Supplementary Electronic Information

Directional Charge Carriers Transport in Oriented Benzodithiophene Covalent Organic Framework Thin Films

Dana D. Medina,^{†,*,a} Michiel L. Petrus,^{†,a} Askhat N. Jumabekov,^{†,c} Johannes T. Margraf,^{b,d} Simon Weinberger,^a Julian M. Rotter,^a Timothy Clark^b and Thomas Bein^{*,a}

^a Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany

^b Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Computer-Chemie-Centrum, Nägelsbachstraße 25, 91052 Erlangen, Germany

^cCSIRO Manufacturing, Clayton, Victoria 3168, Australia

^d Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA

Section 1. X-ray diffraction and SEM of BDT-COF thin films	p. 2
Section 2. UV-vis and Tauc plots	р. 3-5
Section 3. Cross section SEM of HODs	p. 6
Section 4. Mobility data	р. 7-8
Section 5. In-plane conductivity measurements	p. 9
Section 6. MD simulations	р. 10

Section 1. X-ray diffraction of thin BDT-COF film

Figure S1.Left) Top view SEM image of BDT-COF thin film grown on ITO. right) XRD pattern of BDT-COF thin film on ITO. The strong and sharp reflection at $26.1^{\circ} 2\theta$ is related to the stacked 2D COF layers, all other reflections are attributed to the ITO film.

Figure S2. UV-Vis spectra of BDT-COF on a quartz substrate.

Figure S3.Tauc plot of BDT-COF grown on a quartz substrate.

Figure S4. PESA spectra of BDT-COF grown on a quartz substrate.

Section 3. Cross-section SEM of HODs

Figure S5. Cross section SEMs of HODs with different thickness: left) 120 nm, right) 150 nm (Evident layers layout of the HODs: ITO/COF/gold)

Section 4: Mobility data

Device	$\mu_{\rm h}$ (cm ² V ⁻¹ s ⁻¹)
1	$5.3 \cdot 10^{-7}$
2	$4.4 \cdot 10^{-7}$
3	$1.2 \cdot 10^{-7}$
4	$1.3 \cdot 10^{-7}$
Average	$3 \cdot 10^{-7}$

Table S1. Calculated hole mobility for 80-100 nm thick sample in the dark

Table S2. Calculated hole mobility for 120-150 nm thick sample in the dark

Device	μ _h (cm² V ⁻¹ s ⁻¹)
1	$1.0 \cdot 10^{-8}$
2	$1.2\cdot 10^{-8}$
Average	$1 \cdot 10^{-8}$

Table S3. Calculated hole mobility for 190-210 nm thick sample in the dark

Device	$\mu_{\rm h}$ (cm ² V ⁻¹ s ⁻¹)
1	$5.9 \cdot 10^{-9}$
2	$4.7 \cdot 10^{-9}$
3	$5.1 \cdot 10^{-9}$
Average	5 · 10 ⁻⁹

Table S4. Calculated hole mobility for 190-210 nm thick sample in the light

μ _h (cm² V⁻¹ s⁻¹)	
5.8 · 10 ⁻⁸	
$1.5 \cdot 10^{-8}$	
$1.7 \cdot 10^{-8}$	
3 · 10 ⁻⁸	

Figure S6. Current density as a function of voltage (*J-V*) of a single hole-only device containing BDT-COF layers measured three consecutive times under ambient conditions.

Section 5. In-plane Conductivity

Figure S7. Photocurrent obtained for oriented BDT-COF films on interdigitated Au electrodes as a function of applied voltage. The red line shows a linear fit through the data points.

Section 6. MD simulations

Figure S8. Side view of equilibrated BDT-COF unit cell after a 1 ns MD run, showing the slight waving of individual layers.