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The Effect of Cortical Elasticity and Active Tension
on Cell Adhesion Mechanics
Bart Smeets,1,* Maxim Cuvelier,1 Jiri Pe�sek,1 and Herman Ramon1
1MeBioS, KU Leuven, Heverlee, Belgium
ABSTRACT We consider a cell as an elastic, contractile shell surrounding a liquid incompressible cytoplasm and with nonspe-
cific adhesion. We perform numerical simulations of this model to study the mechanics of cell-cell separation. By variation of pa-
rameters, we are able to recover well-known limits of the Johnson-Kendall-Roberts theory, the Derjaguin-Muller-Toporov model,
adhesive vesicles with surface tension (Brochard-Wyart and de Gennes derivation), and thin elastic shells. We further locate
biological cells on this parameter space by comparison to existing experiments on S180 cells. Using this model, we show that
mechanical parameters can be obtained that are consistent with both dual pipette aspiration and micropipette aspiration, a prob-
lem not successfully tackled so far. We estimate a cortex elastic modulus of Ec z 15 kPa, an effective cortex thickness of tc z
0.3 mm, and an active tension of g z 0.4 nN/mm. With these parameters, a Johnson-Kendall-Roberts-like scaling of the separa-
tion force is recovered. Finally, the change of contact radius with applied force in a pull-off experiment was investigated. For small
forces, a scaling similar to both the Brochard-Wyart and de Gennes derivation and the Derjaguin-Muller-Toporov model is found.
INTRODUCTION
The mechanical response of a cell to deformation arises
from the properties of the underlying cytoskeleton. The
intricate dynamic structure and active nature of the actomy-
osin cortex produce complex time-dependent behavior,
including a power-law-creep response (1) and nonlinear
soft glassy rheology (2). This complicates mechanical mea-
surements on cells because the parameterization of experi-
mental results is often not invariant with respect to the
conditions of the experiment. Still, simplified mechanical
models may be adopted in the relevant spatiotemporal limits
(3). For example, at long timescales, cells behave as Newto-
nian liquid drops under surface tension—‘‘cortical shell-
liquid core’’ model (4,5)—whereas at short timescales and
small deformations, the cell is elastic—‘‘solid elastic
sphere’’ model—with a characteristic Hertzian force upon
indentation (6).

When applying these limits to micropipette aspiration
(MA) experiments, the cell’s resistance to deformation is
expressed either as a cortex tension or as a solid cell Young’s
modulus Ecell. Extending from this, Chu et al. used dual
pipette aspiration (DPA) experiments in controlled adhesion
conditions to demonstrate how cell-cell pull-off forces
compare to various limiting continuum theories, thereby
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indirectly probing the mechanical properties of suspension
cells (7). For the cortical shell-liquid core model, the pull-
off force required to separate two droplets with net adhesion
energy w was derived by Brochard-Wyart and de Gennes

(BWdG) as Fs ¼ pbRw (8), with bR ¼ R1R2=ðR1 þ R2Þ. For
solid elastic spheres, Johnson-Kendall-Roberts (JKR) the-
ory predicts the pull-off force in the limit of short range of

adhesive interaction and soft spheres as Fs ¼ 3=2pbRw (9).
In the opposite limit of stiff spheres with a large adhesive
range, the model of Derjaguin-Muller-Toporov (DMT) pre-

dicts a pull-off force Fs ¼ 2pbRw (10,11). For S180 cells, it

was found that the pull-off force scales as Fs � 3
2
pbRw,

consistent with the JKR model for adhesion between solid
elastic asperities but not with the BWdG expression for ad-
hesive droplets with surface tension (7). This suggests that a
solid elastic model is an appropriate description of the cell
in these conditions (suspension, short timescale). Yet, there
is an apparent mismatch between the elastic modulus esti-
mated from such a pull-off experiment using JKR theory
and the Young’s modulus obtained from a simple single-
cell aspiration experiment (12). For example, on S180
murine sarcoma cells, a Young’s modulus (only the

composed modulus bEcell ¼ Ecell=½2ð1� n2cellÞ� can be esti-
mated this way) Ecell > 1 kPa is obtained from applying
JKR theory to a DPA experiment (7), whereas single-cell
aspiration tests (MA) on the same cell line yield a much

mailto:bart.smeets@kuleuven.be
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2019.01.015&domain=pdf
https://doi.org/10.1016/j.bpj.2019.01.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIGURE 1 Schematic representation of a doublet of adhering cells: the

cell’s cortex with thickness tc has passive elastic properties (Young’s

modulus Ec, Poisson ratio vc, and viscosity hc) and an active contractile

tension g. Volume is maintained through a bulk modulus K, and adhesion

energy w drives the formation of initial cell-cell contacts. To see this figure

in color, go online.
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lower modulus of Ecell z 100 Pa (12), even though both
experiments are performed in similar conditions and at
comparable timescales (seconds). (A value of Ecell z
100 Pa is obtained when applying the analysis for elastic
spheres (4) to the critical pressure that corresponds to the
net tension of 0.9 nN/mm that was reported in (12). Note
that only the order-of-magnitude of Ecell suffices for the
argument provided.)

One obvious explanation is that the mechanical rigidity of
a suspension cell is mostly concentrated in an elastic cortical
shell rather than uniformly distributed throughout the cell.
Thin elastic shell models have been frequently applied to
cells, e.g., for analyzing the shape of blebbing (13), bulging
(5), or dividing cells (14). For adhering curved elastic shells,
an expression for the pull-off force as a function of Young’s
modulus Ec, Poisson number vc, and thickness tc has been
derived in (15): �

Fs

P�
�3

¼ w4bR4�
1� n2c

�
Ect2c

: (1)

P* is a dimensionless scaling factor that depends on the
load conditions—for fixed load, P* z 13.2 (15). When
applying this equation to cells, Ec refers to the Young’s
modulus of the thin actin cortex that surrounds the cytosolic
interior. A typical cell’s actomyosin cortex has a thickness
of roughly 200 nm and a Young’s modulus on the order of
10 kPa (16). Within this range of properties and for a char-
acteristic adhesion energy of wz 1 nN/mm and a cell size ofbRz 5 mm, it can be verified using Eq. 1 that for a shell, the
pull-off force Fs [ 2pbRw, i.e., much greater than what was
measured in (7). In other words, although the cell’s cyto-
skeletal structure resembles a thin shell, it behaves more
like a solid elastic asperity during pull-off.

This discrepancy could be attributed to the highly
nonlinear and anisotropic behavior of the cortical actomy-
osin and microtubule network (17,18). As such, its ‘‘effec-
tive’’ mechanical thickness would be significantly higher
than the thickness measured using optical methods
(16,19,20). This explanation is in line with observations of
cortical rheology at long timescales, at which a considerably
elevated effective thickness is required to recover the rate of
cell spreading using a simple Newtonian liquid model (21).

A second possible explanation lies in the active nature of
the cortex: contractility induced by myosin II motors gener-
ates an active tension (g), which counterbalances adhesion
and thereby assists in the separation of two cells. For mature
intercellular junctions, it has been shown that even the local
regulation of contractility at the cell-cell interface rather
than adhesion itself controls the extent of contact expansion.
Then, the role of adhesion molecules is restricted to the me-
chanical anchoring of the cortex (5). Although this local
regulation of cortical tension is unlikely to affect adhesive
behavior in controlled adhesion experiments at very short
timescales (seconds), the total (uniform) cortical tension is
likely to play a major role in a pull-off experiment. It should
be noted here that this active tension is not the same as the
surface tension often reported from mechanical tests
(4,12,16), in which a liquid model is used that assumes
that no elastic stresses are present. This assumption can be
valid at long timescales, when remodeling of the cortex
effectively relaxes all elastic stresses. In the absence of
this relaxation, these two quantities would only coincide
in the limit of a soft/thin cortex (see further).

