60 (m, 4 H), 1.45 (m, 2 H), 1.29 (m, 2 H); ESI-HRMS: m/z calculated for C₃₁H₂₅N₄S: 485.1794, found: 485.1791 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-phenyl-1H-benzo[d]imidazol-2-yl)thiophen-2-yl)benzonitrile (6m).

Yellow solid (0.71 gm, 50 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.15 (br s, 1 H), 7.93 (m, 4 H), 7.84 (m, 4 H), 7.73 (m, 3 H), 7.65 (m, 4 H), 7.15 (m, 1 H), 6.68 (m, 1 H); ESI-HRMS: m/z calculated for C₃₁H₁₉N₄S: 479.1325, found: 479.1314 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-(o-tolyl)-1H-benzo[d]imidazol-2-yl)thiophen-2-yl)benzonitrile (6n).

Yellow solid (0.60 gm, 41 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.17 (br s, 1 H), 7.94 (m, 4 H), 7.89 (d, J = 8 Hz, 2 H), 7.83 (d, J = 8 Hz, 2 H), 7.62 (m, 4 H), 7.56 (m, 2 H), 7.05 (d, J = 8 Hz, 1 H), 6.66 (br s, 1 H), 1.91 (s, 3 H); ESI-HRMS: m/z calculated for C₃₂H₂₁N₄S: 493.1481, found: 493.1484 (M⁺ + 1).

2-Chloro-4-(2-(5-(4-cyanophenyl)thiophen-2-yl)-1-isopropyl-1H-

benzo[d]imidazol-5-yl)benzonitrile (60).

Yellow solid (0.87 gm, 61 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.12 (m, 2H), 8.01 (d, *J* = 8 Hz, 1 H), 7.92 (m, 7 H), 7.65 (m, 2 H), 5.18 (m, 1 H), 1.69 (d, *J* = 6 Hz, 6 H); ESI-HRMS: m/z calculated for C₂₈H₂₀ClN₄S: 479.1092, found: 479.1086 (M⁺ + 1).

4-(2-(5-(4-Cyanophenyl)thiophen-2-yl)-1-isopropyl-1H-benzo[d]imidazol-5yl)-2-(trifluoromethyl)benzonitrile (6p).

Yellow solid (0.81 gm, 53 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.26 (m, 4H), 7.99 (m, 3 H), 7.94 (d, *J* = 8 Hz, 2 H), 7.89 (d, *J* = 3.6 Hz, 1 H), 7.75 (d, *J* = 8.4 Hz, 1 H), 7.69 (d, *J* = 3.6 Hz, 1 H), 5.20 (m, 1 H), 1.75 (d, *J* = 6.8 Hz, 3 H), 1.71 (d, *J* = 6.8 Hz, 3 H); ESI-HRMS: m/z calculated for C₂₉H₂₀F₃N₄S: 513.1355, found: 513.1349 (M⁺ + 1).

4-(2-(5-(4-Cyanophenyl)thiophen-2-yl)-1-isopropyl-1H-benzo[d]imidazol-5yl)-3-methylbenzonitrile (6q).

Yellow solid (0.85 gm, 62 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 7.99 (d, *J* = 8.4 Hz, 2 H), 7.93 (d, *J* = 8.4 Hz, 2 H), 7.90 (d, *J* = 4 Hz, 1 H), 7.84 (br s, 1 H), 7.81 (br s, 1 H), 7.76 (m, 2 H), 7.66 (d, *J* = 4 Hz, 1 H), 7.52 (d, *J* = 8.2 Hz, 1 H), 7.25 (d, *J* = 8.2 Hz, 1 H), 5.18 (m, 1 H), 2.35 (s, 3 H), 1.69 (d, *J* = 6.8 Hz, 6 H); ESI-HRMS: m/z calculated for C₂₉H₂₃N₄S: 459.1638, found: 459.1633 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-isopropyl-1H-benzo[d]imidazol-2-yl)-3methylthiophen-2-yl)benzonitrile (6r).

Yellow solid (0.53 gm, 39 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.10 (br s, 1 H), 8.00 (m, 3 H), 7.96 (m, 3 H), 7.79 (m, 3 H), 7.64 (d, J = 8.4 Hz, 1 H), 7.58 (br s, 1 H), 5.23(m, 1 H), 2.43 (s, 3 H), 1.74 (d, J = 6.8 Hz, 6 H); ESI-HRMS: m/z calculated for C₂₉H₂₃N₄S: 459.1638, found: 459.1615 (M⁺ + 1).

4-(5-(5-(4-Cyanophenyl)-1-methyl-1H-benzo[d]imidazol-2-yl)selenophen-2-yl)benzonitrile (6s).

Yellow solid (0.84 gm, 61 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.05 (m, 3 H), 7.96 (d, *J* = 8 Hz, 2 H), 7.91 (m, 6 H), 7.76 (d, *J* = 8.4 Hz, 1 H), 7.70 (d, *J* = 8.4 Hz, 1 H), 4.09 (s, 3 H).

4-(5-(5-(4-Cyanophenyl)-1-isopropyl-1H-benzo[d]imidazol-2-yl)selenophen-2-yl)benzonitrile (6t).

Yellow solid (0.75 gm, 51 %), mp > 300 °C; ¹HNMR (DMSO-d₆): δ 8.08 (br s, 1H), 8.04 (br s, 1 H), 7.95 (m, 9 H), 7.85 (br s, 1 H), 7.65 (d, J = 8.4 Hz, 1 H), 5.21 (t, J = 5.8 Hz, 1 H), 1.70 (d, J = 5.8 Hz, 6 H); ESI-HRMS: m/z calculated for C₂₈H₂₁N₄Se: 493.0926, found: 493.0915 (M⁺ + 1).

Synthesis of the diamidines (7a-t).

The above bis-nitriles (0.6 mmol) were suspended in freshly distilled THF (5 mL), and treated with a 1M $\text{LiN}(\text{TMS})_2^{16,17}$ in THF solution (3.6 mL, 3.6 mmol) and the mixture was stirred for 48 h at room temperature. The reaction mixture was cooled to 0 °C and HCl saturated ethanol (3 mL) was added. The mixture was stirred for 4

h, and concentrated under reduced pressure, ether was added and the resultant solid was collected by filtration. The diamidine was purified by neutralization with 1M sodium hydroxide solution followed by filtration of the produced solid, washed with water and dried. The free base was stirred with ethanolic HCl for 24 h. The reaction mixture was concentrated under reduced pressure and acetone was added, the solid that formed was filtered and dried under vacuum at 100 °C for 24 h.

4-(5-(5-(4-Carbamimidoylphenyl)-1-methyl-1H-benzo[d]imidazol-2-

yl)thiophen-2-yl)benzimidamide (7a).¹⁵

4-(5-(5-(4-Carbamimidoylphenyl)-1-ethyl-1H-benzo[d]imidazol-2-yl)thiophen-2-yl)benzimidamide (7b).

