

Supplemental material

Malara et al., https://doi.org/10.1084/jem.20181074

Figure S1. Effects of EDA overexpression on hematopoietic progenitors in mice and concentration-dependent effects on Mk signaling pathway activation. (A and B) Representative contour plots and gate strategy of flow cytometric analysis of LSK, LT-HSC (Lin⁻Sca-1⁺c-kit⁺CD34⁺CD135⁻), ST-HSC (Lin⁻Sca-1⁺c-kit⁺CD34⁺CD135⁻), MMP (Lin⁻Sca-1⁺c-kit⁺CD34⁺CD135⁺), CMP (Lin⁻Sca-1⁻c-kit⁺CD34⁺FcγRII/II^{high}), and MEP (Lin⁻Sca-1⁻c-kit⁺CD34⁺FcγRII/II^{high}), and SP (Lin⁻Sca-1⁻c-kit⁺CD34⁺FcγRII/II^{high}) cells in the BM (A) and spleens (B) of EIIIA^{wt/wt}, EIIIA^{+/+}, and EIIIA^{-/-} mice after experimental fibrosis. (C and D) Representative dot plots of flow cytometric analysis of erythroid precursors in the BM of EIIIA^{wt/wt}, EIIIA^{+/+} and EIIIA^{-/-} mice after experimental fibrosis using surface markers CD71 and Ter119 (C). Frequencies of erythroid precursor cells are shown in bar graphs as mean ± SD (*n* = 3; D). (E and F) Representative dot plots of flow cytometric analysis of erythroid precursor cells are shown in bar graphs as mean ± SD (*n* = 3; F). (G and H) BM cells (10⁴; G) and spleen cells (10⁵; H) from EIIIA^{wt/wt}, EIIIA^{+/+}, and EIIIA^{-/-} mice after experimental fibrosis using surface markers CD71 and Ter119 (E). Frequencies of erythroid precursor cells are shown in bar graphs as mean ± SD (*n* = 3; F). (G and H) BM cells (10⁴; G) and spleen cells (10⁵; H) from EIIIA^{wt/wt}, EIIIA^{+/+}, and EIIIA^{-/-} mice after experimental fibrosis using surface markers CD71 and Ter119 (E). Frequencies of erythroid precursor cells are shown in bar graphs as mean ± SD (*n* = 3; F). (G and H) BM cells (10⁴; G) and spleen cells (10⁵; H) from EIIIA^{wt/wt}, EIIIA^{+/+}, and EIIIA^{-/-} mice after experimental fibrosis using surface markers CD71 and Ter119 (E). Frequencies of erythroid precursor cells are shown in bar graphs as mean ± SD (*n* = 3; F). (G and H) BM cells (10⁴; G) and spleen cells (10⁵; H) from EIIIA^{wt/wt}, EIIIA^{+/+}, and EIIIA^{-/-} mice (*n* = 4)

Figure S2. Effects of TLR4 inhibition on hematopoietic progenitors in mice. (A) Total numbers of LSK, LT-HSC, ST-HSC, MMP, CMP, GMP, and MEP cells in the spleens of saline-, TPO^{high}-, and TPO^{high} plus TAK-242-treated mice are shown in bar graphs as mean \pm SD (n = 3). *, P < 0.05; **, P < 0.001. (B and C) Representative dot plots of flow cytometric analysis of erythroid precursors in the BM of saline-, TPO^{high}-, and TPO^{high} plus TAK-242-treated mice using surface markers CD71 and Ter119 (B). Frequencies of erythroid precursor cells are shown in bar graphs as mean \pm SD (n = 3; C). (D and E) Representative dot plots of flow cytometric analysis of erythroid precursors in the BM of saline-, TPO^{high}-, and TPO^{high} plus TAK-242-treated mice using surface markers CD71 and Ter119 (D). Frequencies of erythroid precursor cells are shown in bar graphs as mean \pm SD (n = 3; E). (F and G) BM cells (10⁴; F) and spleen cells (10⁵; G) of saline-, TPO^{high}-, and TPO^{high} plus TAK-242-treated mice (n = 3) were plated in methylcellulose medium supplemented with cytokines. BFU-E, CFU-GM, and CFU-GEMM colonies were scored 7 d after plating. (H and I) Quantification of TNF- α (H) and IL-6 (n = 7; I) by ELISA in BM cell-free supernatants of wild-type, EIIIA^{+/+}, and EIIIA^{-/-} mice treated with saline or TPO. n = 7. *, P < 0.05.