Here, we propose a numerical model that tries to recon-
cile the aforementioned observations, describing adhesive
contact between cells as a function of the elastic properties
of the cell’s acto-myosin cortex and its active contractility.
Cells are represented as spherical elastic shells that maintain
internal volume and for which adhesive/repulsive contact is
described using a Dugdale approach (22). Active contrac-
tility is explicitly introduced through a contractile tension
and acts similarly to an additional surface tension (see
Fig. 1). Using this model, we show how different scaling
laws for a pull-off experiment can be recovered by changing
the stiffness Ec, effective thickness tc, and the active tension
g of the cortex. Next, in a case study on S180 suspension
cells, we demonstrate how JKR-like behavior can be
recovered during pull-off while remaining consistent to
single-cell MA experiments. Doing so allows us to estimate
the (instantaneous) mechanical properties of the S180 cell
cortex.
METHODS

Computational model

We introduce a dynamical model that represents the cells as a triangulated

spherical shell. This shell represents the cortex-membrane complex,

wherein the actin cortex accounts for the majority of its mechanical rigidity

(13), see Fig. 1. Overdamped equations of motion L x ¼ F are solved to

obtain the positions x, representing the nodes from a triangulated shell.

Viscous (velocity-dependent) forces are represented in the resistance matrix

L, whereas all other forces are assembled on the right-hand side in F. A

shell model for linear viscoelasticity (Young’s modulus Ec, Poisson number
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vc, thickness tc, and viscosity hc) is implemented in a spring-damper

network (see Supporting Materials and Methods, Section 1), in which for

simplicity we have assumed that vc ¼ 1/3 (the Poisson’s ratio of a two-

dimensional isotropic system is 1/3 if the constituents (nodes) interact

with central forces that depend on distance alone (23)). To introduce active

tension g and conservation of volume with bulk modulus K, a local outward

pressure is computed as

pðxÞ ¼ 2g

�
1

R
� 1

rcðxÞ
�
� K

V � V�

V� ; (2)

for a cell with radius R, volume V, and initial volume V*. rc(x) is the local

mean radius of curvature on the cell surface at position~x. We assume cell

volume changes are negligible at the relevant timescale (13) and set K ¼
30 kPa, a value sufficiently high to prevent significant changes of cell vol-

ume during MA and DPA simulations—see Fig. S7. The cell’s surface is

decorated with nonspecific stickers, which are assumed to be fixed and uni-

formly distributed on the cell and equal for both cells, leading to a work of

interaction w ¼ w1 þ w2.

We aim to describe adhesive behavior in a wide range of cortical thick-

ness. For larger tc and low Ec, the normal (radial) elastic deformation of the

cortex cannot be neglected anymore. Therefore, we use a modified Maugis-

Dugdale contact model (22) that formulates a Hertzian repulsive pressure

based on the contact stiffness, an adhesive traction based on the adhesion

energy w, and an effective range of interaction h0. For solid elastic spheres,

the latter parameter captures the transition between the JKR (low h0)

and the (DMT) limit (high h0)—for an in-depth review, see (11). For cells,

the effective adhesive range is typically small and well in the JKR zone, and

we set h0 ¼ 50 nm (24). Because the Hertzian repulsive model is valid for

a ‘‘solid’’ elastic asperity, a requirement of this contact model is that the

normal elastic compression of the cortex is small compared to its thickness.

A discussion on the limitations of this model is provided in the Conclusions,

and a detailed description of the full computational methodology is

presented in the Supporting Materials and Methods, Sections 1 and 2.
Simulation setup

Setups are created for numerical simulation of two mechanical tests: MA

and DPA. For MA, we include an idealized pipette with a tip of toroidal

shape of inner radius Rp ¼ 3.5 mm (12)—see Fig. 2 a and Supporting Ma-

terials and Methods. Within the pipette, an aspiration pressure Pa is applied

normal to the cell surface. For DPA, we first let two cells freely adhere until
FIGURE 2 Visualization of simulation setups for MA and DPA experiments.

micropipette of radius Rp (top). The pressure is gradually increased (bottom) unti

critical pressure Pc. (b) Simulation of cell-cell adhesion. Two cells are brought i

lation of DPA experiment, starting from a doublet of adhering cells. A pulling

separation occurs (bottom). At this point, the pulling force is registered as the s
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their contact area reaches a steady value—Fig. 2 b. Next, a pulling force is

distributed—see Supporting Materials and Methods—to the nodes of both

cells (�Fp and Fp). We record the contact radius Rc while the pulling force

is gradually increased until the cells suddenly lose contact—Fig. 2 c. The

force at which this occurs is registered as the separation force Fs. Further

details and numerical considerations of the simulation setup are provided

in the Supporting Materials and Methods.
RESULTS

Pull-off force in cell model

First, we show in general how the separation force depends
on the mechanical properties of the cell’s cortex. For this, we

define a dimensionless thickness as k :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibE=ðbRwÞq

tc. This

chosen normalization is a ‘‘rigidity’’ measure that ensures

that a unique normalized separation force Fs :¼ Fs=pbRw
is found for the limits of BWdG (Fs ¼ 1), JKR (Fs ¼
3=2), DMT (Fs ¼ 2), and shells—Eq. 1—upon change
of k. Here, we are mainly interested in the role of the effec-
tive cortical thickness tc and active tension g.

Fig. 3 shows Fs as a function of k by varying tc for a simu-
lated DPA experiment. Traversing from high k (right) to
low k (left), four regions of distinct behavior can be recog-
nized in these curves: 1) at high k or for contact radius
Rc � tc, adhesion is dominated by localized elastic defor-
mation normal to the contact plane. Here, solid-sphere
Maugis-Dugdale adhesion is recovered, and Fs will range
from the JKR to the DMT limit; 2) for lower k, or
tc � Rc � bR, the contribution of bending resistance is
dominant (bending rigidity kb � t3c ). This resistance to cur-
vature change is similar to surface tension: the BWdG limit
Fs ¼ 1 is approached; 3) as k decreases, a sharp increase in
Fs is observed, similar to shell theory. The adhesion energy
is balanced by in-plane elastic energy distributed over the
complete cortex; 4) at very low k, the complete cortex is
(a) Simulation of MA experiment. An underpressure DP is applied within a

l the aspirated length DL¼ Rp. At this point, the pressure is registered as the

n close proximity (top) and allowed to naturally adhere (bottom). (c) Simu-

force Fp is applied on the cells (top) and gradually increased until rapid

eparation force Fs. To see this figure in color, go online.



FIGURE 3 Normalized pull-off force Fs=pbRw as a function of dimen-

sionless thickness k for varying active tension g. The simulations were ob-

tained by varying thickness tc while bR ¼ 5 mm, E¼ 25 kPa, and w ¼ 0.25 n

N/mm. For reference, the pull-off force from JKR, DMT, BWdG, and shell

theory is shown for these parameters. To see this figure in color, go online.
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under high strain, and shell theory breaks down. A maximal
contact radius Rc on the order of bR is reached, and volume
conservation (bulk modulus K) limits further deformation. A
plateau is observed at large values of Fs. It should be noted
that the proposed computational description becomes
invalid at both extremes of k. At very large k, the thin-shell
assumption of cortex elasticity breaks down. At low k, in-
dentations will become large compared to thickness, and
the assumptions of our adhesion model break down.
Although this can be safely mitigated by replacing the
normal contact stiffness with a sufficiently stiff constraint,
the system becomes prone to buckling instabilities in the
absence of active tension. Unsurprisingly, the role of active
tension g is mainly significant at small values of k, at which
it reduces Fs toward the JKR-DMT zone. Given what we
know about typical mammalian cells (see Introduction),
a b

ples in this surface for which simulations of DPA were performed. The color s

of w ¼ 0.5 n N/mm. The overlaid rectangular lattice depicts the grid in which M
we expect k to be small, even if an ‘‘effective’’ thickness
would be much greater than the optical thickness. In this
case, a significant cortical tension is required for a pull-off
force to be in the JKR-DMT zone, 3=2%Fs%2.
Case study on S180 cells

