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ABSTRACT Using fluorescence correlation spectroscopy (FCS) to distinguish between different types of diffusion processes
is often a perilous undertaking because the analysis of the resulting autocorrelation data is model dependant. Two recently
introduced strategies, however, can help move toward a model-independent interpretation of FCS experiments: 1) the obtention
of correlation data at different length scales and 2) their inversion to retrieve the mean-squared displacement associated with the
process under study. We use computer simulations to examine the signature of several biologically relevant diffusion processes
(simple diffusion, continuous-time random walk, caged diffusion, obstructed diffusion, two-state diffusion, and diffusing
diffusivity) in variable-length-scale FCS. We show that, when used in concert, length-scale variation and data inversion permit
us to identify non-Gaussian processes and, regardless of Gaussianity, to retrieve their mean-squared displacement over several
orders of magnitude in time. This makes unbiased discrimination between different classes of diffusion models possible.
INTRODUCTION
Many intra- or extracellular processes, in particular those
involving molecular signaling or concentration-gradient
formation, heavily rely on protein or nucleic acid diffu-
sion. Quantifying the motions of macromolecules in cells
and tissues is thus an important task; however, it turns out
to be quite complicated. The cellular environment is
crowded and heterogenous, and many biomolecules
transiently interact with others. Because of this, macro-
molecular diffusion in cells can take many forms and is
seldom simply Brownian. Whereas simple Brownian
diffusion is characterized by a mean-squared displace-
ment (MSD) that is linear in time and a distribution of dis-
placements that is always Gaussian, macromolecular
diffusion in cells often exhibits a nonlinear MSD, a non-
Gaussian distribution of displacements, or both (1).
Langowski’s study of the diffusion of the green fluo-
rescent protein in cells, using fluorescence correlation
spectroscopy (FCS), was one of the first to put this anom-
alous behavior in the spotlight (2). The consequences of a
nonstandard diffusive behavior can be profound, affecting
processes such as the kinetics of target search and molec-
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ular reactions (3–7) or the robustness of pattern formation
(8,9).

Among the techniques used to measure biomolecular
diffusion, FCS is the best suited to the range of concentra-
tions (1–100 nM) and diffusion coefficients (1–100 mm2/s)
typical of soluble proteins in cells (10,11). FCS is based on
the statistical analysis, via inspection of its autocorrelation
function (ACF), of the fluorescence signal recorded from a
small observation volume, usually an ellipsoidal confocal
volume with diffraction-limited radius wx 0.3 mm. The
ability to systematically vary w has made FCS especially
useful for the study of anomalous diffusion processes,
which are often length-scale dependent (e.g., in cells, pro-
tein diffusion may slow down at large scales because of
transient interactions with immobile structures or partial
confinement caused by obstacles). This scheme, known
as spot-variation FCS, or more generally variable-length-
scale FCS (VLS-FCS), allows the construction of the
so-called ‘‘diffusion law’’ (12). By this, one means the
relationship between the average time taken for particles
to explore the observation volume (i.e., the characteristic
decay time of the ACF, t1/2) and the projected area of
this volume (w2). The diffusion law provides a proxy for
the particles’ MSD. Initially, VLS-FCS was achieved by
enlarging the usually diffraction-limited point-spread func-
tion that sets the value of w (12–14). With the introduction
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of super-resolution imaging techniques, it is also now
possible to extend the range of available w below the
diffraction limit (15–17). Another exciting development,
made possible by increase in camera speed, has been the
generation of VLS-FCS data from imaging modalities (to-
tal internal reflection, single-plane illumination), in which
case the observation volume size is varied by binning
pixels (18,19).

The ultimate limit on FCS spatial resolution, however, is
not set by the size of the observation volume but by the
temporal resolution of the fluorescence signal (20–22).
The displacements of fluorophores over distances smaller
than w result in changes in fluorescence intensity—with
low contrast—and they are therefore captured in the
short-time regime of its ACF. Thus, even with a fixed-
size observation volume, FCS can resolve motions over a
range of length scales on either side of w. This capacity
was demonstrated in a cluster of studies exploring DNA
segment dynamics, in which the ACF was inverted to
directly recover the MSD of the segments (23–25). The
same ACF inversion procedure was used to study the effect
of crowding in membranes and polymer solutions (26,27).
A similar idea was later implemented for image correlation
spectroscopy, using a different mathematical scheme to
extract the MSD from spatiotemporal ACFs, and used to
characterize the anomalous behavior of green fluorescent
protein diffusion in cells (22,28). Of note, both these
MSD recovery schemes work under the assumption of a
process with a Gaussian propagator.

