

### Supplemental material

Koch et al., https://doi.org/10.1083/jcb.201808024

## **%JCB**



Figure S1. **Mps3 localization and its degradation. (A and B)** Protein half-life of Mps3. Yeast cells were grown to the exponential phase, then CHX was added to the culture medium. Cell aliquots were withdrawn at indicated times, and protein extracts were prepared for Western blotting. A polyclonal antibody against Mps3 and a V5 antibody were used to probe Mps3 and V5-Mps3. The V5 antibody only recognizes V5-Mps3. The level of Pgk1 serves as a loading control. Time zero is the point of CHX addition. The expression of *V5-MPS3* was under the control of the endogenous MPS3 promoter. Quantification of Mps3 protein abundance is shown in B (n = 5), with error bars representing the standard deviation. **(C-F)** Localization and stability of the N terminus of Mps3. A schematic representation of Mps3 protein domains and mutants is shown in C. TM, transmembrane domain. CHX experiment was performed as in A to determine protein stability (D and E). Quantification of protein abundance is shown in E (n = 3), with error bars representing the control of the endogenous MPS3 (1-150) were under the control of the endogenous MPS3 promoter. The expression of *GFP-MPS3*(1-150) was under the control of the galactose promoter (F). Note that GFP-Mps3(1-150) accumulates inside the yeast nucleus upon galactose induction (t = 180 min). **(G-I)** The N terminus regulates Mps3 stability. CHX experiment was performed as in A to determine protein stability (G and H). Quantification of protein abundance is shown in H (n = 4), with error bars representing the standard deviation. The galactose promoter was used to express *GFP-MPS3*( $\Delta 1-93$ ) as shown in I. Note that Mps3( $\Delta 1-93$ ) remains at the SPB (arrows) and the nuclear periphery, but is highly stable.







# **"JCB**



Figure S3. **Redundant destruction motifs located at the N terminus of Mps3. (A and B)** The effect of the KEN box on Mps3 protein stability. Yeast cells were prepared for CHX chase and analyzed as described in Fig. 1A. Quantification of Mps3 protein abundance is shown in B (n = 3), with error bars representing the standard deviation. **(C and D)** The effect of the putative D box on Mps3 protein stability. Quantification of Mps3 protein abundance is shown in D (n = 3), with error bars representing the standard deviation. **(E and F)** The KEN and D boxes are redundant in regulating Mps3 degradation. Quantification of Mps3 protein abundance is shown in F (n = 3), with error bars representing the standard deviation. **(G and H)** Phosphorylation at S70 plays a role in Mps3 stability. Quantification of Mps3 protein abundance is shown in H (n = 3), with error bars representing the standard deviation. **(I)** Overproduction of stabilized Mps3 causes cell lethality. Yeast cells were grown overnight in YPD liquid medium to reach saturation, 10-fold diluted, spotted onto SC plates with either 2% glucose or 2% galactose, and then incubated at 30°C for ~2 d. **(J)** Disruption of the KEN and D boxes within Mps3's N terminus results in a cell proliferation defect. Yeast cells were grown overnight in YPD liquid medium to reach saturation,  $\lambda = 600$  nm) of 0.2, and continued to grow with vigorous shaking at 30°C. Cell proliferation was determined by optical density every hour for 10 h. Error bars represent the standard deviation from three experimental trials. The expression of V5-MPS3 and mps3-3A2D both were under the control of the endogenous MPS3 promoter. Note that the proliferation of mps3-3A2D cells lags behind the wild-type and V5-MPS3 cells.





Figure S4. **Overexpression of mps3-3A2D leads to defective SPB separation. (A)** Protein level of Mps3-3A2D upon galactose induction of  $P_{GAL1}$ -mps3-3A2D. Yeast cells were grown in raffinose and arrested at G1 with  $\alpha$ -factor as shown in Fig. 6 I. To induce the *GAL1-10* promoter, galactose was added to the culture medium 30 min before the removal of  $\alpha$ -factor. Cell aliquots were withdrawn at the indicated times and prepared for Western blot. Time zero refers to the point of  $\alpha$ -factor removal. The level of Pgk1 serves as a loading control. **(B)** Representative images showing the localization of GFP-Mps3 and Tub4-mApple 180 min after galactose induction. Aliquots were withdrawn and prepared for live-cell fluorescence microscopy. Tub4-mApple marks the SPB. Four categories of SPB separation in large budded cells were classified, the first being normal SPB separation in which SPBs separated evenly, and the remaining three being types of defective SPB separation: unseparated SPBs (one Tub4-mApple spot), uneven separation of SPBs (two unequal Tub4-mApple spots), and more than two SPBs (more than 2 Tub4-mApple spots in a single cell).