We try to locate cells in this general framework by consid-
ering S180 cells, a mechanically very well-investigated
cell line. In Chu et al. (7), pull-off forces were measured
using DPA in controlled adhesion experiments. We have
replotted these results in Fig. 4 a. A scaling of Fs in the re-
gion of the JKR and DMT limits can be observed, with an
average Fsz1:75 in the sampled region of w. In our model,
such a scaling could be obtained for many possible combi-
nations of Ec, tc, and g. To restrict the parameter space to
realistic cell properties, we first compare our results to
separate MA experiments on the same cell line. In Engl
et al. (12), a (liquid model) mean cortical tension of
0.9 n N/mm was found (this value of 0.9 n N/mm already
gives an upper limit for estimates of the active tension g

that should be approached in the limit of a soft and thin
elastic shell) from MA on S180 cells, which corresponds
to a critical pressure Pc z 250 Pa. We sampled combina-
tions of Ec, tc, and g in a full factorial 15 � 15 � 15 grid
and performed MA simulations to compute the critical
pressure (see Supporting Materials and Methods, Sec-
tion 2). From this, an isosurface was extracted that repre-
sents all parameter combinations, yielding a critical
pressure of 250 Pa—Fig. 4 b. Subsequently, we resampled
points in a regular distribution on this isosurface. Each of
these points represents a combination of Ec, tc, and g that
resembles the mechanical behavior of an (average) S180
cell in an MA experiment.

Finally, we performed simulations of DPA on these new
samples at an intermediate w ¼ 0.5 n N/mm and registered
Fs. The result of this can be seen in Fig. 4 b. The lower
values of 1:5%Fs%2 observed in (7) occur only at lower
Ec, when additional resistance to deformation is offered
by either bending rigidity (at higher tc) or active tension
FIGURE 4 (a) Normalized DPA pull-off force

Fs=pbRw as a function of dextran-depletion-induced

adhesion w between S180 cells, replotted from

Fig. 2 in Chu et al. (7) (red diamonds), together

with simulated DPA experiment at Ec ¼ 15 kPa,

tc ¼ 0.3 mm, and g ¼ 0.4 n N/mm, as consistent

with MA data (blue circles). Error bars indicate

the experimental SD. Guide-lines with BWdG,

JKR, and DMT limits are provided as indication.

We have assumed R ¼ 6 mm. (b) Parameter space

of Ec, tc, and g, with an isosurface obtained from

simulations of MA on S180 cells, which delimits

all parameter combinations for which the experi-

mentally observed critical pressure Pc ¼ 250 Pa

(12) is attained. Colored dots represent new sam-

cale indicates the value of Fs ¼ Fs=pbRw obtained for an adhesion energy

A simulations were performed. To see this figure in color, go online.
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g. This confirms our hypothesis that either the presence of
active tension or a larger ‘‘effective thickness’’ is required
to explain the adhesive behavior of cells. Moreover, it can
be observed that a manyfold increase of tc is required to
have the same effect as a moderate active tension. Under
the assumption that the apparent increase in tc is moderate,
tc¼ 0.3 mm, we estimate for S180 cells that gz 0.4 n N/mm
and Ec z 15 kPa. The full parameter set of estimated prop-
erties is listed in Table 1. It should be stressed that the goal
of this work is not to determine the mechanical properties of
S180 cells but rather to demonstrate a quantitative relation-
ship obtained between Ec, tc, and g and provide an estimate
for the range of possible parameters.

We performed simulations of DPA with the parameters
from Table 1 for varying adhesion energy and overlay the

resulting Fs with experimental values from (7)—see Fig. 4
a. A reasonable agreement is found between simulation

and experiment, and in both cases, a small decrease of Fs

with w is observed, with Fsz2 for small w and Fsz3=2
for larger w. This trend is similar to the transition observed
for solid elastic spheres: w affects the Tabor parameter

m ¼ bR1=3
w2=3 bE�2=3

z�1
0 (with effective range of interaction

h0z 0.97z0) (11) that describes the transition between JKR-
like and DMT-like adhesion. Although we were not able to
formulate a similar universal transition parameter for our
more complex modeled system, the underlying mechanisms
can be similar: at low w, h0 is large compared to the contact
radius, and the region of adhesive traction is affected little
by elastic deformation (DMT assumption). At large w, the
elastic deformation is much greater than h0 and fully deter-
mines the adhesive region (JKR assumption).

To further verify the obtained estimates of the mechanical
properties of S180 cells, we compare them to a third, separate
experimental method. Al-Kilani et al. (25) studied the stiff-
ness of cell-bead contacts for spread S180 cells on adhesive
patches of various size using an optical trap. For small patch
sizes (<2R), the spread cell remains reasonably rounded, and
the conditions are comparable to the suspension setting of the
MA and DPA experiments. An adhesive bead of diameter 3.6
mm, maintained in an optical trap, was laterally attached to
the spread cell. Next, a force Fapp was applied to the bead
by moving the stage in the optical trap. An apparent Young’s
modulus of the cell was computed as
TABLE 1 Table of Numerically Estimated Mechanical

Properties of S180 Cells That Is Consistent with MA and DPA

Experiments

Parameter Symbol Value Unit Derived from

Cortex stiffness Ec 15 kPa MA þ DPA (7,12)

Poisson’s ratio cortex vc 1/3 – assumed

Thickness cortex tc 0.3 mm (16,19–21), Fig. 4

Active tension g 0.4 nN/mm MA þ DPA (7,12)

Bulk modulus cell K 30 kPa assumed, Fig. S7

Cell radius R 6 mm (7,25,36)

Adhesive range h0 50 nm (24)

934 Biophysical Journal 116, 930–937, March 5, 2019
Eapp ¼ 3

4

Fapp

2ac xc
; (3)

with ac the cell-bead contact radius and xc the observed

bead displacement. For mature adhesion between cell and
bead (adhesion time more than 15 min), they obtained
Eapp z 600 5 140 Pa. Using the estimated mechanical
properties of S180 cells (Table 1), we replicated this setup
in our model for the smallest patch size L ¼ 10 mm—Fig. 5
a. The cell-bead adhesion energy was tuned wcb ¼ 0.517
nN/mm to match the experimentally observed contact
radius ac z 1.59 mm—see Fig. 5 b, inset. We then
measured the ratio DFapp/Dxc for small pulling forces
and obtained Eapp z 688.4 Pa using Eq. 3—Fig. 5 b.
This value is in line with the experimental value for mature
adhesions. For immature adhesions, lower values of Eapp

were reported in (25). In their study, this was attributed
FIGURE 5 Simulation of optical tweezers experiment. Top: a visualiza-

tion of simulation of optical trap experiment based on (25). A cell is

allowed to adhere on a square adhesive pattern (green) to obtain a controlled

spread size. Then, a spherical adhesive bead adheres to the cell until contact

radius ac is attained (left). Next, an external force Fapp is applied to the bead,

and its displacement xc is recorded (right). Bottom: apparent Young’s

modulus computed as Eapp ¼ 3Fapp(8acxc) in function of the cell radius

for a cell with the estimated mechanical properties of an S180 cell (Table

1). Error bars indicate the SD across independent rotations of the cell. Inset:

calibration of cell-bead adhesion energy wcb ¼ 0.517 nN/mm using the

contact radius ac . The dotted line indicates the experimentally observed

contact radius. The shaded region indicates the SD across independent

rotations of the cell. To see this figure in color, go online.
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to the lowered rigidity of the still-immature adhesion com-
plexes themselves, which unravel upon application of ten-
sile force. Because we considered the contacts nearly rigid
(Ec [Eapp), our estimated apparent stiffness could be
considered an upper limit of the combined cytoskeleton-
adhesion complex system.
Contact radius