Yellow solid (0.225 gm, 62 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.58 (s, 2 H), 9.54 (s, 2 H), 9.36 (s, 2 H), 9.34 (s, 2 H), 8.09 (br s, 1 H), 8.03 (d, *J* = 8.4 Hz, 2H), 8.00 (m, 6 H), 7.94 (d, *J* = 4 Hz, 1H), 7.90 (d, *J* = 4 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.76 (dd, *J* = 1.2, 8.4 Hz, 1H), 4.61 (m, 2 H), 1.46 (t, *J* = 7 Hz, 3H); ESI-HRMS: m/z calculated for C₂₇H₂₆N₆S: 233.0964, found: 233.0957 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₂₇H₂₄N₆S. 3HCl. 1.75H₂O: C, 53.67; H, 5.09; N, 13.91. Found: C, 53.69; H, 5.18; N, 13.72.

4-(5-(5-(4-Carbamimidoylphenyl)-1-isopropyl-1H-benzo[d]imidazol-2yl)thiophen-2-yl)benzimidamide (7c).

Yellow solid (0.260 gm, 72 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.56 (s, 2 H), 9.51 (s, 2 H), 9.33 (s, 2 H), 9.30 (s, 2 H), 8.13 (s, 1 H), 8.06 (m, 3 H), 8.02 (m, 7 H), 7.79 (d, *J* = 3.2 Hz, 1H), 7.76 (d, *J* = 7.4 Hz, 1H), 5.22 (m, 1H), 1.73 (d, *J* = 6.4 Hz, 6H); ESI-HRMS: m/z calculated for C₂₈H₂₇N₆S: 479.2018, found: 479.2012 (Amidine base M⁺ + 1). Anal. Calcd. For C₂₈H₂₆N₆S. 3HCl. 1.5H₂O: C, 54.79; H, 5.25; N, 13.70. Found: C, 54.91; H, 5.33; N, 13.36.

4-(5-(5-(4-Carbamimidoylphenyl)-1-isobutyl-1H-benzo[d]imidazol-2yl)thiophen-2-yl)benzimidamide (7d).

Yellow solid (0.265 gm, 69 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.51 (s, 2 H), 9.47 (s, 2 H), 9.27 (s, 2 H), 9.24 (s, 2 H), 8.11 (s, 1 H), 8.05 (m, 4 H), 7.95 (m, 6H), 7.91 (d, *J* = 9.2 Hz, 1H), 7.78 (d, *J* = 7.2 Hz, 1H), 4.49 (d, *J* = 6.8 Hz, 2H), 2.20 (m, 1 H), 0.92 (d, *J* = 6 Hz, 6H); ESI-HRMS: m/z calculated for C₂₉H₃₀N₆S: 247.1121, found: 247.1113 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₂₉H₂₈N₆S. 3HCl. 2.10H₂O: C, 54.54; H, 5.56; N, 13.16. Found: C, 54.83; H, 5.69; N, 12.76.

4-(5-(5-(4-Carbamimidoylphenyl)-1-neopentyl-1H-benzo[d]imidazol-2yl)thiophen-2-yl)benzimidamide (7e).

Yellow solid (0.050 gm, 13 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.55 (s, 2 H), 9.51 (s, 2 H), 9.33 (s, 2 H), 9.30 (s, 2 H), 8.12 (s, 1 H), 8.04 (m, 5 H), 7.97 (m, 5 H), 7.93 (d, *J* = 3.6 Hz, 1H), 7.81 (d, *J* = 8 Hz, 1H), 4.61 (s, 2H), 0.86 (s, 9H); ESI-HRMS: m/z calculated for C₃₀H₃₂N₆S: 254.1199, found: 254.1192 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₃₀H₃₀N₆S. 3HCl. 3H₂O: C, 53.87; H, 5.88; N, 12.57. Found: C, 53.50; H, 5.51; N, 12.47.

4-(5-(5-(4-Carbamimidoylphenyl)-1-butyl-1H-benzo[d]imidazol-2yl)thiophen-2-yl)benzimidamide (7f).

Yellow solid (0.300 gm, 77 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.57 (s, 2 H), 9.53 (s, 2 H), 9.35 (s, 2 H), 9.32 (s, 2 H), 8.10 (br s, 1 H), 8.05 (d, *J* = 8.8 Hz, 2H), 8.00 (m, 6 H), 7.98 (d, *J* = 6.8 Hz, 2H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 4.64 (t, *J* = 6.6 Hz, 2H), 1.83 (t, *J* = 7.4 Hz, 2H), 1.40 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ESI-HRMS: m/z calculated for C₂₉H₃₀N₆S: 247.1121, found: 247.1112 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₂₉H₂₈N₆S. 3HCl. 2.25H₂O: C, 54.31; H, 5.58; N, 13.11. Found: C, 53.92; H, 5.48; N, 12.90.

4-(5-(5-(4-Carbamimidoylphenyl)-1-(3-methoxypropyl)-1H-benzo[d]imidazol-2-yl)thiophen-2-yl)benzimidamide (7g).

Yellow solid (0.060 gm, 10 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.57 (s, 2 H), 9.53 (s, 2 H), 9.35 (s, 2 H), 9.32 (s, 2 H), 8.10 (br s, 1 H), 8.05 (d, *J* = 8.8 Hz, 2H), 8.00 (m, 6 H), 7.98 (d, *J* = 6.8 Hz, 2H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 4.68 (t, *J* = 6.4 Hz, 2H), 3.40 (t, *J* = 5.2 Hz, 2H), 3.22 (s, 3H), 2.11 (m, 2H); ESI-HRMS: m/z calculated for C₂₉H₃₀N₆OS: 255.1095, found: 255.1087 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₂₉H₂₈N₆OS. 3HCl. 1.25H₂O: C, 54.49; H, 5.28; N, 13.15. Found: C, 54.40; H, 5.30; N, 12.97.

4-(5-(5-(4-Carbamimidoylphenyl)-1-(2-methoxyethyl)-1H-benzo[d]imidazol-2-yl)thiophen-2-yl)benzimidamide (7h).

Yellow solid (0.260 gm, 68 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.55 (s, 2 H), 9.50 (s, 2 H), 9.32 (s, 2 H), 9.29 (s, 2 H), 8.11 (br s, 1 H), 8.04 (m, 5H), 7.99 (m, 3H), 7.95 (m, 2H), 7.89 (d, *J* = 8.8 Hz, 1H), 7.80 (d, *J* = 8.8 Hz, 1H), 4.78 (br s, 2H), 3.85 (t, *J* = 4.8 Hz, 2H), 3.22 (s, 3 H); ESI-HRMS: m/z calculated for C₂₈H₂₇N₆OS: 495.1967, found: 495.1985 (amidine base M⁺ + 1). Anal. Calcd. For C₂₈H₂₆N₆OS. 3HCl. 2H₂O: C, 52.65; H, 5.21; N, 13.16. Found: C, 52.63; H, 5.49; N, 13.00.