Following analytical work by Höfling and Franosch
(1,29), we recently showed that variation of the FCS
observation volume size can be combined with ACF inver-
sion to obtain the MSD of tracer particles for over five or-
ders of magnitude in time in good conditions (27). The
two model systems we studied (crowded dextran solutions
and agarose gels) behaved very differently in regard to the
superimposition of the apparent MSDs extracted from
ACFs obtained at different length scales (27). This dissim-
ilarity reflects a qualitative difference in the nature of the
propagator (a.k.a. distribution of displacements) of the un-
derlying process. Because only processes with Gaussian
propagators are expected to lead to a perfect superimposi-
tion of the apparent MSDs, the combination of VLS-FCS
with ACF inversion provides a test of the Gaussianity of
the diffusive process (27,30).

Here, we examine the signatures of several biologically
relevant diffusive processes (continuous-time random
walk, two-component diffusion, diffusing diffusivity, ob-
structed diffusion, and caged diffusion) in VLS-FCS
experiments. Because analytical solutions are only avail-
able in a small number of limiting cases, we performed
three-dimensional (3D) single-agent simulations to obtain,
for each process, an apparent MSD from the inversion
of the ACFs calculated for different w. By highlighting
the different signature of each process, we provide a
792 Biophysical Journal 116, 791–806, March 5, 2019
benchmark for model-independent interpretation of
inverted VLS-FCS experiments. We also explore the
relationship between the MSD obtained using the inver-
sion procedure and the real MSD and show in particular
that they are equal at short lag times regardless of the na-
ture of the propagator. This leads us to suggest possible
experimental directions to explore in future VLS-FCS
experiments.
Theory

General form of the ACF

The fluorescence signal I(t) obtained in an FCS
experiment is correlated in time to give the ACF, GðtÞ ¼
hdIðtÞdIðtþ tÞi=hIi2, where dIðtÞ ¼ IðtÞ� hIi. For a trans-
port process with propagator pð~r; tÞ, and a 3D Gaussian
observation volume (radius w, aspect ratio S) with normal-

ized profile Oð~rÞ ¼ e�2x2=w2

e�2y2=w2

e�2z2=ðSwÞ2 , the ACF
becomes

Gðt;wÞ ¼ 23

hcip3S2w6
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d~re�

2x2

w2 e�
2y2

w2 e
� 2z2
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where hci is the average fluorophore concentration.

ACF for an isotropic Gaussian diffusive process

If the propagator is both Gaussian and isotropic, it can be
expressed as a function of the MSD, hr2iðtÞ:
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The above equation is valid for any lag time t at which the
propagator is Gaussian. It is the basis for the inversion
procedure used in this work and illustrated in Fig. 1, where

h er2iðtÞ is obtained from G(t, w)/G(0, w) by inverting Eq. 3
(the tilde is used as a reminder that the apparent MSD ex-
tracted from the ACF might differ from the actual MSD
when the propagator is not Gaussian).

Relationship between ACF and MSD at short lag times

We show in this section that for short t, there is a simple
linear relationship between G(t, w)/G(0, w) � 1 and
hr2iðtÞ, whether the propagator is Gaussian or not. The



FIGURE 1 (a) Simple diffusion ACFs (analytical form), normalized by

amplitude at shortest lag time (black line: tmin ¼ 0, orange symbols:

tmin ¼ tD/500, purple symbols: tmin ¼ tD/50, green symbols: tmin ¼
tD/5). (b) Apparent MSDs obtained by inversion of the ACFs shown in

(a) are shown, displaying a departure from the real MSD at lag times

close to tmin. Schematic representations of the detection volume illustrate

particle displacements shorter and larger than the diffraction limit for lag

times below and above tD, respectively. (c) Apparent and actual MSDs

after normalization by 6Dt are shown. To see this figure in color, go

online.
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only necessary assumption is that the propagator is
isotropic, in which case it can be written p(r, t). At lag times
much smaller than the ACF characteristic decay time
(t � t1=2), particles have not yet diffused over distances
comparable to the observation volume radius; in other
words, hr2iðtÞ � w2. This means that pðr; tÞx0 for r >
w, in which case Oð~r þ~rÞ can be replaced in Eq. 1 by the
first two even terms of its Taylor series expansion in r/w
(the odd terms are left out because they disappear when
integrating over ~r). Performing the integration over ~r in
Eq. 1 then yields
Gðt;wÞ
Gð0;wÞx

R R R
d~r pðr; tÞ

 
1� r2x

w2
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Again, ignoring higher order terms in (r/w)2 and using the
equality hr2x i ¼ hr2y i ¼ hr2z i ¼ 1