For the parameters in Table 1 and w ¼ 0.6 nN/mm (hence,
kz 0.87), we investigate in detail the change of contact
radius Rc with increase of the applied pulling force F in a
DPA experiment. For solid elastic spheres, the contact
radius depends on the elastic modulus bEcell. For DMT and
JKR, the cube of the contact radius is given by

R3
c;DMT ¼ 3bR

4bEcell

�
2pbRw� F

�
; (4)

R3 ¼ 3bR �
3pbRwþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6pbRwFþ �

3pbRw�2q
� F

�
:
c;JKR

4bEcell

(5)

Further, we will define the relative contact radius j: ¼
Rc/R. For the BWdG model for adhesive vesicles with sur-
face tension, the relationship between applied pull force
and contact radius is nontrivial and is expressed in function
of the deformed apex radius Ra (8) with j0: ¼ Rc/Ra:

F ¼ pRaj
0

1� j02

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wð4g� wÞ

p
� 2gj0

�
: (6)

Fig. 6 shows j and j0 as a function of F for a simulated
cell, compared to the theoretical predictions of DMT, JKR,
and BWdG. For DMT and JKR, we expect the change of
a b

FIGURE 6 Normalized contact radii j and j0 as a function of normalized appl

in Table 1) and for w¼ 0.6 nN/mm, compared to (a) DMT, (b) JKR, and (c) BWd

Dashed lines indicate where contact is not stable and rupture of the cell doublet w

DMT: bEcell (Pa) ˛ {100, 200, 300, 400, 500}; for JKR: bEcell (Pa) ˛ {400, 600, 80

this figure in color, go online.
apical radius to be small, so approximate Ra z R, hence
j0 z j. From this comparison, we list the following
observations:

1) Pull-off force is close to the JKR limit. The maximal
contact radius at R ¼ 0 corresponds to an apparent
elastic modulus—obtained from Eq. 5—bEcellz 600
Pa. However, the change of contact radius with force
does not follow JKR theory. The dependency of the
effective bEcell on g is further shown in Fig. S4.

2) Rupture occurs at much higher tensile loading than for
ideal adhesive vesicles with surface tension (BWdG)
because of the presence of bending resistance, which
ensures the maintenance of low contact angles.
The maximal contact radius at F ¼ 0 corresponds
to an adhesive vesicle with a surface tension of
�0.8 nN/mm, which is in close agreement with the value
of 0.9 nN/mm obtained from the analysis of the MA
experiment, assuming that the cell is a liquid droplet
with surface tension (12). This correspondence of
cell contact radius to the BWdG model in (self- or
externally) compressed conditions but not during tensile
loading and pull-out has been observed experimentally
on HeLa cells in (26).

3) At low F (large contacts), the change of j with F is

DMT-like, i.e., djFz� 32 bEcell
bR2

j2, with an apparentbEcellz 200 Pa when using Eq. 4. This indicates that the
force-indentation F(d) response of adherent cells with
surface tension is remarkably Hertzian. This observation
was confirmed in a simulated compression test on a
spread-out cell: around F ¼ 0, the contact force follows
F � d3/2 (see Fig. S5). This contrasts with the force-
deformation response of a liquid-filled shell with no
adhesion or active tension, which showcases cubic
behavior F � d3 (27).
c

ied force F=pbRw of a simulated S180 DPA pull-off experiment (parameters

G limits. For solid elastic spheres (JKR and DMT), we assume that Ra z R.

ill occur. Different guide lines are shown (from top to bottom at F ¼ 0) for

0, 1000, 1200}; and for BWdG: g (nN/mm) ˛ {0.6, 0.8, 1.0, 1.2, 1.4}. To see
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DISCUSSION

In this work, we have quantified the adhesion behavior of
filled elastic shells with active tension, which were used as
a model for biological cells. Numerical simulations with
this model were carried out to investigate the role of cortical
stiffness, thickness, and active tension. These simulations
showed that a combination of these properties can simulta-
neously explain the mechanics of cell deformation during
aspiration and of cell-cell separation during a pull-off exper-
iment. We estimate that cells exist in small to moderate
ranges of a dimensionless thickness k. In these conditions,
the active tension plays a crucial role, and is required to
explain the observed scaling of separation force.
Cortex mechanics

By comparison to existing experiments on S180 cells, we
give tentative estimates of mechanical properties of their
actin cortex that agree with characterizations in literature
(7,12,16,25). In contrast to a solid elastic model, a model
of adhesive, tensed elastic shells can provide consistent esti-
mates of mechanical properties across different mechanical
experiments. We estimated an active tension of 0.4 nN/mm,
in good agreement with other measurements of active ten-
sion, e.g., 0.41 nN/mm on L929 fibroblasts (13), 0.3 nN/mm
on chick embryo fibroblasts (28), and 0.2 nN/mm on HeLa
cells (29). Measurements of cortical stiffness in literature
vary greatly, ranging from 1 kPa (5) to 40 kPa (16,30), en-
compassing our estimate of 15 kPa. Of note is the over
sixfold lower value of 2.4 kPa obtained on L929 cells,
even though it was derived using a similar mechanical
description of the cell (13). Aside from obvious differences
in cell type, this discrepancy could be attributed to various
explanations. First, they also include elastic deformation of
the cytosol, whereas we have lumped any such effect in an
‘‘effective’’ increase of cortex thickness. Secondly, any loss
of contractility near the bleb induced by laser ablation might
have significantly reduced the apparent stiffness of the actin
cortex that exhibits stress stiffening properties (31). An active
tension of 0.4 nN/mm corresponds to a contractile stress of
>1 kPa. For such a stress, the apparent stiffness of a cross-
linked actin network is>1000 times higher than the stiffness
in stress-free conditions (18). For simplicity, we have set
Poisson’s ratio of the cortex to vc ¼ 1/3. In (13), a value of
1/2 was assumed. In biomimetic actin networks, Poisson’s
ratio was estimated at vc ¼ 0.1 (32). Because its main
contribution is through a factor of ð1� n2cÞ in the bending
rigidity (see Supporting Materials and Methods), we expect
vc to be of relatively minor importance.
Force-deformation behavior

We show that JKR-like pull-off forces can exist for a wide
range of adhesion energies. Furthermore, the scaling of con-
936 Biophysical Journal 116, 930–937, March 5, 2019
tact radius with force at low loading force (or, conversely,
large adhesive deformation) follows BWdG predictions
but is also consistent with DMT theory, implying that
force-deformation behavior is Hertz-like at sufficient defor-
mation. This suggests that in an indentation experiment, for
example, atomic force microscopy, this model would be
almost indistinguishable from a solid elastic material.
Because Hertz theory is ubiquitously used in atomic force
microscopy experiments to parameterize cells with an
apparent Young’s modulus, this begs the question of when
its application is appropriate and when not. It can be argued
that for strongly spread-out cells, where dense cytoskeletal
material spans the full height of the cell, this parameteriza-
tion is apt. Our results indicate that for cells that are more
rounded in shape, e.g., suspension cells (7), weakly adhering
cells (16,25), or cells in dense packings (5), the description
of a cell as a tensed shell is more consistent across experi-
mental methods and conditions.
Limitations

We have presented a minimalistic mechanical model that dis-
regards most of the complexities that accompany cell-cell
adhesion in real biological settings. Some of these complica-
tions can well be expected to affect the results presented here
in a nontrivial manner, and they will be briefly discussed.