| Table S1. | Genetic screen with targeted gene deletions of the ubiquitin |
|-----------|--------------------------------------------------------------|
| system    |                                                              |

| Systematic name | Standard name |
|-----------------|---------------|
| YAL002W         | VPS8          |
| YBL058W         | SHP1          |
| YBL104C         | SEA4          |
| YBR062C         | n/a           |
| YBR082C         | UBC4          |
| YBR114W         | RAD16         |
| YBR158W         | AMN1          |
| YBR203W         | COS111        |
| YBR273C         | UBX7          |
| YBR280C         | SAF1          |
| YCR059C         | YIH1          |
| YCR066W         | RAD18         |
| YDL013W         | SLX5          |
| YDL074C         | BRE1          |
| YDL091C         | UBX3          |
| YDL190C         | UFD2          |
| YDR049W         | VMS1          |
| YDR059C         | UBC5          |
| YDR069C         | DOA4          |
| YDR092W         | UBC13         |
| YDR103W         | STE5          |
| YDR128W         | MTC4          |
| YDR131C         | n/a           |
| YDR143C         | SAN1          |
| YDR152W         | GIR2          |
| YDR219C         | MFB1          |
| YDR255C         | RMD5          |
| YDR265W         | PEX10         |
| YDR266C         | HEL2          |
| YDR283C         | GCN2          |
| YDR306C         | n/a           |
| YDR313C         | PIB1          |
| YDR330W         | UBX5          |
| YDR457W         | TOM1          |
| YEL012W         | UBC8          |
| YER068W         | MOT2          |
| YER100W         | UBC6          |
| YER116C         | SLX8          |
| YGL003C         | CDH1          |
| YGL058W         | UBC2          |
| YGL131C         | SNT2          |
| YGL141W         | HUL5          |
| YGR003W         | CUL3          |



 Table S1.
 Genetic screen with targeted gene deletions of the ubiquitin system (Continued)

| Systematic name | Standard name |
|-----------------|---------------|
| YGR133W         | UBC10         |
| YGR184C         | UBR1          |
| YHL010C         | ETP1          |
| YHR115C         | DMA1          |
| YIL030C         | SSM4/DOA10    |
| YIL097W         | FYV10         |
| YJL047C         | RTT101        |
| YJL048C         | UBX6          |
| YJL149W         | DAS1          |
| YJL157C         | FAR1          |
| YJL204C         | RCY1          |
| YJL210W         | PEX2          |
| YJR036C         | HUL4          |
| YJR052W         | RAD7          |
| YJR090C         | GRR1          |
| YKL010C         | UFD4          |
| YKL034W         | TUL1          |
| YKL213C         | DOA1          |
| YKR017C         | HEL1          |
| YLR032W         | RAD5          |
| YLR097C         | HRT3          |
| YLR148W         | PEP3          |
| YLR224W         | UCC1          |
| YLR247C         | IRC20         |
| YLR306W         | UBC12         |
| YLR352W         | LUG1          |
| YLR368W         | MDM30         |
| YLR427W         | MAG2          |
| YML013W         | UBX2          |
| YML068W         | ITT1          |
| YML088W         | UF01          |
| YMR022W         | UBC7          |
| YMR026C         | PEX12         |
| YMR067C         | UBX4          |
| YMR119W         | ASI1          |
| YMR231W         | PEP5          |
| YMR247C         | RKR1          |
| YMR258C         | ROY1          |
| YNL008C         | ASI3          |
| YNL023C         | FAP1          |
| YNL116W         | DMA2          |
| YNL230C         | ELA1          |
| YNL311C         | SKP2          |



 Table S1.
 Genetic screen with targeted gene deletions of the ubiquitin system (Continued)

| Systematic name | Standard name |
|-----------------|---------------|
| YOL013C         | HRD1          |
| YOL054W         | PSH1          |
| YOL138C         | RTC1          |
| YOR080W         | DIA2          |
| YOR191W         | ULS1          |
| YOR339C         | UBC11         |
| YPR093C         | ASR1          |

n/a, not available.