3
hr2i valid for an isotropic

propagator, we get (for t � t1=2, or hr2i � w2)

Gðt;wÞ
Gð0;wÞx1� ð2þ 1=S2Þ

3

hr2iðtÞ
w2

: (5)

For a Gaussian process, this linear relationship between
ACF and MSD can be recovered directly from Eq. 3, by per-
forming a first-order Taylor expansion in hr2i=w2. A more
general form of this equation has been derived in (31).
Normalization of the ACF

When inverting an experimentally obtained ACF to obtain
the apparent MSD, the first step is to normalize its amplitude
to obtainG(t,w)/G(0,w).When the actual value ofG(0,w) is
unknown, the most straightforward solution is to perform the
inversion onG(t,w)/G(tmin,w), where tmin is the shortest lag
time at which a reliable value of the ACF can be obtained
(Fig. 1). Obviously, for the inversion to work properly, one
needs tmin � t1=2. If this condition is fulfilled, then at short
t (when Eq. 5 is valid), the apparent MSD isDer2EðtÞ ¼ �

r2
�ðtÞ �

�
1� hr2iðtminÞ

hr2iðtÞ
�
: (6)

This highlights an additional necessary condition for
the inversion procedure to work properly, which is that t

needs to be large enough for hr2iðtÞ[ hr2iðtminÞ. This is
illustrated in Fig. 1 for a simple diffusive process: h er2i
deviates from the actual hr2i by less than 5% as long as
t > 20tmin.
ACF for a truncated detection volume

In the simulations presented below, the observation volume
profile was truncated in all three space directions to reduce
computational times. Truncated observation volumes have
been considered before for either reflective or absorbing
boundary conditions (32,33). Here, we consider the case
that corresponds to our simulations, in which particles
become invisible when leaving the rectangular volume
with dimensions 2bw � 2bw � 2bSw centered on the obser-
vation volume but are allowed to diffuse in and out. For a
Gaussian propagator and Gaussian detection profile, the
ACF is then given by

GT t;w; bð Þ
GT 0;w; bð Þ ¼ gTx t;w; bð ÞgTy t;w; bð ÞgTz t; Sw; bð Þ; (7)
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and

aðt;wÞ ¼
�
1þ 4hr2iðtÞ

3w2

�1=2

: (9)

Although there is no simple analytical expression for
GT(t, w, b), Eq. 8 can be integrated numerically. The trun-
cated ACF (Eq. 7) becomes indistinguishable from the
ACF obtained in the absence of truncation (Eq. 1) for
b R 1 (Fig. 2). Because in our simulations b ¼ 7.5, we
consider in the following that GTðt;w;bÞxGðt;wÞ.

ACF for a regular array of detection volumes

To make our VLS-FCS simulations more efficient, we
calculated the signal from an array of observation volumes
FIGURE 2 (a) Respective sizes of the seven different 3D Gaussian

ellipsoidal observation volumes used in our simulations. (b) An array of

observation volumes is shown. (c) ACFs expected for simple diffusion in

a single observation volume (black line, Eq. 3) or for a regular array of

detection volumes (green symbols: b ¼ 2.5, purple symbols: b ¼ 5, orange

symbols: b ¼ 7.5, Eq. 11) are shown. The lower panel shows the corre-

sponding MSD (hr2i=ð6DtÞ, as obtained by inversion of the ACFs shown

in the upper panel). To see this figure in color, go online.
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spaced by 2bw in the focal plane and 2bSw along the optical
axis (Fig. 2). In this case, the ACF takes the form

GAðt;w; bÞ¼ 1

hci

�
R
d~r
R
d~r
P

i;j;kOijkð~rÞpð~r; tÞ
P

l;m;nOlmnð~r þ~rÞ	 R
d~r Oð~rÞ
2 ;

(10)

where Oijkð~rÞ is the intensity profile of the detection volume
centered at {2bwi, 2bwj, 2bSwk}. Eq. 10 can be simplified by
recognizing that only adjacent detectionvolumes are likely to
record correlated events. Thus, for an n � n � n array,

GAðt;w; bÞxn3 � ðG000ðt;w; bÞ þ 4G100ðt;w; bÞ
þ 4G110ðt;w; bÞ þ 2G001ðt;w; bÞ
þ 8G101ðt;w; bÞ þ 8G111ðt;w; bÞÞ;

(11)

where Gopq denotes the correlation between two detection
volumes spaced by D~R ¼ f2bwo;2bwp;2bSwqg:

Gopqðt;w; bÞ ¼ Gðt;wÞe�
4½ðobÞ2þðpbÞ2�

a2ðt;wÞ e
� 4ðqSbÞ2
a2ðt;SwÞ; (12)

where a2(t, w) is given by Eq. 9. This expression can be
derived in the same way as the ACF for two-focus FCS ex-
periments (34). For an elongated observation volume
(S ¼ 5), the first three terms in Eq. 11 dominate, where
the maxima for G100(t, w, b) and G110(t, w, b) are much
higher and occur at shorter lag times than for the other
terms. As can be expected, GAðt;w; bÞxGðt;w; bÞ for
t < (bw)2/(4D) (Fig. 2 c). Thus, in practice, simulations
done for an array of detection volumes can be used for
ACF inversion up to t ¼ b2t1/2 (in our case, x50t1=2).
METHODS

Generation of particle trajectories

We used a generic 3D single-agent continuum simulation procedure, writ-

ten in Cþþ, to generate particle trajectories and simulate VLS-FCS exper-

iments with observation volumes varying in size between w ¼ 0.3 and
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30 mm. Particles (usually 32) were placed at random positions within a 3D

rectangular simulation box with periodic boundary conditions. The box di-

mensions, a � a � 5a with a ¼ 450 mm, were chosen to be 15 times larger

than those of the largest observation volume considered. The particle con-

centration was thus c ¼ 5.8 � 10�16 M. A time step Dt ¼ 100 ns was

selected to ensure particle trajectories with sufficient resolution, even in

the smallest observation volume considered. Simulations were typically

run for 1011 time steps, i.e., a total experimental time T ¼ 104 s. For simple

diffusion, displacements at each step and in each spatial direction were

drawn from a continuous normal distribution with variance (2DDt)1/2

(diffusion coefficient D ¼ 500 mm2/s).
Anomalous and obstructed trajectories

The algorithm used to simulate simple Brownian diffusion was modified to

simulate five different diffusive processes, illustrated in Fig. 3. 1) Simula-

tions of continuous-time randomwalks (CTRWs)were carried out following

(35–37). Step lengths were drawn from the same continuousGaussian distri-

bution as for simple diffusion, but after each step, a wait time tw was added,

with duration drawn from a Pareto distribution, pðtwÞ ¼ atamin=t
1þa
w (tmin¼

10�9 s,a¼ 0.8). To allow for a range ofwait times, the time stepwas changed

for this diffusion process to 10�9 s, although intensities were saved only

every Dt ¼ 10�7 s. Also, for the CTRW, intensity traces were much shorter

(106 points in total), but the simulation was repeated 105 times to allow for

ensemble averaging of the data. 2) Two-component diffusion was simulated

by allowing tracer particles to switch between a fast (D¼ 500 mm2/s) and a

slow diffusive state (D0 ¼ 50 mm2/s). Transitions between states were

assumed to be Poisson processes with constant rates kon ¼ koff ¼ 0 or

kon ¼ koff ¼ 500 s�1. 3) Diffusing diffusivity was simulated following Chu-

bynsky andSlater (38). The diffusion coefficient of each particlewas allowed

to undergo a one-dimensional random walk between Dmin ¼ 0 mm2/s and

Dmax ¼ 500 mm2/s (with a random initial value within that range), with a

‘‘diffusion coefficient’’d¼ 5.5� 10�17m4/s3, chosen such that the full range

of possible diffusion coefficientswas explored by a given particle over a time

comparable to its characteristic diffusion time through one of the smaller

observation volumes. 4) The obstructed diffusion of particles hindered by

the presence of fixed obstacles was simulated as previously done in 2D by

Saxton (35). Fixed reflective cubic obstacles with dimensions 0.75 mm

were placed randomly on a cubic lattice at a volume fraction f ¼
0.310 just below the percolation limit (f* ¼ 0.3116). 5) Caged diffusion

in cubic 1 mm corrals separated by semipermeable barriers was simulated

as done in 2D in (12,39). Particles could cross barriers only with probability

p¼ 0.005 and were reflected otherwise. For the obstructed and caged diffu-

sion models, the value of bwas changed very slightly for the smallest obser-

vation volumes to avoid always placing their center in the same position

within the cubic cells used to generate the obstacles.
MSD and non-Gaussian parameter