Firstly, we considered the cell’s cytosol as liquid-like
(i.e., bearing hydrostatic stresses, and this through an effec-
tive bulk modulus K). The physical properties of the cell’s
internal structures are complex, and models that capture
its mechanical behavior are often dependent on the time-
scale of interest. At fast timescales (�10 s), indented cells
show a viscoelastic creep response, which might be attrib-
uted to Maxwell fluid behavior of the cell’s internal struc-
tures (33). The contribution of the cytosol’s elasticity was
shown to be important for controlling the (fast) growth of
blebs (13). The assumption in our analyses was that exper-
iments were at least slow enough to relax any deviatoric
stresses in the cytosol.

Secondly, our shell model consists of linearly elastic ma-
terial, whereas the cell cortex has been shown to exhibit
nonlinear behavior at large deformations, including both
strain stiffening and strain softening (17). Typical strains
in our simulated experiments are very low (<5%) but can
locally reach up to 20%, e.g., near rupture at the contact
site in a pull-off experiment. Here, nonlinearities in stretch
response could have non-negligible effect on the separation
force.

Finally, we model adhesion based on the assumption of
fixed and nonspecific stickers (or with a mobility timescale
that is much slower than the timescale of bond rupture). This
assumption is valid for the experiment we compared our
results against, in which depletion-induced adhesion was
studied. In naturally adhering cells, adhesive ligands have
been shown to diffuse in the plasma membrane and cluster
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at the site of cell-cell junctions (34). All these phenomena
are expected to affect adhesion and debonding mechanics,
both dynamically and at steady state (35). Although not
the focus of this study, these properties need to be taken
into account to model cell-cell adhesion in realistic biolog-
ical settings.
SUPPORTING MATERIAL

Supporting Materials and Methods, nine figures, and five tables are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(19)
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1 Computational Method

Contact Mechanics In our numerical model, we represent deformable cells as triangulated meshes, where the local curvature
is taken into account for each triangle by means of an encompassing sphere. The contact between two rounded triangles can
be modeled by using the Maugis-Dugdale (MD) theory for overlapping spheres (1).

MD expands upon Hertz’ pure repulsive contact model by taking into account the adhesive pressure associated with in-
timate contact between adherent surfaces – see Fig. S1. The MD contact pressure between two curved asperities A and B is
given by the sum of Hertz and adhesive pressures:

p(r) = pa(r) + pH(r). (S1)

The repulsive Hertz pressure acting on the contact area with radius a, for a given distance r from the center of the contact
circle, is given by

pH(r) =
2ÊAB

πR̂AB

√
a2 − r2, (S2)

with effective Young’s modulus ÊAB and contact radius R̂AB

ÊAB =

(
1− ν2A
EA

+
1− ν2B
EB

)−1
,

R̂AB = (κA + κB)
−1
,

where EA, νA and κA refer to the Young’s modulus, Poisson ratio and local curvature of a given asperity A. Adhesive stress
is given by

pa(r) =

{
−σ0

π arccos
(

2a2−c2−r2
c2−r2

)
0 < r < a,

−σ0, a < r < c,
(S3)

Here, σ0 represents the maximal adhesive traction, which is related to the adhesion energy w as (3):

w = h0 σ0, (S4)

where h0 represents the maximum separation between the asperities beyond which the adhesive traction drops to zero.
Numerical integration of the contact pressures allows us to determine the net contact force and moment acting on a pair

of triangles (αβ). Assuming that the nodal contact forces Fαβi must be colinear with the contact unit normal n̂αβ , the system
of linear equations per contact pair (αβ): ∑

i∈α
F αβ
i = −

∑
q∈α∩β

Aq p(‖rq‖)n̂αβ , (S5)

∑
i∈α

[
xi − xαβC +

[
(xαβC − xi) · n̂αβ

]
n̂αβ

]
× F αβ

i = −
∑
q∈α∩β

Aqp(‖rq‖)rq × n̂αβ , (S6)



Figure S1: Illustration of contact between an asperity with radius R and a flat half-space. The total contact pressure p is the
sum of the repulsive Hertz pressure pH , acting within contact radius a and an adhesive Dugdale traction pa, acting within
contact radius c. For a ≤ r ≤ c, the adhesive traction is at its maximal value σ0.

results in a unique solution for every F αβ
i . Aq is the weighted area associated with quadrature points q, covering the intersec-

tion polygon α ∩ β. rq is the vector from the sphere-sphere1 contact point xαβC to the quadrature point. The solution for this
system is presented in Odenthal et al. (1).

Cortex Elasticity Assuming small deformations, we use the Van Gelder model to approximate in-plane elastic behavior of
the cortex using linear springs (4):

F s
ij = ks(dij − d∗ij)n̂ij , (S7)

with
n̂ij =

xj − xi
‖xj − xi‖

, .

Here, dij = ‖xj − xi‖ is the current distance and d∗ij the resting distance between nodes i and j with positions xi and xj . The
linear spring stiffness ks, under our assumption of an isotropic linear elastic material model, can be expressed as a function
of Ec and tc using Van Gelder’s formula (4):

ks =
Ectc

(
Aαij +Aβij

)
d∗ij

2 , (S8)

in which Aαij +Aβij is the area of the connected triangle pair αβ – see Fig. S2(a). By using this expression we have implicitly
assumed that the Poisson ratio is equal to 1/3 (6). Due to its non-zero thickness, the cortex also has bending rigidity. The
energy required to bend two connected triangles (αβ) is given by

Ebαβ = kb (1− cos (θ − θ∗)) , (S9)

where θ∗ and θ represent the spontaneous and instantaneous angles between a pair of adjacent triangles.
As with ks, bending rigidity kb can be estimated based on cortex properties to match to macroscopic (continuum) models.

Based on the model of Helfrich (5)

kb =
Ect

3
c

12 (1− ν2c )
, (S10)

with νc Poisson’s ratio of the cortex. To be consistent with the assumption of an isotropic linear elastic material, νc is fixed at
a value of 1/3 (6), hence kb = 3Ec t

3
c/32. For a pair of connected triangles αβ, the bending moment is:

M b
αβ = −kb(θ − θ∗)

xc2αβ − xc1αβ∥∥∥xc2αβ − xc1αβ

∥∥∥ , (S11)

for small angle deviations when sin (θ − θ∗) ≈ θ − θ∗, and with xc1αβ and xc2αβ the positions of the connected triangles’
common nodes, sorted counter-clockwise with respect to the triangle normal vectors n̂α and n̂β – see Fig. S2(b). This couple

1Each triangle with curvature κ can be associated with a unique sphere with radius 1/κ, see (1).



(a) (b)

Figure S2: (a): Illustration of elementary spring element between nodes i and j. The spring constant ks is based on a thin shell
element containing adjacent triangles α and β, and with thickness tc – Eq. (S8). (b): Illustration of two connected triangles α
and β with normal unit vectors n̂α and n̂β between whom a bending moment is computed based on the instantaneous angle
θ. Furthermore, we have indicated (sorted) common nodes c1 and c2 and lever nodes hα and hβ .

is translated to mechanically equivalent forces on the four nodes of the triangle pair. For each triangle, the sum of all three
forces must be zero, and the generated moment w.r.t. the common axis must be M b

αβ . These conditions lead to following
unique total nodal forces:

F hα
αβ = −M b

αβ × hα, (S12)

F
hβ
αβ = M b

αβ × hβ , (S13)

F c1
αβ =

yc2β
yc1β − yc2β

(
M b

αβ × hβ

)
− yc2α
yc1α − yc2α

(
M b

αβ × hα

)
, (S14)

F c2
αβ =

yc1β
yc2β − yc1β

(
M b

αβ × hβ

)
− yc1α
yc2α − yc1α

(
M b

αβ × hα

)
. (S15)

hα and hβ indicate the indices of the (non-common) “lever” node of triangles α and β. hα and hβ are the orthogonal height
vectors from the common axis to lever nodes hα and hβ . Finally,

ycjk = (xcjαβ − xhkαβ) · (xc2αβ − xc1αβ), (S16)

for k ∈ [α, β] and j ∈ [1, 2].