#### Table S2. Yeast strains used in this study

| Strain    | Background | Genotype                                                                                                                                              | Experiment                                                                                         |
|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| BY4741    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0                                                                                                         | Parental strain                                                                                    |
| HY5850    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, V5-MPS3                                                                                                        | Figs. 1 A; 3, C–E and H; 4, and E; 5 B; 6, C, E,<br>and G; S1, A, C, and F; and S3, A, C, G, and J |
| HY6017    | S288C      | MATα, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0, V5-MPS3, cdc48Δ::KANMX6, pRS316-cdc48-6::<br>HIS3                                                               | Fig. 1 C                                                                                           |
| HY6102    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, V5-MPS3, pdr5Δ::NATMX6                                                                                         | Fig. 1 E                                                                                           |
| HY5854    | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, psi+, TOR1-1, fpr1::<br>NATMX6, RPN11-FRB-GFP::KANMX6, V5-MPS3                        | Fig. 2, B and E                                                                                    |
| HY5856    | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, psi+, TOR1-1, fpr1::<br>NATMX6, RPN11-FRB-GFP::KANMX6, RPL13A-2xFKBP12::TRP1, V5-MPS3 | Fig. 2, B and D                                                                                    |
| HY5855    | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, psi+, TOR1-1, fpr1::<br>NATMX6, RPN11-FRB-GFP::KANMX6, PMA1-2xFKBP12::TRP1, V5-MPS3   | Fig. 2, E and G                                                                                    |
| HY4671    | S288C      | MATα, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, ade2::P <sub>MFA1</sub> -HIS3, MPS3::P <sub>GAL1</sub> -<br>GFP-MPS3::LEU2                             | Fig. 3 A                                                                                           |
| HY4238    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, MPS3::P <sub>GAL1</sub> -GFP-MPS3::LEU2                                                                | Figs. 3 B; 5, A and G; 6 B; 7, F and J; and S3 I                                                   |
| HY5788    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, ubc6Δ::NATMX6                                                                                          | Fig. 3 B                                                                                           |
| HY6124    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, ubc6Δ::NATMX6, MPS3::P <sub>GAL1</sub> -<br>GFP-MPS3::LEU2                                             | Fig. 3 B                                                                                           |
| HY5064    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, ubc7Δ::KANMX6                                                                                          | Fig. 3 B                                                                                           |
| HY5122    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, ubc7Δ::KANMX6, MPS3::P <sub>GAL1</sub> -<br>GFP-MPS3::LEU2                                             | Fig. 3 B                                                                                           |
| HY5793    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, ubc6Δ::NATMX6, ubc7Δ::KANMX6                                                                           | Fig. 3 B                                                                                           |
| HY6013    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, ubc6Δ::NATMX6, ubc7Δ::KANMX6,<br>MPS3::P <sub>GAL1</sub> -GFP-MPS3::LEU2                               | Fig. 3 B                                                                                           |
| HY5662    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, doa4Δ::KANMX6, pRS202                                                                                  | Fig. 3 B                                                                                           |