4-(5-(5-(4-Carbamimidoylphenyl)-1-cyclobutyl-1H-benzo[d]imidazol-2yl)thiophen-2-yl)benzimidamide (7i).

Yellow solid (0.162 gm, 40 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.57 (s, 2 H), 9.54 (s, 2 H), 9.36 (s, 2 H), 9.34 (s, 2 H), 8.15 (br s, 1 H), 8.11 (d, *J* = 8.8 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 2H), 8.02 (m, 5 H), 7.97 (m, 2H), 7.85 (d, *J* = 3.6 Hz, 1H), 7.81 (d, *J* = 9.2 Hz, 1H), 5.48 (m, 1H), 2.84 (m, 2H), 2.60 (m, 2H), 1.96 (m, 2H); ESI-HRMS: m/z calculated for C₂₉H₂₈N₆S: 246.1043, found: 246.1035 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₂₉H₂₆N₆S. 3HCl. 2H₂O: C, 54.87; H, 5.24; N, 13.24. Found: C, 54.54; H, 5.12; N, 13.52.

4-(5-(5-(4-Carbamimidoylphenyl)-1-cyclopentyl-1H-benzo[d]imidazol-2yl)thiophen-2-yl)benzimidamide (7j).

Yellow solid (0.200 gm, 53 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.57 (s, 2 H), 9.53 (s, 2 H), 9.34 (s, 2 H), 9.31 (s, 2 H), 8.15 (d, *J* = 1.2 Hz, 1 H), 8.06 (d, *J* = 8.4 Hz, 2 H), 8.02 (m, 5 H), 7.97 (m, 2H), 7.85 (m, 2H), 7.77 (d, *J* = 8.8 Hz, 1 H), 5.34 (m, 1H), 2.26 (m, 4H), 2.06 (m, 2H), 1.81 (m, 2H); ESI-HRMS: m/z calculated for C₃₀H₃₀N₆S: 253.1121, found: 253.1116 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₃₀H₂₈N₆S. 3HCl. 2.75H₂O: C, 54.40; H, 5.55; N, 12.69. Found: C, 54.62; H, 5.42; N, 12.43.

4-(5-(5-(4-Carbamimidoylphenyl)-1-cyclohexyl-1H-benzo[d]imidazol-2yl)thiophen-2-yl)benzimidamide (7k).

Yellow solid (0.230 gm, 58 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.61 (s, 2 H), 9.58 (s, 2 H), 9.39 (s, 2 H), 9.37 (s, 2 H), 8.20 (m, 1 H), 8.14 (br s, 1H), 8.07 (m, 3 H), 8.02 (m, 6 H), 7.86 (m, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 4.77 (m, 1H), 2.37 (m, 2H), 2.08 (m, 2H), 1.91 (m, 2H), 1.71 (m, 1H), 1.49 (m, 3H); ESI-HRMS: m/z calculated for C₃₁H₃₂N₆S: 260.1199, found: 260.1190 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₃₁H₃₀N₆S. 3HCl. 2.5H₂O: C, 55.42; H, 5.70; N, 12.51. Found: C, 55.17; H, 5.49; N, 12.29.

4-(5-(5-(4-Carbamimidoylphenyl)-1-(cyclopentylmethyl)-1H-

benzo[d]imidazol-2-yl)thiophen-2-yl)benzimidamide (7l).

Yellow solid (0.300 gm, 74 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.60 (s, 2 H), 9.55 (s, 2 H), 9.36 (s, 2 H), 9.34 (s, 2 H), 8.10 (br s, 2 H), 8.06 (m, 2 H), 8.01 (m, 8 H), 7.83 (d, *J* = 8.4 Hz, 1 H), 4.64 (d, *J* = 6.8 Hz, 2 H), 2.41 (m, 1H), 1.63 (m, 4H), 1.47 (m, 2H), 1.33 (m, 2H); ESI-HRMS: m/z calculated for C₃₁H₃₀N₆S: 260.1199, found: 260.1194 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₃₁H₃₂N₆S. 3HCl. 2.75H₂O: C, 55.05; H, 5.74; N, 12.43. Found: C, 55.09; H, 5.59; N, 12.38.

4-(5-(5-(4-carbamimidoylphenyl)-1-phenyl-1H-benzo[d]imidazol-2yl)thiophen-2-yl)benzimidamide (7m).

Yellow solid (0.225 gm, 66 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.48 (s, 4 H), 9.25 (s, 4 H), 8.21 (d, *J* = 1.2 Hz, 1H), 8.02 (d, *J* = 8.8 Hz, 2H), 7.97 (d, *J* = 8.8 Hz, 2H), 7.91 (br s, 4 H), 7.75 (m, 3H), 7.69 (m, 4H), 7.19 (d, *J* = 8.8 Hz, 1H), 6.73 (d, *J* = 3.6 Hz, 1H); ESI-HRMS: m/z calculated for C₃₁H₂₆N₆S: 257.0964, found: 257.0975 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₃₁H₂₄N₆S. 3HCl. 0.5H₂O: C, 59.13; H, 4.48; N, 13.35. Found: C, 59.01; H, 4.72; N, 13.16.

4-(5-(5-(4-Carbamimidoylphenyl)-1-(o-tolyl)-1H-benzo[d]imidazol-2yl)thiophen-2-yl)benzimidamide (7n).

Yellow solid (0.165 gm, 42 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.52 (s, 4 H), 9.31 (s, 4 H), 8.21 (br s, 1H), 8.01 (m, 4H), 7.93 (d, *J* = 8.2 Hz, 2H), 7.88 (d, *J* = 8.2 Hz, 2H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.65 (m, 3 H), 7.60 (m, 2H), 7.11 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 3.6 Hz, 1H), 1.95 (s, 3H); ESI-HRMS: m/z calculated for C₃₂H₂₈N₆S: 264.1043, found: 264.1038 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₃₂H₂₆N₆S. 3HCl. 0.5H₂O: C, 59.70; H, 4.70; N, 13.06. Found: C, 60.02; H, 5.09; N, 13.01.

4-(2-(5-(4-carbamimidoylphenyl)thiophen-2-yl)-1-isopropyl-1Hbenzo[d]imidazol-5-yl)-2-chlorobenzimidamide (70).

Yellow solid (0.110 gm, 28%), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.60 (br s, 4 H), 9.33 (br s, 4 H), 8.14 (br s, 1H), 8.07 (m, 4H), 8.00 (m, 2H), 7.98 (d, *J* = 3.2 Hz, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 7.81 (d, *J* = 3.2 Hz, 1H), 7.76 (m, 2H), 5.22 (m, 1H), 1.73 (d, *J* = 6.8 Hz, 6H); ESI-HRMS: m/z calculated for C₂₈H₂₇ClN₆S: 257.0848, found: 257.0837 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₂₈H₂₅ClN₆S. 3HCl. 2.5H₂O: C, 50.51; H, 5.00; N, 12.63. Found: C, 50.12; H, 4.75; N, 12.46.