Both the second moment (hr2i, MSD) and fourth moment (hr4i) of the par-
ticle displacement were calculated from particle trajectories using two
FIGURE 3 Illustration of the different models considered, showing short two

whereas pink dots signal a wait time before taking the next step. The halos aro

step is drawn. The color of the halos represents either the value of the diffusio

this figure in color, go online.
separate sampling times. For the first 107 steps, particle positions were

saved at each step (every 100 ns), and from these hr2iðtÞ and hr4iðtÞ
were calculated up to t ¼ 1 s. After 107 steps, positions were saved only

every 1 ms, and hr2iðtÞ and hr4iðtÞ were calculated from this parsed data

for t > 1 ms. The moments calculated with different sampling times

were stitched together to give data sets spanning the full explored time

range, t ¼ 100 ns to 104 s. The non-Gaussian parameter, b, was then calcu-

lated according to its definition:

bðtÞ ¼ d

d þ 2

hr4iðtÞ
½hr2iðtÞ�2 � 1; (13)

where d ¼ 3 is the number of spatial dimensions (1).
Computation of the ACFs

A set of seven ACFs was calculated from the same particle trajectories for

3D Gaussian detection volumes with 1/e2 radii, wi (i ¼ 1–7), ranging from

300 nm to 30 mm and equally spaced on a log scale. The aspect ratio was

kept the same for all detection volumes: S ¼ 5, a typical value for confocal

observation volumes. For the ACF to converge, the fluorescence trace must

contain a sufficient number of ‘‘events,’’ that is, a sufficient number of par-

ticles must have diffused through the observation volume. The number of

events is ni z cVeffT/tD,i, where the effective observation volume is

Veff ¼ p3=2Sw3
i and the average residence time of the particles in this

volume is tD;i ¼ w2
i =ð4DÞ. Thus, ni z 4p3/2SDcTwi. Although ni is accept-

able in the case of the largest observation volume (n7¼ 58), this is no longer

true for smaller observation volumes (n1 < 1). To circumvent this issue, the

simulation box was split into smaller boxes of size 2bwi � 2bwi � 2bSwi,

with b ¼ 7.5, and a detection volume placed at the center of each of these

smaller boxes (Fig. 2 b). This effectively increased the number of events by

a factor a/(2bwi)
3 and insured that particle noise was low for all detection

volume sizes. For each wi, the fluorescence intensity collected for a particle

placed at (x, y, z) was thus calculated as

f iðx; y; zÞ ¼ Be
�2Modðx;bwiÞ2

w2
i e

�2Modðy;bwiÞ2
w2
i e

�2Modðz;bSwiÞ2
S2w2

i ; (14)

where Mod(x, bwi) is the remainder of the division of x by bwi. We used a

finite value of B¼ 1 for the molecular brightness of the particles (defined as

the average number of photons per seconds registered for a molecule placed

at the center of the observation volume—this constant parameter drops

from the expression of the ACF because of the hIi2 normalization). How-

ever, it is important to note that using Eq. 14, i.e., equating the measured

intensity to its average value, f i, means that we neglected photon noise.

Thus, in effect, the ACFs we obtained have the same quality as those ex-

pected for molecules with infinite molecular brightness (the effect of photon

noise, i.e., the consequence of having a finite molecular brightness, is dis-

cussed in the Supporting Materials and Methods and illustrated in Fig. S3).

At each simulation step, s, and for each detection volume size, wi, the fluo-

rescence intensity emitted by each particle was calculated using Eq. 14, and
-dimensional trajectories. Successive positions are marked by black dots,

und each position represent the Gaussian distribution from which the next

n coefficient (a–e) or in which cage the particle is at that time (f). To see

Biophysical Journal 116, 791–806, March 5, 2019 795



Stolle and Fradin
individual particle intensities were summed to give the total intensity,

Fi(sDt). At the end of the simulation, both the original and binned data

were correlated using a discrete fast Fourier transform to obtain the ACF

between 10�7 and 1 s and 1 ms and 103 s, respectively. A symmetric

normalization procedure was used to correct for the discrete nature of the

correlation, imposing that the numerator and denominator of the ACF are

calculated from the same number of points (40,41). See the Supporting Ma-

terials and Methods for more details on the computation of the ACFs.
ACF inversion

An apparent MSD, h er2iðtÞ, was calculated from each ACF using an

inversion procedure justified in the case of Gaussian diffusion (23,26).