Active cortical tension Tension generated in the cortex results form myosin contractility which can be be interpreted as an
effective surface tension γ in the cortical shell model. γ helps in maintaining cell shape and decreases the local curvature on
longer time-scales. Based on the Young-Laplace law, the pressure contribution due to γ is given by

P γi = −2γκi, (S17)

with κi being the local curvature. Active volume control also contributes to the cytoplasmic pressure. As the equilibrium
volume of a cell is assumed to be constant at short time-scales, an effective bulk modulus K is introduced. The cytoplasmic
pressure due to volume control P v can thus be estimated as

P v = −KV − V ∗

V ∗
. (S18)

V ∗ and V represent the spontaneous and instantaneous volume of the cell. The resulting nodal force due to the total internal
pressure P is given by

F p
i = n̂iAiPi = n̂iAi (P γi + P o + P v) , (S19)

with Ai and n̂i the Voronoi area (1) and normal associated with a given node. Moreover, we assume that a constant (e.g.
osmotic) pressure P o = 2γ/R exists that ensures that the free cell is mechanically at rest.



Dissipative forces Our method is based on solving overdamped equations of motion. Hence, dissipative forces are required
to balance these equations of motion. The general methodology tries to introduce these dissipative forces in a consistent man-
ner in terms of viscosities of modeled materials. A general drag force F l

i is included to account for the liquid drag between
the cells and their medium:

F l
i = −λlAivi, (S20)

with Ai the Voronoi area of node i. For spherical cells with radius R

λl =
3ηl
2R

(S21)

can be used to estimate λl, introducing fluid viscosity ηl. When dealing with arbitrary shapes this approximation is no longer
correct and we would in principle require the microscopic resolution of the fluid flow field in and around the cell surface.
However, as F di is typically very small compared to other dissipative forces at the seconds/minutes timescale, this approxima-
tion is sufficient. Likewise, we can increase the fluid viscosity above realistic values to dampen numerical oscillations without
any influence on simulation results. A much larger contribution to energy dissipation arises from viscosity of the cortex itself.
The viscous damping force between two connected nodes i and j is computed as

F d
ij = Λdij(vj − vi), (S22)

with friction elements (I being identity)

Λdij =
tc ηc√

3
I.

where the 1/
√

3 factor accounts for the triangular connectivity of the shell. Finally, a viscous contact force is included to
account for drag between contacting triangles. The contact drag force acting on node i of triangle α of the contacting pair
(αβ)

F c
αβ,i = Λcαβ ·

∑
∀k∈β

wαβ,ik (vk − vi), (S23)

again, determined by a friction tensor Λcαβ and weights wαβ,ik per node k of the β triangle. wαβ,ik are assumed to scale with
the relative contribution of the nodal contact forces to the overall contact force, thus

wαβ,ik =
(F αβ,i + F αβ,k) · n̂αβ

6
∑
∀k∈β

FMD
αβ,k · n̂αβ

, (S24)

Λcαβ for a given contact area Acαβ between triangles α and β is estimated as:

Λcαβ = Acαβ

[
λnn̂αβ · n̂Tαβ + λt

(
I − n̂αβ · n̂Tαβ

)]
, (S25)

with normal and tangential friction coefficients2 λn and λt.

Equation of motion Neglecting inertial contributions for the overdamped cellular system, the complete force balance for
node i can be expressed based on the different contributions described above∑

con.j

F s
ij +

∑
(αβ):i∈α

F αβ
i +

∑
(αβ):i∈α

F b
αβ,i + F p

i

= (S26)

∑
con.j

Λdij · wij (vi − vj) +
∑

(αβ):i∈α

Λcαβ,i ·
∑
∀k∈β

wαβ,ik (vi − vk)

+ λlAivi,

For a system of N nodes, Eq. (S26) can be summarized as:

F = Λ · v, (S27)
2Note that the units of friction coefficient λn and λt are Pa·s/m, as they relate a velocity difference between two contacting surface to a dissipative contact

stress.



which consist of a (3N × 1), (3N × 3N) and (3N × 1) matrix for three-dimensional systems. Λ is a symmetric and positive
definite matrix

Λ =
∑
i,j∈N


0 · · ·
· · · Λij · · · −Λij · · ·
...

...
. . .

...
· · · −Λij · · · Λij · · ·

· · · 0

+


λl 0 · · ·
0 λl 0 · · ·
...

. . .
...

0 λl 0
0 · · · 0 λl

 , (S28)

where Λij are (3×3) matrices created bywijΛdij+wαβ,ijΛ
c
αβi

. Since Λ is extremely sparse and always positive definite (1, 9),
the conjugate gradient method can be used to efficiently solve the system for nodal velocities v(t) at each time increment.
The positions of the nodes x are subsequently updated using a forward Euler scheme:

x(t+ ∆t) = x(t) + ∆tv(t). (S29)

Implementation The computational model was implemented in the C++ particle-based simulation framework ‘Mpacts’. The
deformable cell model was first introduced in (1), and later expaned upon for shell mechanics in (2). For solving over-damped
systems, we use a semi-implicit method – see Eq. (S27), where a friction matrix is assembled that contains contact friction (or
stiffness) elements. Each timestep, this linear system is iteratively solved using the Conjugate Gradient implementation of the
C++ linear algebra library Eigen (10) which is optimized for vectorization and performance. Furthermore, a multi-grid contact
detection scheme (11) was used to efficiently resolve pairs of contacting triangles between the contact pressures described
above were numerically integrated. Numerical integration was performed using a 7-point symmetric Gaussian quadrature rule
as derived in (12). Highly regular triangulated surface meshes of spherical cells were obtained by the progressive subdivision
of an icosahedron – see e.g. (1). We used 5-level subdivisions (resulting in 2562 vertices and 5120 triangles) for the results in
Fig. 3 and Fig. 4 and 6-level subdivisions (resulting in 10242 vertices and 20480 triangles) for the results in Fig. 6, where a
greater refinement was adopted for the estimates of contact radius.

2 Simulation setup

Here, we summarize the technical aspects of the performed simulations. In this work, we have considered four distinct setups:
MA, DPA, optical tweezers and, very briefly, compression between two parallel plates.

Table S1: Complete list of parameters used to simulate the MA experiments shown in Fig. 4(b). Square brackets indicate
ranges of parameters that were varied across multiple simulations.

Parameter Symbol Value(s) Units

Young’s modulus cortex Ec [5, 35] kPa
Poisson’s ratio cortex νc 1/3 -
Thickness cortex tc [0.15, 0.65] µm
Viscosity cortex ηc 0.5 kPa·s
Active tension cortex γ [0, 0.9] nN/µm
Bulk modulus cell K 25 kPa

Liquid viscosity ηl 5.0 Pa·s
Normal cell-pipette friction λpn 5.0 kPa·s/µm
Tangential cell-pipette friction λpt 0.1 kPa·s/µm

Cell radius R 6 µm

Simulation timestep ∆t 0.75 ms
Maximal error conjugate gradient Fres 1.0 pN
Number of mesh nodes per cell Nv 2562 -

Pipette inner radius Rp 3.5 µm
Pipette rounding radius Rr 0.5 µm
Pipette stiffness kp 40 kPa·s/µm
Pressure increase rate d∆P/dt 25 Pa/s



Micropipette Aspiration The micropipette is represented as a hollow cylinder, with a torus glued at the end, with a tube
(rounding) radius Rr = 0.5 µm, and an inner radius (equal to the cylinder radius) of Rp = 3.5 µm – see Fig. 2(a). An under-
pressure ∆P is applied on any node of the deformable cell that has crossed the center of the pipette’s bounding torus. The
aspiration force on the node is simply:

F p,a
i = Ai∆P n̂i, (S30)

with Ai and n̂i the Voronoi area and normal associated with node i. Overlap with the pipette wall is prevented using a linear
stiffness kp. The contact force on the node is:

F p,c
i = kpAiδpi n̂c(xi), (S31)

if overlap distance δpi > 0 and zero otherwise. n̂c(xi) is the normal direction of the pipette’s inner surface at the position of
node i. Both δpi and n̂c can be trivially obtained from simple geometric considerations. We set kp = 40 kPa/µm, sufficiently
high to prevent any meaningful overlap in the range of applied pressure. For nodes that are in contact with the pipette (δpi > 0),
we include an additional contact drag force:

F p,d
i = −Λpi vi, (S32)

with friction tensor
Λpi = Ai

[
λpnn̂ijn̂

T
ij + λpt

(
I − n̂ijn̂

T
ij

)]
,

where λpn and λpt are normal and tangential cell-pipette friction constants. We set λpn = 5 kPas/µm, sufficiently high to
dampen numerical oscillations in the stiff potential kp and λpt = 0.1 kPas/µm, sufficiently low to represent quasi-frictionless
contact.