4-(2-(5-(4-Carbamimidoylphenyl)thiophen-2-yl)-1-isopropyl-1Hbenzo[d]imidazol-5-yl)-2-(trifluoromethyl)benzimidamide (7p).

Yellow solid (0.320 gm, 76 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.62 (br s, 4 H), 9.59 (s, 2 H), 9.38 (s, 2 H), 8.26 (br s, 2H), 8.19 (s, 1H), 8.05 (m, 3H), 7.98 (m, 3H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.79 (m, 2H), 5.23 (br s, 1H), 1.73 (d, *J* = 4.8 Hz, 6H); ESI-HRMS: m/z calculated for C₂₉H₂₇F₃N₆S: 274.0980, found: 274.0971 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₂₉H₂₅F₃N₆S. 3HCl. 2.5H₂O: C, 49.77; H, 4.75; N, 12.01. Found: C, 49.72; H, 4.69; N, 11.86.

4-(2-(5-(4-Carbamimidoylphenyl)thiophen-2-yl)-1-isopropyl-1Hbenzo[d]imidazol-5-yl)-3-methylbenzimidamide (7q).

Yellow solid (0.16 gm, 42 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.58 (s, 4 H), 9.40 (s, 4 H), 8.07 (d, *J* = 8.4 Hz, 2H), 8.02 (m, 4H), 7.95 (br s, 1H), 7.91 (m, 2H), 7.86 (d, *J* = 8 Hz, 1H), 7.58 (d, *J* = 8 Hz, 1H), 7.47 (d, *J* = 8.8 Hz, 1H), 5.22 (m, 1H), 2.38 (s, 3H), 1.74 (d, *J* = 6.8 Hz, 6H); ESI-HRMS: m/z calculated for C₂₉H₃₀N₆S: 247.1121, found: 247.1114 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₂₉H₂₈N₆S. 3HCl. 1.5H₂O: C, 55.48; H, 5.46; N, 13.39. Found: C, 55.45; H, 5.38; N, 13.06.

4-(5-(5-(4-Carbamimidoylphenyl)-1-isopropyl-1H-benzo[d]imidazol-2-yl)-3methylthiophen-2-yl)benzimidamide (7r).

Yellow solid (0.14 gm, 38 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.56 (s, 2 H), 9.54 (s, 2 H), 9.36 (s, 2 H), 9.32 (s, 2 H), 8.14 (br s, 1H), 8.07 (d, *J* = 8 Hz, 2H), 8.00 (m, 4H), 7.84 (d, *J* = 8 Hz, 2H), 7.81 (br s, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.64 (br s, 1H), 5.26 (m, 1H), 2.46 (s, 3H), 1.77 (d, *J* = 6.8 Hz, 6H); ESI-HRMS: m/z calculated for C₂₉H₃₀N₆S: 247.1121, found: 247.1112 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₂₉H₂₈N₆S. 3HCl. 1.5H₂O: C, 55.48; H, 5.46; N, 13.39. Found: C, 55.48; H, 5.52; N, 13.19.

4-(5-(5-(4-Carbamimidoylphenyl)-1-methyl-1H-benzo[d]imidazol-2yl)selenophen-2-yl)benzimidamide (7s).

Yellow solid (0.150 gm, 39 %), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.56 (s, 2 H), 9.52 (s, 2 H), 9.31 (s, 2 H), 9.29 (s, 2 H), 8.24 (d, *J* = 3.6 Hz, 1H), 8.15 (d, *J* = 3.6 Hz, 1H), 8.10 (br s, 1H), 7.99 (m, 9H), 7.85 (d, *J* = 8.8 Hz, 1H), 4.15 (s, 3H); ESI-HRMS: m/z calculated for C₂₆H₂₄N₆Se: 250.0608, found: 250.0599 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₂₆H₂₂N₆Se. 3HCl. 2H₂O: C, 48.59; H, 4.55; N, 13.08. Found: C, 48.48; H, 4.39; N, 13.10.

4-(5-(5-(4-Carbamimidoylphenyl)-1-isopropyl-1H-benzo[d]imidazol-2yl)selenophen-2-yl)benzimidamide (7t).

Yellow solid (0.325 gm, 79%), mp > 300 °C. ¹HNMR (DMSO-d₆): δ 9.56 (s, 2 H), 9.53 (s, 2 H), 9.40 (s, 2 H), 9.32 (s, 2 H), 8.11 (m, 3H), 8.09 (m, 9H), 7.79 (d, J =8.4 Hz, 1H), 5.19 (m, 1H), 1.73 (d, J = 6.4 Hz, 6H); ESI-HRMS: m/z calculated for C₂₈H₂₈N₆Se: 264.0765, found: 264.0756 (Double charged amidine base M⁺ + 2). Anal. Calcd. For C₂₈H₂₆N₆Se. 3HCl. 2.5H₂O: C, 49.47; H, 5.04; N, 12.37. Found: C, 49.16; H, 5.13; N, 12.12.

Biophysical Experimental

Materials

In the DNA thermal melting (T_m) , circular dichroism (CD) experiments, the hairpin oligomer sequences were used as shown in Figure 1. In SPR experiments, 5'-biotin labeled hairpin DNA oligomers were used. All DNA oligomers were obtained from

Integrated DNA Technologies, Inc. (IDT, Coralville, IA) with reverse-phase HPLC purification and mass spectrometry characterization.

The buffer used in $T_{\rm m}$ and CD experiments was 50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, pH 7.4 (TNE 100). The biosensor-surface plasmon resonance (SPR) experiments were performed in filtered, degassed TNE 100 with 0.05% (v/v) surfactant P20.

UV-vis Thermal Melting (Tm)

DNA thermal melting experiments were performed on a Cary 300 Bio UV-vis spectrophotometer (Varian). The concentration of each hairpin DNA sequence was 3 μ M in TNE 100 using 1 cm quartz cuvettes. The solutions of DNA and ligands were tested with the ratio of 2:1 [ligand] / [DNA]. All samples were increased to 95 °C and cooled down to 25 °C slowly before each experiment. The spectrophotometer was set at 260 nm with a 0.5 °C/min increase beginning at 25 °C, which is below the DNA melting temperature and ending above it at 95 °C. The absorbance of the buffer was subtracted, and a graph of normalized absorbance versus temperature was created using KaleidaGraph 4.0 software. The ΔT_m values were calculated using a combination of the derivative function and estimation from the normalized graphs.