| HY6239    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, doa4Δ::KANMX6, P <sub>CUP1</sub> -UBI4                                                                 | Fig. 3 B                                                                                           |
| HY5496    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, doa4Δ::KANMX6, MPS3::P <sub>GAL1</sub> -<br>GFP-MPS3::LEU2, pRS202                                     | Fig. 3 B                                                                                           |
| HY6237    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, doa4Δ::KANMX6, MPS3::P <sub>GAL1</sub> -<br>GFP-MPS3::LEU2, P <sub>CUP1</sub> -UBI4                    | Fig. 3 B                                                                                           |
| HY6022    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, ubc6Δ::NATMX6, V5-MPS3                                                                                 | Fig. 3 D                                                                                           |
| HY5963-2C | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, ubc7Δ::KANMX6, V5-MPS3                                                                                 | Fig. 3 C                                                                                           |
| HY6016    | S288C      | MATa, his3Δ200, leu2-3,112, trp1-1, lys2-801, ura3-52, ubc6Δ::NATMX6, ubc7Δ::KANMX6,<br>V5-MPS3                                                       | Fig. 3 E                                                                                           |
| HY6350    | W303       | MATa, his3Δ200, leu2-3,112, met15Δ0, lys2-801, trp1-1 ura3-52, gal2, ubc1Δ::HIS3,<br>V5-MPS3                                                          | Fig. 3 G                                                                                           |
| HY6056    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, ubc4Δ::KANMX6, V5-MPS3                                                                                 | Fig. 3 H                                                                                           |
| HY6057    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, hrdΔ1::KAN, V5-MPS3                                                                                    | Fig. 4 A                                                                                           |
| HY5907    | S288C      | MATα, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, doa10Δ::KANMX6, V5-MPS3                                                                                | Fig. 4 C                                                                                           |
| HY6015    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, asi3Δ::KANMX6, ERG11-3HA::HIS5,<br>V5-MPS3                                                             | Fig. 4 C                                                                                           |
| HY6082-8A | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, asi3Δ::KANMX6, doa10Δ::NATMX6,<br>hrd1Δ::KANMX6, ERG11-3HA::HIS5, V5-MPS3                              | Fig. 4 E                                                                                           |
| HY5047    | S288C      | MATα, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0, cdh1 $\Delta$ ::KANMX6                                                                                          | Figs. 5 A and 7 J                                                                                  |
| HY5068    | S288C      | MATα, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0, cdh1Δ::KANMX6, MPS3::P <sub>GAL1</sub> -GFP-MPS3::LEU2                                                          | Figs. 5 A and 7, F and J                                                                           |
| HY5901    | S288C      | MATa, his3 $\Delta$ 1, leu2 $\Delta$ 0, lys2 $\Delta$ 0, ura3 $\Delta$ 0, cdh1 $\Delta$ ::KAN, V5-MPS3                                                | Fig. 5 B                                                                                           |
| HY5905-3A | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, V5-MPS3                                                                               | Figs. 3 G and 5 E                                                                                  |
| HY5962-4B | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, V5-MPS3, cdc20-1                                                                      | Fig. 5 D                                                                                           |
| HY5905-2A | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, V5-MPS3, cdc16-1                                                                      | Fig. 5 E                                                                                           |