Specifically, the amplitude of the ACFs was first normalized to 1 using

G(Dt, w), after which Eq. 3 was solved for hr2i at each lag time, t, to obtain

h er2iðtÞ.
ACFs were also fitted to the general expression derived for a Gaussian

anomalous process with hr2ifta (1,42):

GðtÞ ¼ 1

N

�
1þ

�
t

tD

�a��1�
1þ 1

S2

�
t

tD

�a��1=2

: (15)

RESULTS

We performed 3D single-agent simulations for different
diffusive processes and characterized the obtained particle
trajectories in two different ways. First, we calculated the
MSD of the particles, hr2iðtÞ, the non-Gaussian parameter,
FIGURE 4 Results of the VLS-FCS simulations for simple diffusion (D¼ 500

(colored symbols: simulations; black lines: fit of Eq. 15 to the simulated data—

volumes). The same ACFs, with lag time normalized by t1/2, are shown in the ri

the process. (b) The apparent anomalous exponent obtained from the fit of the

expected a ¼ 1 value for simple diffusion. (c) Upper panel: apparent diffusi

(w2 ¼ 0.65 mm), which has the expected constant value for several decades in

from the inversion of all the ACFs shown in (a) and compared to the actual diff

(black line). Empty symbols show the diffusion law (i.e., the value of w2/(4t1/2)

lated from the trajectories (black line) and expected b¼ 0 value for simple diffus

(left) and t ¼ 10�2 s (right) are shown. Lines are fitted to a Gaussian distributi
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b(t), and the distribution of displacements, P(x, t), directly
from the trajectories (represented by black lines or symbols
in Figs. 4, 5, 6, 7, 8, 9, 10, and 11). Second, we simulated the
result of VLS-FCS experiments, generating ACFs for
observation volumes ranging in size from w ¼ 0.3 to
30 mm (ACFs and derived parameters are represented by
colored symbols in Figs. 4, 5, 6, 7, 8, 9, 10, and 11). Each
ACF was inverted according to the procedure suggested
by Shusterman et al. (23,24) to yield an apparent MSD,

h er2iðtÞ, to be compared to the actual MSD. ACFs were
also fitted to the general expression often used to assess
anomalous diffusion processes, Eq. 15, to construct
the diffusion law and recover an apparent anomalous
exponent, a.
Simple Brownian diffusion

We first considered simple Brownian diffusion to check how
faithfully our simulations could reproduce analytical results
(Fig. 4). As calculated from particle trajectories, the ex-
pected hr2i ¼ 6Dt and b ¼ 0 (black lines in Fig. 4, c and
d) are obtained with good precision up to t ¼ 10 s. The
ACFs obtained from the simulated VLS-FCS data have
the expected self-similar form, with an anomalous exponent
ax1 (Fig. 4 b) and a normal diffusion law (w2 f t1/2,
Fig. 4 c). For the larger observation volumes, the effect of
having fewer detection events (fewer particles crossing the
mm/s2). (a) ACFs obtained for different observation volume sizes are shown

the fit is behind the data and difficult to see except for the largest detection

ght panel. Their perfect superposition is a reflection of the self-similarity of

ACFs in (a) is shown. The dashed line is a guide for the eye showing the

on coefficient, h~r2i=ð6tÞ, calculated from the inversion of a single ACF

time around t1/2. Lower panel: apparent diffusion coefficient calculated

usion coefficient, hr2i=ð6tÞ, obtained directly from the particle trajectories

as a function of t1/2 for each ACF). (d) The non-Gaussian parameter calcu-

ion (dashed line) is shown. (e) Distributions of displacements for t¼ 10�6 s

on. To see this figure in color, go online.



FIGURE 5 Results obtained for particles under-

going a CTRW (wait time drawn from a Pareto dis-

tribution with a ¼ 0.8) in which all quantities

(ACFs, MSD, non-Gaussian parameter, distribu-

tion of displacements) have been calculated in

the same way as for all the other models, that is,

taking both a time and an ensemble average over

particles. In this particular case, the simulation

was repeated 105 times but for only 106 steps

(note the smaller lag-time range in (a) compared

to other models), and the ACFs shown here are

average of the ACF calculated for each measure-

ment. (a) ACFs (color code is the same as in

Fig. 4)); (b) inverted ACFs, normalized to provide

a visualization of the apparent diffusion coefficient

and compared to the diffusion coefficient obtained

from particle trajectories; (c) apparent anomalous

exponent a obtained from the fit of the ACFs in

(a); (d) non-Gaussian parameter; and (e) represen-

tative distribution of displacements are shown. To

see this figure in color, go online.
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observation volume during the simulation) and the value of
the ACF around t1/2 averaged over a smaller number of time
intervals than for smaller volumes is manifest in the larger
noise present in the corresponding ACF, especially at larger
lag times. As a result, the values of a and the diffusion law
have a visibly larger associated error for the three largest
observation volumes, and we expect this to remain true for
all the simulations presented here, which were performed
FIGURE 6 Results for the same CTRW simula-