Figure S3. **TAK-242 treatment ameliorates Mk hyperplasia and BM fibrosis in EIIIA**^{+/+} **mice while it has null effects in EIIIA**^{-/-} **mice. (A)** Schematic representation of in vivo strategy for TLR4 inhibition in EIIIA^{+/+} and EIIIA^{-/-} mice during experimental fibrosis. (B) Representative immunofluorescence staining of CD41 Mk's in BM sections of EIIIA^{+/+} and EIIIA^{-/-} mice treated with TPO plus vehicle or TPO plus TAK-242. Nuclei were stained with Hoechst 33258. Bar, 50 μ m. (C) Quantification of CD41⁺ Mk's per high power field (hpf) in BM sections of EIIIA^{+/+} and EIIIA^{-/-} mice treated with TPO plus vehicle or TPO plus TAK-242. Nuclei were stained with Hoechst 33258. Bar, 242. \geq 100 Mk's were randomly counted from five sections of three different mice per genotype in each experimental condition. ***, P < 0.001. (D) Representative Gomori staining in BM sections of EIIIA^{+/+} and EIIIA^{-/-} mice treated with TPO plus vehicle or TPO plus TAK-242. Bar, 50 μ m. Objective, 40×. (E) Assessment of reticulin deposition in EIIIA^{+/+} and EIIIA^{-/-} mice treated with TPO plus vehicle or TPO plus TAK-242. Ear, 50 μ m. Objective, 40×. (E) Assessment of reticulin deposition in EIIIA^{+/+} and EIIIA^{-/-} mice treated with TPO plus vehicle or TPO plus TAK-242. \geq 15 random images from BM diaphysis per mice, with three mice per treatment and genotype, were analyzed using ImageJ software. *, P < 0.05. (F) Schematic representation of in vivo strategy for TLR4 inhibition in TPO^{high} mice after the BM fibrosis is already established. (G and H) Representative Gomori staining (G) and assessment of reticulin deposition (H) in BM sections of TPO^{high} and TPO^{high} plus TAK-242-treated mice. Bar, 50 μ m. Objective, 40×. (I and J) Representative spleens (I) and spleen/body weight ratios (J) were calculated in TPO^{high} plus TAK-242-treated mice.

SJEM

Figure S4. **TLR4 deletion in vivo induces a modest thrombocytopenia but restrains EDA FN effects on hematopoietic progenitors after experimental fibrosis. (A)** PCR splicing assay of EDA FN in BM cells recovered from untreated wild-type (wt/wt) and $Tlr4^{-/-}$ mice. Real-time PCR products of TLR4 expression confirmed the targeted deletion of TLR4 in the knockout mice. β 2-microglobulin was amplified for sample normalization. **(B)** Real-time PCR analysis of FN, TLR2, and TLR9 expression relative to β 2-microglobulin in BM cells of wild-type and $Tlr4^{-/-}$ mice. n = 3. **(C and D)** Immunofluorescence of CD41⁺ Mk's in BM sections (C) and relative quantification (D) in untreated wild-type and $Tlr4^{-/-}$ mice. Bar, 50 µm. n = 6. Nuclei were stained with Hoechst 33258. **(E)** Peripheral platelet (PLT) counts in untreated wild-type and $Tlr4^{-/-}$ mice. n = 7. **(F and G)** Frequencies of erythroid progenitors in BM (F) and spleens (G) of wild-type and $Tlr4^{-/-}$ mice after experimental fibrosis. n = 3. **(H and I)** BM cells (10⁴; H) and spleen cells (10⁵; I) of wild-type and $Tlr4^{-/-}$ mice after experimental fibrosis (n = 3) were plated in methylcellulose medium supplemented with cytokines. BFU-E, CFU-GM, and CFU-GEMM colonies were scored 7 d after plating. *, P < 0.05; ***, P < 0.001.

Figure S5. **Establishment of the specific ELISA for quantification of EDA FN in plasma samples. (A)** Evaluation of different EDA FN standard concentrations (black circles) and exclusion of cross-reactions to pFN (red squares). **(B)** Exclusion of cross-reactions to different components of the ELISA setup (no detection antibody (Ab), blue histograms; no secondary antibody, red histograms; no tetramethylbenzidine (TMB) ELISA substrate, green histograms; no sample, yellow histograms).