In the MA simulation, we start at ∆P = 0 Pa, and gradually increase ∆P until the aspirated length Lp = Rp, i.e. the
aspirated region forms a hemisphere in the micropipette. The current pressure at this point is registered as the critical pressure
Pc. The rate of pressure increase must be sufficiently slow with respect to the viscous relaxation time of the cell. We set
d∆P/dt = 25 Pa/s. The full set of parameters used to perform the MA simulations is listed in Table S1.

Dual Pipette Aspiration The DPA simulation consists of two subsequent steps: 1) Two cells are put in close proximity3 and
allowed to freely adhere until they equilibrate at a stable contact area and 2) We apply opposite pulling forces on both cells
and register their separation. Hence, we do not represent the two micropipettes explicitly, but simply distribute a pulling force
over the cell. To do this, we adopt two configurations:

A For the results in Fig. 3 and Fig. 4, we distribute the total force evenly over all nodes with a contact area equal to zero.
Such a distribution is numerically more favorable, since it ensures a low excess force for each degree of freedom. In these
simulations, we were only interested in the pull-off force, which was verified to be affected very little by the precise manner
of force distribution.

B For Fig. 6, we must quantify the shape (Ra) and the geometry of the contact area (Rc). In order to compare to (7), we need
to adopt their assumptions, which include that the pulling force is applied only at the top of the cell. Here, we selected the
top 5% of mesh nodes at either side of the cell doublet, and distributed the pulling force evenly among them.

The purpose of configuration A is to measure the pull-off force. For this, we very slowly increase the applied force applied
to the cells, and register the force at which rapid detachment of the cell-cell contact occurs. Using this setup, we can accurately
quantify the pull-off force in one simulation, as long as the rate of applied force increase is much slower than the relaxation
dynamics of the cell. We set dF/dt = 0.25 nN/s.

For configuration B, we perform a separate and independent simulation for each applied force F . To ensure that a sta-
ble configuration is reached, we simulate until either the two cells have been fully separated, or until a pulling time of 60 s
has passed. After this, the current contact area Ac between the two cells is registered, and a corresponding contact radius
Rc =

√
Ac/π. To obtain a robust estimate of the apical radius Ra, we follow the following procedure:

I Obtain the contact axis n̂AB for cells A and B as:

n̂cc =
1

Ac,A +Ac,B

(∑
∀i∈A

Ac,in̂i −
∑
∀i∈B

Ac,in̂i

)
,

where Ac,i is the contact area and n̂i the surface normal vector of node with index i.

3The cells must be at least within their adhesive range h0 so that the adhesion process may start.



Table S2: Complete list of parameters used to simulate the DPA experiments in shown in Fig. 3. Square brackets indicate
ranges of parameters that were varied across multiple simulations.

Parameter Symbol Value(s) Units

Young’s modulus cortex Ec 30 kPa
Normal contact stiffness Ec,c 30 kPa
Poisson’s ratio cortex νc 1/3 -
Thickness cortex tc [0.15, 2.5] µm
Viscosity cortex ηc 2.67 kPa·s
Active tension cortex γ [0, 1.5] nN/µm
Bulk modulus cell K 30 kPa

Liquid viscosity ηl 1.0 Pa·s
Normal cell-cell friction λn 0.05 kPa·s/µm
Tangential cell-cell friction λt 0.05 kPa·s/µm
Cell-cell adhesion w 0.25 nN/µm
Effective range of adhesion h0 50 nm

Cell radius R 10 µm

Simulation timestep ∆t 0.5 ms
Maximal error conjugate gradient Fres 5.0 pN
Number of mesh nodes per cell Nv 2562 -

Rate of force increase dF/dt 0.25 nN/s

Table S3: Complete list of parameters used to simulate the DPA experiments shown in Fig. 4 and Fig. 6. Square brackets
indicate ranges of parameters that were varied across multiple simulations.

Parameter Symbol Value(s) Units

Young’s modulus cortex Ec [5, 35] kPa
Normal contact stiffness Ec,c 100 kPa
Poisson’s ratio cortex νc 1/3 -
Thickness cortex tc [0.15, 0.65] µm
Viscosity cortex ηc 2.67 kPa·s
Active tension cortex γ [0, 0.9] nN/µm
Bulk modulus cell K 30 kPa

Liquid viscosity ηl 1.0 Pa·s
Normal cell-cell friction λn 0.05 kPa·s/µm
Tangential cell-cell friction λt 0.05 kPa·s/µm
Cell-cell adhesion w [0.05, 0.9] nN/µm
Effective range of adhesion h0 50 nm

Cell radius R 6 µm

Simulation timestep ∆t 1.0 ms
Maximal error conjugate gradient Fres 5.0 pN
Number of mesh nodes per cell Nv [2562, 10242] -

II Obtain the center of the contact xcc by integrating:

xcc =
1

Ac,A +Ac,B

(∑
∀i∈A

Ac,ix̂i −
∑
∀i∈B

Ac,ix̂i

)
.

III For each node i, compute the distance ri to the line defined by xcc and n̂cc.

IV For each node i, compute the (positive) distance xi along the line defined by xcc and n̂cc.

V Sort each node i in one of 25 bins along the central axis according to xi.

VI Compute the average radius ri for each bin k:

rk =
1

Nk

∑
∀i∈k

ri.



Table S4: Complete list of simulation parameters used to simulate the optical trap experiments shown in Fig. 5.
Parameter Symbol Value(s) Units

Young’s modulus cortex Ec 15 kPa
Normal contact stiffness Ec,c 100 kPa
Poisson’s ratio cortex νc 1/3 -
Thickness cortex tc 0.3 µm
Viscosity cortex ηc 2.67 kPa·s
Active tension cortex γ 0.4 nN/µm
Bulk modulus cell K 30 kPa

Liquid viscosity ηl 1.0 Pa·s
Normal cell-substrate friction λn,s 0.15 kPa·s/µm
Tangential cell-substrate friction λt,s 0.15 kPa·s/µm
Tangential cell-bead friction λt,b 0.20 kPa·s/µm
Tangential cell-bead friction λt,b 0.20 kPa·s/µm
Cell-bead adhesion w 0.517 nN/µm
Effective range of adhesion h0 50 nm

Cell radius R 7 µm
Patch size Lp 10 µm
Bead radius Rb 1.8 µm

Simulation timestep ∆t 2.0 ms
Maximal error conjugate gradient Fres 5.0 pN
Number of mesh nodes per cell Nv 10242 -

VII The maximal rk is recorded as the apical radius: Ra = max(rk)

Fig. S3 illustrates this procedure for a specific cell configuration. The maximum of the black line gives the apical radius
Ra.
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Figure S3: Illustration of algorithm to robustly compute the apex radius Ra: node positions (red dots) are collected in axial
bins, based on the distance to the contact plane. For each axial bin (25 in total), the average distance to the axis is computed.
The maximal of these values gives the apical radius Ra. In the shown configuration, we can estimate Ra ≈ 5.9 µm.