tion as in Fig. 5 but in which the ACFs (a) and

derived apparent anomalous exponents (c), MSD

(b), non-Gaussian parameter (d), and distribution

of displacements (e) have all been calculated using

only an ensemble average over particles. To

achieve this, the simulation was repeated 105 times

but only for 106 steps (the same particle trajectories

were used as those used to generate the ACFs in

Fig. 5), and each point in the MSD or ACFs was

calculated by averaging over different repeats of

the simulation rather than for different times for a

single simulation. To see this figure in color, go on-

line.
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FIGURE 7 Two-component diffusion for popu-

lations of tracers with different diffusion coeffi-

cients (D ¼ 500 mm2/s, D0 ¼ 50 mm2/s, f ¼ 0.5)

not allowed to interchange (kon¼ koff¼ 0). In these

conditions, we expect and observe a linear MSD

with Davg ¼ 275 mm2/s and a linear apparent

MSD at large lag times with apparent diffusion co-

efficient DN ¼ 78 mm2/s, and a constant non-

Gaussian parameter is b ¼ 0.67. Panels are the

same as in Fig. 5: (a) ACFs, (b) inverted ACFs,

(c) apparent anomalous exponent, (d) non-

Gaussian parameter, and (e) representative distri-

butions of displacements. To see this figure in

color, go online.
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in the same conditions (same concentration of particles and
same total simulation time). Performing the ACF inversion
in this simple Gaussian case, in which we should have
h er2i ¼ hr2i at all t, shows that three separate factors affect
798 Biophysical Journal 116, 791–806, March 5, 2019
the quality of h er2i. 1) Because of the finite simulation time,
for t > 1 s, the ACFs (and therefore h er2i) become noisy. 2)
Because simulations were done for regular arrays of detec-
tion volumes spaced by 15w, a small positive correlation
FIGURE 8 Two-component diffusion (D ¼
500 mm2/s, D0 ¼ 50 mm2/s) for particles allowed

to interchange (kon ¼ koff ¼ 550 s�1). As in the

non-interchanging case, the actual MSD is linear

in time with Davg ¼ 275 mm2/s, but for interchang-

ing particles, a crossover between non-Gaussian

and Gaussian diffusion is expected (and observed)

around tc ¼ 1 ms and wcx1 mm. Panels are the

same as in Fig. 5: (a) ACFs, (b) inverted ACFs,

(c) apparent anomalous exponent, (d) non-

Gaussian parameter, and (e) representative distri-

butions of displacements. To see this figure in

color, go online.



FIGURE 9 Results from simulations of particles

undergoing diffusing diffusivity, with a diffusion

coefficient diffusing between Dmin ¼ 0 mm2/s and

Dmax ¼ 500 mm2/s with a diffusion coefficient

d ¼ 5.5 � 107 mm4/s3. Defining features of this

model are a linear MSD (with Dapp ¼ 250 mm2/s)

and a distribution of displacements that is near

exponential at short lag times (below tc ¼ 2 ms).

Panels are the same as in Fig. 5: (a) ACFs, (b) in-

verted ACFs, (c) apparent anomalous exponent, (d)

non-Gaussian parameter, and (e) representative

distributions of displacements. To see this figure

in color, go online.

Anomalous Diffusion in Inverted VLS-FCS
(�0.1% of the ACF amplitude), resulting in a dip in
h er2iðtÞ=6t, is observed around (15w)2/4D ¼ 225tD (see
ACF for a Regular Array of Detection Volumes; Fig. 2).

3) The apparent MSD h er2i differs from hr2i at short lag
times (t < 50Dt) because of the imperfect normalization
of the ACFs, which were just divided by their value at
Dt¼ 10�7 s (see Normalization of the ACF; Fig. 1). Despite
these limitations, considering only the inverted ACFs
FIGURE 10 Results from simulations of

particles undergoing obstructed diffusion, with

d ¼ 500 mm2/s, and cubic obstacles of size

L ¼ 0.75 mm at a volume fraction f ¼ 0.31.

Although the diffusive process is close to

Gaussian, with the apparent MSD obtained from

ACF inversion close to the actual MSD, a clear

crossover is observed around tc ¼ 0.4 ms. Panels

are the same as in Fig. 5: (a) ACFs, (b) inverted

ACFs, (c) apparent anomalous exponent, (d) non-

Gaussian parameter, and (e) representative distri-

butions of displacements. For this model, an

additional simulation was run with a finer time

step in order to add another ACF for a smaller

observation volume. To see this figure in color,

go online.