Biosensor-Surface Plasmon Resonance (SPR)

SPR measurements were performed with a four-channel Biacore T200 optical biosensor system (GE Healthcare, Inc., Piscataway, NJ). A streptavidin-derivatized (SA) CM5 sensor chip was prepared for use by conditioning with a series of 180 s

injections of 1 M NaCl in 50 mM NaOH (activation buffer) followed by extensive washing with HBS buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, and 0.05% P20, pH 7.4). Biotinylated-DNA samples (AAATTT, AAAGTTT and AAAGCTTT hairpins, Figure 1) of 25-30 nM were prepared in HBS buffer and immobilized on the flow cell surface by noncovalent capture. Flow cell 1 was left blank as a reference, while flow cells 2-4 were immobilized separately by manual injection of biotinylated-DNA stock solutions (flow rate of 1 μ L/min) until the desired amount of DNA response units (RU) was obtained (250-300 RU). Ligand solutions were prepared with degassed and filtered TNE 100 with 0.05% (v/v) surfactant P20 by serial dilutions from a concentrated stock solution. Typically, a series of different ligand concentrations (2 nM to 500 nM) were injected over the DNA sensor chip at a flow rate of 100 μ L/min for 180 s, followed by buffer flow for ligand dissociation (600-1800 s). After each cycle, the sensor chip surface was regenerated with a 10 mM glycine solution (pH 2.5) for 30 s followed by multiple buffer injections to yield a stable baseline for the following cycles. RU_{obs} was plotted as a function of free ligand concentration (C_{free}), and the equilibrium binding constants (K_A) were determined either with a one-site binding model, where $r = (RU_{obs}/RU_{max})$ represents the moles of bound compound/mol of DNA hairpin duplex and K is macroscopic binding constant.

$$r = K * C_{free} / 1 + K * C_{free}$$
(1)

 RU_{max} can be used as a fitting parameter, and the obtained value compared to the predicted maximal response per bound ligand can also be used to independently evaluate the stoichiometry. Kinetic analyses were performed by globally fitting the binding results for the entire concentration series using a standard 1:1 kinetic model with integrated mass transport-limited binding parameters as described previously.

^{18,19} To obtain the optimized kinetic constants (k_a , k_d), we have immobilized different amount of the target DNAs on CM5 chip surfaces in three independent experiments with different sensor chips.

Circular Dichroism (CD)

Circular dichroism experiments were performed on a Jasco J-810 CD and Jasco J-1500 CD spectrometer in 1 cm quartz cuvette at 25 °C. A buffer scan as a baseline was collected first in the same cuvette and subtracted from the scan of following samples. The hairpin DNA sequence AAAGTTT (5 μ M), Figure 1, in TNE 100 was added to the cuvette prior to the titration experiments and then the compound was added to the DNA solution and incubated for 10 min to achieve equilibrium binding for the DNA-ligand complex formation. For each titration point, four spectra were averaged from 500 to 230 nm wavelength with scan speed of 50 nm/min, with a response time of 1 s. Baseline-subtracted graphs were created using the KaleidaGraph 4.0 software.

Structural Calculations

Molecular torsional angle map calculations of the compounds were performed in the Spartan'16 software. The "constrain dihedral" command was used with selected compounds to restrain four atoms to define the middle rotation bond and two terminal bonds which formed the dihedral as the calculation targets. The calculation range was set from 0° to 100° or 180° through 11 or 19 steps. Calculations were carried out with the energy profile method at ground state with density functional B3LYP/6-31G* in vacuum. After the calculations, the relative energy (rel. E) (kJ/mol) was displayed in a spreadsheet. The torsional angle map can be created with

the constraint of the torsional angle as the X-axis and rel. E as the Y-axis by using KaleidaGraph 4.0 software.

Ab-Initio Calculations and Molecular Dynamic (MD) Simulation

Optimization and electrostatic potential calculations were performed for the DB2708 molecule using DFT/B3LYP theory with the 6-31+G* basis set in Gaussian 09 (Gaussian, Inc., 2009, Wallingford, CT) with Gauss-view 5.09.20 Partial charges were derived using the RESP fitting method (Restrained Electrostatic potential).^{21,22} AMBER 14 (Assisted Model Building with Energy Refinement) software suite was used to perform molecular dynamic (MD) simulations.²³ Canonical *B*-form *ds*[(5'-CCAAAGTTTGG-3')(5'-CCAAACTTTGG-3')] DNA was built in Nucleic Acid Builder (NAB) tool in AMBER. AMBER preparation and force field parameter files required to run molecular dynamic simulations for DB2708 molecule were produced using ANTECHAMBER.²⁴ Specific atom types assigned for DB2708 molecule were adapted from the ff99 force field. Most of the force field parameters for DB2708 molecule were derived from the existing set of bonds, angles and dihedrals for the similar atom types in parm99 and GAFF force fields.²⁵ Some dihedral angle parameters were obtained from previously reported parametrized data.^{26, 27} Parameters of DB2708 in fremod file are listed at the Table S1.

AutoDock Vina program was used to dock the DB2528 in the minor groove of DNA to obtain the initial structure for DB2708-DNA complex.²⁸ MD simulations were performed in explicit solvation conditions where the DNA-DB2708 complex was placed in a truncated octahedron box filled with TIP3P water using xleap program in AMBER. Sodium ions were used to neutralize the system. A 10 Å cutoff was applied on all van der Waals interactions. The MD simulation was

carried out using the Sander module with SHAKE algorithm applied to constrain all bonds. Initially, the system was relaxed with 500 steps of steepest-descent energy minimization. The temperature of the system was then increased from 0 K to 310 K for over 10 ps under constant-volume conditions. In the final step, the production run on the system was subsequently performed for 500 ns under NPT (constant-pressure) conditions. Coordinate file of DB2708-DNA complex along with water molecules in proximity is also attached.

Figure S1. Circular dichroism spectra for the titration of representative compounds, A) DB2708, B) DB2740, C) DB2759 and D) 2754 with a 5 μ M AAAGTTT sequence in Tris-HCl buffer (50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, pH 7.4) at 25°C. Arrows indicate the changes.

Figure S2. Molecular structure with specific atom types used for the DB2708 molecule.

