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1. Autocorrelation function calculation 

1a. Time-averaged autocorrelation function 

By definition, the autocorrelation function (ACF) of a signal !  is: 

    ! ,                  SI Eq. 1 

where the brackets usually denote temporal averaging.  
The numerator in SI Eq. 1 is a convolution, and the convolution of any two functions !  and !  can 

be rewritten as the inverse Fourier transform of the product of !  and ! , the Fourier transforms of 
!  and ! : 

   ! . 

As a result of our simulations, we obtain for each observation volume size a discrete list of !  intensities, 
! . Here !  is the time interval between two recordings of the intensity, and !  is an integer which can 
take any value between !  and ! . The temporal averaging of the signal was then done with a discrete sum, 
using symmetric normalization to improve accuracy at large lag-times (1,2): 

  ! .            SI Eq. 2 

In order to save computation time when calculating the numerator in SI Eq. 2, which is a discrete 
convolution over a limited time range, we used a Discrete Fourier transform (DFT). The Fourier 
transform of the signal was thus calculated as: 

    ! .                                SI Eq. 3 
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In order to avoid aliasing due to the DFT producing a periodic function of length ! , the time domain of 
the data was zero-padded so that !  had a length of ! .  

The denominator in SI Eq. 2 was calculated directly from the intensity data for each value of ! , after 
which !  was straightforwardly calculated by dividing the numerator by the denominator. 

1b. Ensemble-averaged autocorrelation function 

In some cases (for the CTRW model), in order to test the ergodicity of the diffusion process, a second 
ACF was calculated, by performing an ensemble average instead of a time average. In this case, a 
separate intensity trace, ! , was generated for each of !  particles (with j = 1 to N, and 
! ). The ensemble averaged ACF was then calculated (without performing a Fourier 
transform) as: 

                       ! .                               SI Eq. 4 
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2. Stick-and-diffuse model 
 

Fig. 1. Two-component diffusion with D = 500 µm2/s and D' = 0 µm2/s (corresponding to the stick-and-
diffuse model). Panels are as in Figs. 5-11 in the main text: (a) ACFs, (b) MSDs, (c) anomalous exponent 
(d) non-Gaussian parameter, (e) distribution of displacements. The transition rates were kon = koff = 500 
s-1, thus f = 0.5. Then Davg = 250 µm2/s, D∞ =  0 µm2/s, and β = 1 at small . The characteristic time is 
!  ms, corresponding to !  ~ 1 µm. 
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3. Diffusion in impermeable cages 

Fig. 2. Caged diffusion with D = 500 µm2/s, L = 1 µm and p = 0, corresponding to a case where the cages 
are completely impermeable. Panels are as in Figs. 5-11 in the main text. The ACFs converge very 
quickly to a form that has a very sharp decay ( !  ~1.4), with a characteristic decay time depending on the 
size of the cages rather than the size of the observation volume, and connected to the cage relaxation time, 
𝜏c =  L2/6D = 0.33 ms here. 
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4. Effect of photon noise on the inverted ACFs 
 

Fig. 3. Effect of photon noise on the inversion of the ACFs. All the simulations presented in this figure 
were done taking into account photon noise, i.e. drawing the value of the intensity for each !  
time bin from a Poisson distribution with average value calculated using Eq. 14 in the main text.  (a,b) 
Result of simulations done for particles undergoing simple diffusion (same parameters as in Fig. 4 in the 
main text), with a molecular brightness B = 10 photons/time bin (a) or B = 0.01 photons/time bin. The 
upper panels show the ACFs obtained for !  (red curve), !  (blue curve) and !  
(green curve), each normalized to the average of the first 5 points of the ACF. The three middle panels 
show the residuals obtained when fitting the ACF with a simple diffusion model. The lower panels show 
the inverted and normalized ACFs (the black curve shows the actual MSD as calculated from the 
trajectories). Note that a larger range of inverted data is shown here (compared to the results shown in the 
main text), to better show the limits of the useful inversion range. The effect of photon noise is visible for 
the lowest value of B, for lag times ! , where the correlation is calculated using small !  
time bins, and by perturbing the proper normalization of the ACF it reduces the range of lag time (at short 
lag times) where the inversion procedure works. The photon noise is no longer visible for !  when 
larger !  time bins are used. With a multi-tau correlation scheme (rather than the 2-tau correlation 
scheme employed here), the photon noise would gradually decrease as !  increases. Particle noise is visible 
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for the larger observation volumes at long lag times. (c) Result of simulations performed for particles 
undergoing diffusing diffusivity (same parameters as in Fig. 9 in the main text), for different values of ! , 
showing the gradual increase in statistical noise for the inverted ACFs as !  decreases. This increase in 
statistical photon noise is accompanied by a reduction of the range accessible for proper ACF inversion at 
short lag times. Despite this noise, the characteristic dip observed for the smallest observation volume is 
still clearly visible for B = 0.01 photons/time bin. 

5. Effect of fluorophore photophysics on the inverted ACFs 
 

Fig. 4. Inversion of ACFs containing a photophysics term. ACFs for a range of detection volumes 
c o m p r i s e d b e t w e e n 0 . 3 a n d 3 0 µ m w e r e g e n e r a t e d u s i n g t h e e x p r e s s i o n 
! , where !  is the form of the ACF for simple diffusion (Eq. 
15 in the main text with ! ), !  is the triplet state relaxation time, and !  is the fraction of molecules in 
the triplet state. (a) T= 0, (b) !  and ! , (c) !  and ! . For each conditions, 
the calculated ACFs are shown in the left panel (normalized to the value of their first point), followed by 
the inverted ACFs using an average of the first 5 points of the ACF for normalization before the inversion 
(middle panel), and the by a second inversion using an average of 5 points around !  for the 
normalization instead (right panel). Although the inversion procedure is seriously affected when the ACF 
normalization is done at lag time around or below ! , it is barely affected when the normalization is done 
for ! . It is therefore possible to use the inversion procedure in the presence of photophysics, but 
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care has to be taken to normalize the ACF properly. A fitting of the photophysics term would yield even 
better results and allow to recover data for inversion below ! . 

6. Effect of observation volume calibration errors on the inverted ACFs 
 

Fig. 5. Influence of calibration errors on the inverted ACFs. ACFs were first calculated for a range of 
detection volumes with w comprised between 0.3 and 30 µm using Eq. 15 in the main text with !  
(simple diffusion) and S = 5. The inversion was then performed using incorrect values for either w or S as 
an input (denoted as w’ and S’). (a) Inverted ACFs (apparent MSD) obtained for values of w' that were 
1%, 5%, 10% and 25% larger than the actual values. The black line indicate the actual value of 

. The inverted curves are shifted by a factor of (w’/w)2 compared to this actual MSD. An 
error on w therefore leads to an error on the estimate of the value of the diffusion coefficient (as it would 
in single point FCS), but not on the nature of the diffusion. (b) Inverted ACFs obtained for values of S' 
that were either 25% higher or 25% lower than the actual value of S. The black line indicate the actual 
value of ! . The inversion procedure is very robust against small (~10% or less) errors on the 
value of S, but for larger errors issues arise at long lag times (where S influences the asymptotic 
behaviour of the ACF). 
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