Optical tweezers To replicate an optical tweezers experiment in a simulation, we create a surface for the cell to spread on
which is composed of two ‘patches’. A central, rectangular patch of 10 µm×10 µm (indicated in green in Fig. 5) has a very
high adhesion energy, while the surrounding patch (indicated in black in Fig. 5) has no adhesion. We set the adhesion energy
between cell and substrate wc,s to 0.8 nN/µm, sufficiently high to ensure that the full patch will be covered by the cell. The
cell radius was slightly increased (from 6 µm to 7 µm) to be consistent with the results shown in (8). Next, we let the cell
adhere to the surface until its positions equilibrate (Fig. 5 top left). In a second phase, we relax all elastic stresses (assuming



that the spreading could occur over a long timescale), and let a bead adhere to the side of the cell, at the height where it
maximally protrudes. The adhesion energy between cell and bead wc,b is tuned so that the experimentally observed contact
radius is approximated. Finally, we apply various pulling forces to the bead and record the displacement of the bead. Each
simulation is repeated for 5 random orientations of the cell (to artifacts due to mesh coarseness near the cell-bead contact
area). The slope of displacement with respect to pulling force is used to estimate an apparent Young’s modulus of the cell.
The full Table of simulation parameter used for this experimental setup is shown in Table S4.

Parameter choice As mentioned in ‘Computational Model’, a requirement for the applied contact model to be valid is that
the normal elastic compression is sufficiently small compared to the cortex thickness. For Fig. 3, we have ensured this by
choosing a sufficiently high Ec and a sufficiently low w when varying the thickness tc over a wide range (parameters listed in
Table S2). On the other hand, for our estimated parameters of the S180 cell, the elastic modulus of the cortex is relatively low
(≈ 15 kPa) and the thickness is very small (≈ 0.3 µm). In this case, when adhesion w is high, the Hertzian assumptions are
violated. However, in these cases the normal elastic compression (which is always� tc), is negligible compared to the total
deformation of the cell. Thus, we can safely and without loss of accuracy increase the effective stiffness of the contact model
Ec,c > Ec, so that large and incorrectly computed overlap distances are prevented. The full set of parameters to simulate
these configurations is listed in Table S3. The sub-set of this table that contains our estimates for S180 cells was provided in
Table 1.

Aside from the parameters that extensively discussed in the main manuscript (Ec, νc, tc, γ), the numerical simulations
require some additional parameters. Since we solve a dynamic system, the forces on the right hand side are balanced by
viscosities / damping forces. These viscosities do not influence the steady-state results discussed in the main manuscript, but
are required for the numerical convergence. The order of magnitude of these viscosities is chosen in the range of estimates for
real biological cells (i.e. kPa·s/µm for cell-cell frictions and kPa·s for cortex viscosity (13)). The simulation time step is varied
based on the specific simulation setup (from 0.5 ms to 2 ms). The Conjugate Gradient solver was assigned the convergence
criterion of a maximal force residual of 5 pN.
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3 Supplementary Figures
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Figure S4: Cube of the contact radius R3
c as a function of pulling force F with varying active tension γ for cell mechanical

properties in Table 1. The axis on the left hand side indicates the equivalent combined JKR modulus that yields the corre-
sponding contact radius at zero loading (F = 0), computed using Eq. (5). Active tension has the effect of greatly increasing
the apparent stiffness of the cell.
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Figure S5: Simulation of cell compression between two rigid parallel plates. The cell has been assigned the parameters from
Table S3, with w = 0.3 nN/µm for both top and bottom plate and with Nv = 2562. Next, a compressive (positive) or tensile
(negative) force F is applied on the top plate and the system is allowed to equilibrate. The final distance between the plates
∆z is registered to compute the strain ε = (2R − ∆z)/2R, and this for five independent configurations, where we have
rotated our initial mesh to random orientations, to prevent discretization artifact. The error bars show the standard deviation
among these initial orientations. The dashed line shows a fit of F ∼ ε3/2 to demonstrate the Hertzian response of the highly
deformed cell.
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Figure S6: Comparison of deformable cell model cell spreading simulation with adhesion criterion w = 2kb/R
2 for idealized

vesicles (14). The limit of ideal vesicles (no volume change, no area change) is approached by setting Ec = 100 kPa, tc =
250 nm and γ = 0 nN/µm. This plot shows the degree of ‘flatness’ as a function of normalized adhesion energy with rmax the
maximal radius of curvature. For R2w/(2kb) < 1, no flattened area is present because adhesion is insufficient to counteract
the local bending resistance. Adhesion here only exists due to the finite adhesive range h0. For R2w/(2kb) > 1, adhesion is
able to overcome the bending resistance and establish a flattened contact area.
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Figure S7: Influence of bulk modulusK in a simulated cell spreading experiment using parameters from Table 1. Black: Ratio
of total hydrostatic energy 1

2K∆V 2/V ∗ and total adhesion energy wAc (contact area Ac) for varying cell bulk modulus K,
using parameters from Table 1, and w = 0.2 nN/µm. The mechanical energy stored in hydrostatic compression decreases
with increasing K, but its mechanical contribution relative to adhesion energy is small, even for small K. Blue: Relative
change of the cells’ volume for varying K.
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Figure S8: Contact radius as a function of number of triangles NM of the triangulated mesh that represents the cell, for a cell
spreading simulation with parameters from Table 1, and w = 0.2 nN/µm. The final contact radius Rc after cell spreading
is shown relative to the contact radius of the most refined mesh Rc,7, which has 40,962 vertices and 81,920 triangles. The
refinements used in this study are indicated with symbols: N×M = 5,120; N∗M = 20,480.

Figure S9: Relative contribution of cell-cell adhesion energy wcc and differential interfacial tension (γ − γcc)/γ with γcc the
active tension in the cell-cell contact region, to the radius of contact of an adhering cell doublet. Each ‘pixel’ represents an
individual simulation with Ec = 15 kPa, tc = 0.3 µm γ = 1.0 nN/µm, where γcc and wcc were varied as indicated.



Table S5: Summary of a linear model of relative contact area Ac
4πR2 ∼ a0 + a1

γcc
γ + a2

wcc
γ for a simulated cell-cell adhesion

simulation (Fig. S9) with Ec =15 kPa, tc = 0.3 µm, γ = 1.0 nN/µm, and varying cell-cell adhesion energy wcc and cortical
tension at the cell-cell interface γcc. Obtained parameter estimates are a0 = 0.0004 ± 0.001, a1 = 0.0275 ± 0.001 and
a2 = 0.3449± 0.005 Data automatically generated by statsmodels in Python.

Dep. Variable: contact area R-squared: 0.993
Model: OLS Adj. R-squared: 0.992
Method: Least Squares F-statistic: 3049.
Date: Fri, 23 Nov 2018 Prob (F-statistic): 1.29e-49
Time: 16:13:18 Log-Likelihood: 226.91
No. Observations: 49 AIC: -447.8
Df Residuals: 46 BIC: -442.2

coef std err t P>|t| [95.0% Conf. Int.]

Intercept 0.0004 0.001 0.423 0.674 -0.002 0.002
gammacc 0.0275 0.001 23.737 0.000 0.025 0.030
adhesion 0.3449 0.005 74.393 0.000 0.336 0.354

Omnibus: 6.291 Durbin-Watson: 0.991
Prob(Omnibus): 0.043 Jarque-Bera (JB): 6.036
Skew: -0.859 Prob(JB): 0.0489
Kurtosis: 2.952 Cond. No. 15.6
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