Table S1. Thermal melting studies (ΔT_m , °C) of DB2457 and analogues with pure AT and mixed DNA sequences. ^a

			IN	n ₂	H ₂ N			
Compounds	R ₁	R ₂	R ₃	x	Y	Δ <i>T</i> _m ΑΑΑΤΤΤ (70°C)	Δ <i>T</i> _m ΑΑΑGTTT (66°C)	Δ7 _m ΑΑΑGCTTT (67℃)
DB2457 (7a)	н	н	н	Me	S	6	14	5
DB2737 (7b)	н	н	н	Et	S	7	15	7
DB2708 (7c)	н	н	н	<i>i</i> -Pr	s	4	14	5
DB2711 (7d)	н	н	н	\prec	S	5	13	5
DB2718 (7e)	н	н	н	<i>.</i>	S	2	11	4
DB2715 (7f)	н	н	н	.~~~	S	5	13	5
DB2728 (7g)	н	н	н	~_0-	S	4	13	5
DB2764 (7h)	н	н	н	.~^0、	S	3	13	5
DB2726 (7i)	н	н	н	\$	S	4	14	4
DB2714 (7j)	н	н	н		S	4	13	5
DB2727 (7k)	н	н	н	···	S	4	13	3
DB2738 (7I)	н	н	н	\sim	S	4	13	5
DB2740(7m)	н	н	н		S	5	17	7
DB2747 (7n)	н	н	н	<u>(</u>	S	7	16	9
DB2759 (7o)	CI	н	н	<i>i</i> -Pr	S	3	12	3
DB2762 (7p)	CF_3	н	н	<i>i</i> -Pr	S	1	8	3
DB2753 (7q)	н	Ме	н	<i>i</i> -Pr	S	1	3	2
DB2754 (7r)	н	н	Ме	<i>i</i> -Pr	S	1	4	2
DB2673 (7s)	н	н	н	Me	Se	7	12	5
DB2712 (7t)	н	н	н	<i>i</i> -Pr	Se	5	13	6

a. $\Delta T_m = T_m$ (the complex) - T_m (the free DNA). 3 µM DNA sequences were studied in Tris-HCl buffer (50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, pH 7.4) with the ratio of 2:1 [ligand]/[DNA]. An average of two independent experiments with a reproducibility of 0.5 °C. Full DNA sequences: AAATTT: 5'-CCAAATTTGCCTCTGCAAATTTGG-3'; AAAGTTT: 5'-CCAAAGTTTGCTCTCAAACTTTGG-3'.

remark goes	here		
MASS			
N2 14.01	0.530	parm99	
CA 12.01	0.360	parm99	
CB 12.01	0.360	parm99	
C* 12.01	0.360	gaff SP2	carbon at non-pure aromatic system
CK 12.01	0.360	parm99	
CT 12.01	0.878	parm99	
HA 1.008	0.167	parm99	
H 1.008	0.161	parm99	
HC 1.008	0.135	parm99	
H1 1.008	0.135	parm99	
N* 14.01	0.530	parm99	
NB 14.01	0.530	parm99	
S 32.06	2.900	gaff	
BOND			
CA-CA 469.	0 1.400	parm99	
CA-CB 469.	0 1.404	parm99	
CB-CB 520	0 1 370	parm99	
CB-N* 436 () 1.374	narm99	
CB-NB 414	0 1 391	parm99	
CT-N* 337 0	1 475	narm99	
CT-CT 310 (1 526	parm99	
CA-HA 367	0 1 080	parm99	
CT-H1 340 () 1.000	narm99	
CT-HC 340	0 1 090	parm99	
CK-N* 440 () 1.371	narm99	
CK-NB 529	0 1 304	narm99	
CK-C* 418 ?	3 1 4 2 9 0	SOURCE1	740.0.0069 cc-cc daff similar to daussian bond
C*-C* 418 3	1 4290	SOURCE1	740 0 0069 gaff
C*-SS 270 2	1.4200	SOURCES	52 0 0194 gaff
C* HA 347 2) 1.7070) 1.0850		7400 0039 gaff
	1 1 1 2 1 0		80.0.0000 gaff
CA N2 491	0 1 240		80 0.0000 gan
S -C* 279.3	1.7370	SOURCE3	52 0.0194 gaff
			J
ANGLE	00.0		
CA-CA-CA	63.0 120	J.00 parm99	
CA-CA-CB	63.0 120	0.00 parm99	
CA-CA-HA	50.0 120	0.00 parm99	
CA-CB-CB	63.0 11	7.30 parm99	
CB-CA-HA	50.0 120	J.00 parm99	
CA-CB-NB	70.0 132	2.40 parm99	
CA-CB-N*	70.0 132	2.40 parm99	CA-CB-NB parm99
CB-CB-N*	70.0 106	5.20 parm99	
CB-CB-NB	70.0 110	J.40 parm99	
CT-CT-CT	40.0 109	0.50 parm99	
CT-CT-H1	50.0 109	.50 parm99	

Table S2. Fremod file of the DB2708 molecule

CB-N*-CT	70.	0	125.80	parm99	
CT-CT-N*	50.0	0	109.50	parm99	
N*-CK-NB	70.	0	113.90	parm99	
CB-NB-CK	70	.0	103.80	parm99	
CB-N*-CK	70.	0	105.40	parm99	
C*-CK-NB	67.	53	121.69	CORR	105 cc-cc-nc GAFF
C*-CK-N*	67.5	53	121.69	CORR	105 cc-cc-nc GAFF
C*-C*-CK	66.2	24	121.77	CORR c2	2-cc-cc GAFF
C*-C*-C*	67.8	80	110.700	SOURCE3	54 3.4091 gaff
CK-N*-CT	70.	0	128.80	parm99	5
CB-N*-CT	70.	0	125.80	parm99	
H1-CT-N*	50.0	0	109.50	parm99	
HC-CT-HC	35	.0	109.50	parm99	
HC-CT-CT	50	.0	109.50	parm99	
C*-C*-HA	47.1	14	120.86	CORR	1751 cc-cc-ha GAFF
C*-S -C*	41.9	30	89.910	SOURCE3	11 2.2164 cc-ss-cc gaff
CA-C*-S	78.6	S90	120.980	SOURCE4	28 1.8865 ca-cc-ss gaff
S -C*-C*	80.7	80	115.020	SOURCE3	2 0.0000 cc-cc-ss gaff
CA-C*-C*	67.6	560	111.040	SOURCE3	9 7.9455 ca-cc-cc gaff
CA-CA-N2	70	.0	119.99	parm99. Cl	M-CA-N2. Gaussian-angle
N2-CA-N2	70	0	120.00	parm99	
H -N2-H	35.0		120.00	parm99	
CA-N2-H	50.0	0	120.00	parm99	
CA-CA-C*	5.9	9	120.10	SOURCE3	103 0.3451 ca-ca-cc
CK-C*-S	78.4	60	120.94	0 SOU	RCE4 31 1.2422 ce-cc-ssgaff
					C C
			~ ~ ~	400.0	
N2-CA-N2-	H	4	9.60	180.0	2.0 parm 99, X -CA-N2-X
H -N2-CA-(JA .	4	9.60	180.0	2.0 parm 99, X -CA-N2-X
N2-CA-CA-	CA	4	-3.118	0.000	-2.0 DB921
N2-CA-CA-	CA	4	0.609	90.000	1.0 DB921
CA-CA-CA-	-CA	4	14.50	180.0	2.0 parm99, X -CA-CA-X
CA-CA-CA-	-HA	4	14.50	180.0	2.0 parm99, X -CA-CA-X
HA-CA-CA-	-HA	4	14.50	180.0	2.0 parm99, X -CA-CA-X
CA-CA-CA-	-CB	4	14.50	180.0	2.0 parm99, X -CA-CA-X
CB-CA-CA-	-HA	4	14.50	180.0	2.0 parm99, X -CA-CA-X
CA-CA-CB-	-CB	4	14.00	180.0	2.0 parm99, X -CA-CB-X
HA-CA-CB-	-N*	4	14.00	180.0	2.0 parm99, X -CA-CB-X
HA-CA-CB-	-NB	4	14.00	180.0	2.0 parm99, X -CA-CB-X
HA-CA-CB-	-CB	4	14.00	180.0	2.0 parm99, X -CA-CB-X
CB-CB-N*-	CK	4	6.60	180.0	2.0 parm99, X -CB-N*-X
CB-CB-N*-	СТ	4	6.60	180.0	2.0 parm99, X -CB-N*-X
H1-CT-N*-0	СВ	1	0.00	0.000	-2. parm98, TC,PC,PAK FOR OS-CT-N*CK
H1-CT-N*-0	СВ	1	2.50	0.0	1. parm98, TC,PC,PAK FOR OS-CT-N*CK
CA-CB-N*-	СТ	4	6.60	180.0	2.0 parm99, X -CB-N*-X
CA-CB-CB-	-NB	4	21.80	180.0	2.0 parm99, X -CB-CB-X
CA-CB-CB-	-N*	4	21.80	180.0	2.0 parm99, X -CB-CB-X
CB-N*-CT-0	T	1	0.00	000.0	-2. parm98, TC,PC,PAK FOR OS-CT-N*CK
CB-N*-CT-0	CT	1	2.50	0.0	1. parm98, TC,PC,PAK FOR OS-CT-N*CK
N*-CT-CT-F	HC	9	1.40	0.0	3. JCC,7,(1986),230, X -CT-CT-X
CA-CA-CB-	-NB	4	14.00	180.0	2. intrpol.bsd.on C6H6, X -CA-CB-X