#### Table S2. Yeast strains used in this study (Continued)

| Strain    | Background | Genotype                                                                                                                         | Experiment                    |
|-----------|------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| JBY332    | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, cdc16-1                                                          | Figs. 5 G and 7 K             |
| HY6075    | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, MPS3::P <sub>GAL1</sub> -GFP-MPS3::<br>LEU2                      | Fig. 5 G                      |
| HY6076    | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, MPS3::P <sub>GAL1</sub> -GFP-MPS3::<br>LEU2, cdc16-1             | Fig. 5 G                      |
| HY6309    | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, V5-MPS3, cdc14-1                                                 | Fig. 5 H                      |
| HY6135-1A | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, V5-MPS3, cdc15-2                                                 | Fig. 5 H                      |
| HY4358    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, MPS3::P <sub>GAL1</sub> -GFP-mps3-S70A::LEU2                                      | Figs. 6 C and S3 I            |
| HY5349    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, MPS3::P <sub>GAL1</sub> -GFP-mps3-S70D::LEU2                                      | Figs. 6 C and S3 I            |
| HY6095    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, MPS3::P <sub>GAL1</sub> -GFP-mps3-3A2D::LEU2                                      | Figs. 6 C and S3 I            |
| HY4456    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, MPS3::P <sub>GAL1</sub> -GFP-mps3-NC::LEU2                                        | Figs. 6 C and S3 I            |
| HY6060    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, V5-mps3-3A2D                                                                              | Figs. 6 C and S3, E and J     |
| HY5851    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, V5-mps3-NC                                                                                | Fig. 6 E                      |
| HY6059    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, V5-mps3-S70A                                                                              | Fig. 6 G                      |
| HY6197    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, Tub4-mApple::HIS5, MPS3::P <sub>GAL1</sub> -<br>GFP-mps3-3A2D::LEU2               | Figs. 6, I–K; and S4, A and B |
| HY5310    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, HEH2::P <sub>GAL1</sub> -GFP-HEH2::LEU2                                           | Fig. 7, B and J               |
| HY5513    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, cdh1Δ::KANMX6, HEH2::P <sub>GAL1</sub> -<br>GFP-HEH2::LEU2                        | Fig. 7 J                      |
| HY6116    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, HEH2::P <sub>GAL1</sub> -GFP-mps3(1-94)-HEH2::<br>LEU2                            | Fig. 7, B, D, and J           |
| HY6155-1A | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, cdh1Δ::KANMX6, HEH2::P <sub>GAL1</sub> -GFP-mps3<br>(1-94)-HEH2::LEU2             | Fig. 7, D and J               |
| HY6221    | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, HEH2::P <sub>GAL1</sub> - GFP-mps3<br>(1-94)-HEH2::LEU2, cdc16-1 | Fig. 7, H and K               |
| HY6220    | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, HEH2::P <sub>GAL1</sub> - GFP-mps3<br>(1-94)-HEH2::LEU2          | Fig. 7 K                      |
| HY6238    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, V5-mps3-150::URA3                                                                 | Fig. S1 C                     |
| HY6336    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, P <sub>GAL1</sub> -GFP-mps3-150::URA3                                             | Fig. S1 E                     |
| HY5814    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, V5-mps3(Δ1-93)                                                                            | Fig. S1 F                     |
| HY5614-A  | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, MPS3::P <sub>GAL1</sub> -GFP-mps3(Δ1-93)::LEU2                                    | Fig. S1 H                     |
| HY5936    | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, ASI1-V5::HIS5                                                    | Fig. S2 D                     |
| HY6047-1D | W303       | MATa, ura3-1, his3-11,15, leu2-3,112, trp1-1, ade2-1, can1-100, ASI1-V5::HIS5, cdc16-1                                           | Fig. S2 D                     |
| HY5932    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, ASI1-V5::HIS5                                                                             | Fig. S2 B                     |
| HY5961-5D | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, ASI1-V5::HIS5, cdh1Δ::KAN                                                                 | Fig. S2 B                     |
| HY5678    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, ERG11-3HA::HIS5                                                                   | Figs. 4 E and S2 A            |
| HY6153-2D | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, ERG11-3HA::HIS5, cdh1Δ::KAN                                                       | Fig. S2 A                     |
| HY6179    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, V5-mps3-3A                                                                                | Fig. S3 A                     |
| HY6178    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, V5-mps3-2D                                                                                | Fig. S3, C and E              |
| HY6211    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, V5-mps3-S70D                                                                              | Fig. S2 G                     |
| HY6177    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, MPS3::P <sub>GAL1</sub> -GFP-mps3-2D::LEU2                                        | Fig. S2 I                     |
| HY6138    | S288C      | MATa, his3Δ1, leu2Δ0, met15Δ0, lys2Δ0, ura3Δ0, MPS3::P <sub>GAL1</sub> -GFP-mps3-3A::LEU2                                        | Fig. S2 I                     |