CA-CB-NB-CK 2 5.10	180.0	2.0 parm99, X -CB-NB-X
CA-CB-N*-CK 4 6.60	180.0	2. JCC,7,(1986),230, X -CB-N*-X
NB-CK-N*-CB 4 6.80	180.0	2.0 parm99, X -CK-N*-X
N*-CK-NB-CB 2 20.00	180.0	2.0 parm99, X -CK-NB-X
C*-CK-NB-CB 2 20.00	180.0	2.0 parm99, X -CK-NB-X
C*-CK-NB-CB 2 20.00	180.0	2. JCC,7,(1986),230, X -CK-NB-X
NB-CK-C*-S 4 -0.6	180.0	-4.0 DB921 for NB-CK-CA-CA
NB-CK-C*-S 4 3.1	180.0	-2.0 DB921 for NB-CK-CA-CA
NB-CK-C*-S 4 -0.7	360.0	1.0 DB921 for NB-CK-CA-CA
CB-N*-CK-C* 4 6.80	180.0	20 parm99 X -CK-N*-X
NB-CK-C*-C* 4 31	180.0	-2.0 DB921 for NB-CK-CA-CA
NB-CK-C*-C* 4 -0.6	180.0	-4.0 DB921 for NB-CK-CA-CA
NB-CK-C*-C* 4 -0.7	360.0	1.0 DB921 for NB-CK-CA-CA
N*-CK-C*-C* 4 3 42	180.0	2.0 New parameter for N*-CK-CA-CA
N*-CK-C*-S 4 -0.6	180.0	-4.0 DB921 for NB-CK-CA-CA
N*-CK-C*-S 4 31	180.0	-2.0 DB921 for NB-CK-CA-CA
N* CK C* S / 07	360.0	10 DB021 for NB CK CA CA
	180.0	$20 \text{parm00} X CK N^* X$
CK C* C* C* 4 0.00	180.0	2.0 μ painings, Λ -OK-IN - Λ
	180.000	2.0 stat value of parm94 X cc cc X
	180.000	2.0 Stat value of parm04 X as as X
	100.000	
C - S - C - CA = 2 = 2.200	100.000	2.0 \wedge -C2-SS- \wedge
3-0 -CA-CA 4 3.42	100.0	
HA-CA-CA-C ⁴ 4 14.50	180.0	
	180.0	
$CA-CA-C^{-}-C^{-}$ 4 3.1	180.0	-2.0 DB921 for NB-CK-CA-CA
$CA-CA-C^{-}-C^{-}$ 4 -0.6	180.0	-4.0 DB921 for NB-CK-CA-CA
CA-CA-C*-C* 4 -0.7	360.0	1.0 DB921 for NB-CK-CA-CA
CA-C*-C*-HA 4 16.000	180.000	2.0 stat value of parm94 X cc-cc-
S -C*-C*-HA 4 16.000	180.000	2.0 statistic value of parm94 X -cc-cc-X
S -C*-C*-C* 4 16.000	180.000	2.0 stat value of parm94 X -cc-cc-X
C*-C*-C*-C* 4 16.000	180.000	2.0 stat value of parm94 X -cc-cc-X
CA-C*-C*-C* 4 16.000	180.000	2.0 stat value of parm94 X -cc-cc-X
HA-C*-C*-HA 4 16.000	180.000	2.0 stat value of parm94 X -cc-cc-X
CK-C*-C*-S 4 16.000	180.000	2.0 stat value of parm94 X -cc-cc-X
C*-S -C*-C* 1 1.100	180.000	2.000 same as X -c2-ss-X, cc-ss-cc-cd
C*-S -C*-CK 1 1.100	180.000	2.000 same as X -c2-ss-X, cc-ss-cc-cc
HC-CT-CT-HC 1 0.15	0.0	3.000 Junmei et al, 199
HC-CT-CT-CT 1 0.16	0.0	3. Junmei et al, 1999
H1-CT-N*-CK 1 0.00	0.000	-2.000 parm98,TC,PC,PAK OS-CT-N*-CK
H1-CT-N*-CK 1 2.50	0.0	1.000 parm98, TC,PC,PAK FOR OS-CT-N*-CK
IMPROPER		
CA-CB-CB-NB 1.1	180.0	2.0 Using default value
CA-CA-CA-HA 1.1	180.0	2.0 General improper torsional angle (2 general
atom types)		
CA-CA-CA-C* 1.1	180.0	2.0 Using default value
CA-CA-CA-C* 1.1	180.0	2.0 Using default value
C*-C*-C*-HA 1.1	180.0	2.0 Using default value
CA-CA-CA-HA 1.1	180.0	2.0 Using default value
CA-CA-CA-CA 1.1	180.0	2.0 Using default value