#### Table S3. Plasmids used in this study

| Plasmid name | Construct feature                            |
|--------------|----------------------------------------------|
| pHG553       | P <sub>MPS3</sub> -V5-MPS3, URA3             |
| pHG323       | P <sub>GAL1</sub> -GFP-MPS3, LEU2            |
| pRS202       | 2µ, URA3                                     |
| pHG638       | P <sub>CUP1</sub> -6xHIS-UBI4, URA3          |
| pHG607       | P <sub>MPS3</sub> -V5-mps3-S70A, URA3        |
| pHG358       | P <sub>GAL1</sub> -GFP-mps3-S70A, LEU2       |
| pHG608       | P <sub>MPS3</sub> -V5-mps3-S70D, URA3        |
| pHG376       | P <sub>GAL1</sub> -GFP-mps3-S70D, LEU2       |
| pHG609       | P <sub>MPS3</sub> -V5-mps3-3A2D, URA3        |
| pHG616       | P <sub>GAL1</sub> -GFP-mps3-3A2D, LEU2       |
| pHG557       | P <sub>MPS3</sub> -V5-mps3-nc, URA3          |
| pHG348       | P <sub>GAL1</sub> -GFP-mps3-nc, LEU2         |
| pHG623       | P <sub>MPS3</sub> -V5-mps3-3A, URA3          |
| pHG628       | P <sub>GAL1</sub> -GFP-mps3-3A, LEU2         |
| pHG655       | P <sub>MPS3</sub> -V5-mps3-2D, URA3          |
| pHG644       | P <sub>GAL1</sub> -GFP-mps3-2D, LEU2         |
| pHG558       | P <sub>MPS3</sub> -V5-mps3(Δ1-93), URA3      |
| pHG446       | P <sub>GAL1</sub> -GFP- mps3(Δ1-93), LEU2    |
| pRT1166      | cdc48-6, HIS3                                |
| pHG572       | P <sub>GAL1</sub> -GFP-MPS3(1-94)-HEH2, LEU2 |
| pHG479       | P <sub>GAL1</sub> -GFP-HEH2, LEU2            |
| pHG634       | P <sub>MPS3</sub> -V5-mps3-150, URA3         |
| pHG687       | P <sub>GAL1</sub> -GFP-mps3-150, URA3        |

#### Table S4. Primers used in this study

| Primer name     | Sequence information (5' to 3')                                       |
|-----------------|-----------------------------------------------------------------------|
| CDC48-colonyF   | TGGGTGTGTTTGCTTCCATT                                                  |
| CDC48-colonyR   | ATGTCGAAATTATGCCTGGC                                                  |
| PDR5-deletionF  | CCGAGGCCAAGCTTAACGATAACGTCAACGACGTTACTAGCTCAGGGGCATGATGTGACT          |
| PDR5-deletionR  | CACTACGTTCCCCAACGTTTTCGGGGTCATTTGCATTCTTTTCAGTTAGCTCGTTTTCGACACTGGAT  |
| UBC6-deletionF  | TAGTAATGGCTACAAAGCAGGCTCACAAGAGATTGACGAAAGAGTCAGGGGCATGATGTGACT       |
| UBC6-deletionR  | CATTTCATAAAAAGGCCAACCAAAAAACAAAAAAAAAGGGATAGCTCGTTTTCGACACTGGAT       |
| UBC7-colonyF    | CGATGCACACGCATATTTGTT                                                 |
| UBC7-colonyR    | TTGGCCACAGAAAATTTGAGG                                                 |
| DOA10-deletionF | TGCATAAGGTGGCAAACGAGGAAACAGATACCGCCACTTTCAGGGGGCATGATGTGACT           |
| DOA10-deletionR | GAACCATTGAATGAACAGCACAGTTGCTTGGAAAAAGAACGTGCTCGTTTTCGACACTGGAT        |
| ERG11-tagF      | CAAGATCATCTGGGAAAAGAGAAATCCAGAACAAAAGATCGCGGCCGCTCTAGAACTAGT          |
| ERG11-tagR      | GTACAACTTCTCTCTTTTTCTGTTTTTTTTTTTTTCTCAGTTACAAACCCCCTCGAGGTCGACGGTA   |
| CDH1-deletionF  | TCCACAAACCTGAACCCATTCATGAATAATACGCCTTCCTCCTCCCCACTCAGGGGCATGATGTGACT  |
| CDH1-deletionR  | CCAATATCGCAATGTTTCATCTCCAGCCCCAGAAACCACCGTGGTTCCAGCTCGTTTTCGACACTGGAT |
| ASI1-tagF       | AGTAAAGTTCATGGGTACTGTAAGGTTCATCCTGTTTCAGATAGTAAAGCGGCCGCTCTAGAACTAGT  |
| ASI1-tagR       | CTCCCAAACGAAAAACCTCTTTTAGATACCATGCAAAAGTTCTTAAACCCCCTCGAGGTCGACGGTA   |