CA-N2	-CA-N2	1.1	180.0	2.0	Using default value
CT-CK	-N*-CB	1.1	180.0	2.0	Using default value
CA-CB	-CB-N*	1.1	180.0	2.0	Using default value
CK-N*-	CK-NB	1.1	180.0	2.0	Using default value
C*-C*-(C*-S	1.1	180.0	2.0	Using default value
CA-C*-	C*-S	1.1	180.0	2.0	Using default value
CA-CA	-CA-CA	1.1	180.0	2.0	Using default value
CA-CA	-CA-CA	1.1	180.0	2.0	Using default value
NONB	NC				
H1	1.3870	0.0157	par	m99	
Н	0.6000	0.0157	parr	n99	
HA	1.4590	0.0150	par	m99	
СТ	1.9080	0.1094	par	m99	
CA	1.9080	0.0860	par	m99 (C*)	
CB	1.908	0.0860	pai	°m99 (C*)	
CK	1.908	0.0860	pai	°m99 (C*)	
N*	1.8240	0.1700	pari	m99 (N)	
NB	1.824	0 0.1700	pai	m99 (N)	
N2	1.8240	0.1700	par	m99 (N)	
C*	1.9080	0.0860	pari	m99	
S	2.0000	0.2500	parr	n9	
HC	1.487	0 0.0157	OF	PLS	

References

- (1) Farahat, A. A.; Paliakov, E.; Kumar, A.; Barghash, A.-E. M.; Goda, F. E.; Eisa, H. M.; Wenzler, T.; Brun, R.; Liu, Y.; Wilson, W. D.; Boykin, D. W. *Bioorg. Med. Chem.* **2011**, *19* (7), 2156.
- (2) McKenzie, B. M.; Miller, A. K.; Wojtecki, R. J.; Johnson, J. C.; Burke, K. A.; Tzeng, K. A.;
- Mather, P. T.; Rowan, S. J. *Tetrahedron* **2008**, *64* (36), 8488.
- (3) Schelz, D.; Rotzler, N. *Dyes and Pigments* **1983**, *4* (4), 305.
- (4) Vivian, D. L.; Hartwell, J. L. J. Org. Chem. **1953**, 18 (8), 1065.
- (5) Farahat, A. A.; Kumar, A.; Say, M.; Barghash, A. E.-D. M.; Goda, F. E.; Eisa, H. M.; Wenzler, T.; Brun, R.; Liu, Y.; Mickelson, L.; Wilson, W. D.; Boykin, D. W. *Bioorg. Med. Chem.* 2010, *18* (2), 557.
- (6) Branowska, D.; Farahat, A. A.; Kumar, A.; Wenzler, T.; Brun, R.; Liu, Y.; Wilson, W. D.; Boykin, D. W. *Bioorg. Med. Chem.* **2010**, *18* (10), 3551.
- (7) Reid, C. S.; Farahat, A. A.; Zhu, X.; Pandharkar, T.; Boykin, D. W.; Werbovetz, K. A. *Bioorg. Med. Chem. Lett.* **2012**, *22* (22), 6806.
- (8) Farahat, A. A.; Boykin, D. W. *Heterocycles* **2012**, *85* (10), 2437.
- (9) Farahat, A. A.; Boykin, D. W. J. Heterocyclic Chem. 2013, 50 (3), 585.
- (10) Farahat, A. A.; Kumar, A.; Barghash, A. E.-D. M.; Goda, F. E.; Eisa, H. M.; Boykin, D. W. J. *Heterocyclic Chem.* **2010**, *47* (1), 167.
- (11) Laughlin, S.; Wang, S.; Kumar, A.; Farahat, A. A.; Boykin, D. W.; Wilson, W. D. *Chem. Eur. J.* **2015**, *21* (14), 5528.
- (12) Farahat, A. A.; Bennett-Vaughn, C.; Mineva, E. M.; Kumar, A.; Wenzler, T.; Brun, R.; Liu, Y.;
 Wilson, W. D.; Boykin, D. W. *Bioorg. Med. Chem. Lett.* **2016**, *26* (24), 5907.

- (13) Paul, A.; Kumar, A.; Nanjunda, R.; Farahat, A. A.; Boykin, D. W.; Wilson, W. D. *Org. Biomol. Chem.* **2017**, *15* (4), 827.
- (14) Farahat, A. A.; Ismail, M. A.; Kumar, A.; Wenzler, T.; Brun, R.; Paul, A.; Wilson, W. D.; Boykin, D. W. *Eur. J. Med. Chem.* **2018**, *143*, 1590.
- Guo, P.; Paul, A.; Kumar, A.; Farahat, A. A.; Kumar, D.; Wang, S.; Boykin, D. W.; Wilson, W. D. *Chem. Eur. J.* 2016, 22 (43), 15404.
- (16) Farahat, A. A.; Kumar, A.; Say, M.; Wenzler, T.; Brun, R.; Paul, A.; Wilson, W. D.; Boykin, D. W. *Eur. J. Med. Chem.* **2017**, *128*, 70.
- Munde, M.; Kumar, A.; Peixoto, P.; Depauw, S.; Ismail, M. A.; Farahat, A. A.; Paul, A.; Say, M. V.; David-Cordonnier, M.-H.; Boykin, D. W.; Wilson, W. D. *Biochemistry* 2014, 53 (7), 1218.
- (18) Liu, Y.; Kumar, A.; Depauw, S.; Nhili, R.; David-Cordonnier, M.-H.; Lee, M. P.; Ismail, M. A.; Farahat, A. A.; Say, M.; Chackal-Catoen, S.; Batista-Parra, A.; Neidle, S.; Boykin, D. W.; Wilson, W. D. J. Am. Chem. Soc. **2011**, *133* (26), 10171.
- Munde, M.; Kumar, A.; Nhili, R.; Depauw, S.; David-Cordonnier, M.-H.; Ismail, M. A.;
 Stephens, C. E.; Farahat, A. A.; Batista-Parra, A.; Boykin, D. W.; Wilson, W. D. J. Mol. Biol. 2010, 402 (5), 847.
- (20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; GE Scuseria... Inc.; Wallingford; CT; 2010. *Gaussian 09, revision b. 01, Gaussian.*
- (21) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. J. Phys. Chem. 1993, 97 (40), 10269.
- (22) Singh, U. C.; Kollman, P. A. J. Comput. Chem. 1984, 5 (2), 129.
- (23) Case, D. A.; Babin, V.; Berryman, J.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham, T. E., III; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T. S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K. M.; Paesani, F.; Roe, D. R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C. L.; Smith, W.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Kollman, P. A. AMBER 14, 2014.
- (24) Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Mol. Graph. Model. 2006, 25 (2), 247.
- (25) Harika, N. K.; Germann, M. W.; Wilson, W. D. Chem. Eur. J. 2017, 23 (69), 17612.
- (26) Athri, P.; Wilson, W. D. J. Am. Chem. Soc. 2009, 131 (22), 7618.
- (27) Špačková, N.; Cheatham, T. E.; Ryjáček, F.; Lankaš, F.; van Meervelt, L.; Hobza, P.; Šponer, J. *J. Am. Chem. Soc.* **2003**, *125* (7), 1759.
- (28) Trott, O.; Olson, A. J. J. Comput. Chem. 2009, 65, 455.

K