Biophysical Journal 116, 791–806, March 5, 2019 799



FIGURE 11 Results from simulations undergo-

ing caged diffusion (D ¼ 500 mm2/s, cubic cages

L ¼ 1 mm) with a small escape probability

(p ¼ 0.005). As for obstructed diffusion, the pro-

cess is near Gaussian, with a crossover around

tc ¼ 0.3 ms. Panels are the same as in Fig. 5: (a)

ACFs, (b) inverted ACFs, (c) apparent anomalous

exponent, (d) non-Gaussian parameter, and (e)

representative distributions of displacements. For

this model, an additional simulation was run with

a finer time step in order to add three ACFs for

small observation volumes (red, purple and light

blue curves in (a)). To see this figure in color, go

online.

Stolle and Fradin
between 50Dt and 10tD for each ACF results in an apparent
MSD that is equal to the actual MSD for five decades in
time, from below 10�5 s to beyond 10�1 s.
Continuous-time random walk

We next simulated an anomalous diffusion model, a CTRW,
in which a wait time tw drawn from a power-law distribution
f1=t1þa

w (a ¼ 0.8) was introduced between each step.
CTRW processes are nonergodic (36,43). As a consequence,
the MSD obtained by performing both a time and ensemble
average is linear in time (Fig. 5). However, when performing
only an ensemble average, the MSD is anomalous (hr2ifta;
Fig. 6). Our simulation shows that the non-Gaussian param-
eter also depends on how averages are performed: it is high
(because of a large number of immobilized particles) and
decays as a power law when performing a time average
(Fig. 5 d) but has a low and almost constant value when
performing only an ensemble average (Fig. 6 d). To check
whether ergodicity can also be detected from FCS experi-
ments, we calculated ACFs in two ways (see the Methods;
Supporting Materials and Methods for details). First, we
performed the averaging necessary to calculate the ACFs
in the usual way by performing a time average on the signal
(Eq. S2), which itself already represents an ensemble
average over the different particles present in the observa-
tion volume. The results of this combined time and
ensemble-average integration for particles undergoing a
CTRW are shown in Fig. 5. Second, we generated ACFs
by avoiding any time of time average, averaging over
many different repeats of the experiment instead of over
800 Biophysical Journal 116, 791–806, March 5, 2019
time (Eq. S4), as also done in (43). The results of this purely
ensemble-average integration are shown in Fig. 6. Whereas
ACFs calculated in these two different ways are similar for
ergodic processes, we see a clear difference for the CTRW
process. The time-averaged ACFs never stabilize (their
shape depends on the length of the measurement), a reflec-
tion of the aging of the sample (44). Their shape also de-
pends on the size of the observation volume (with a

increasing from 0.5 to 1 as w increases). The apparent
MSD extracted by inversion of these ACFs differs from
the actual linear MSD and from one another (consistent
with the fact that the process is strongly non-Gaussian),
with h er2ift0:4 over a large range of lag times. Of note,
however, apparent and actual MSD coincide when
t � t1=2 (a regime that can be observed only for the larger
detection volumes), as expected from the calculations
presented in Relationship between ACF and MSD at Short
Lag Times. In contrast, the ensemble-average ACFs
(Fig. 6) are well behaved and self-similar, with an apparent
anomalous exponent ax0:7 close to the actual a ¼ 0.8.
Accordingly, the inversion of the ensemble-averaged
ACFs gives apparent MSDs that largely capture the po-
wer-law dependence of the actual MSD (except for those
curves with very short t1/2, for which the normalization
does not work well).

Our simulations confirm the result from previous 2D
simulations, which had shown that for a CTRW, the anom-
alous exponent recovered from FCS experiments using
Eq. 15 can be significantly different from the real anomalous
exponent (36,45). In addition, our simulations emphasize
that the apparent a depends strongly on the size of the
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observation volume (Fig. 5 c), a phenomenon directly linked
to the scale dependence of the non-Gaussian parameter
(Fig. 5 d). Calculating the ACF as an ensemble average
only (as first done in (43)) leads to much better-behaved
results, with stable self-similar ACFs and an apparent anom-
alous exponent approaching the actual one.
Two-component diffusion

We next examined three cases in which tracer particles
could switch (with constant rates kon and koff) between two
modes with diffusion coefficients D and D0.

The simplest case is that of two separate populations of
tracers (fractions f and f0 ¼ 1 � f) that are not allowed to
interchange (kon ¼ koff ¼ 0). Although a simple analytical
solution exists in this case, we still performed a simulation,
whose results are shown in Fig. 7. For such a process, the
MSD is linear in time, with hr2i ¼ 4Davgt at all lag times
with Davg ¼ fD þ (1 � f)D0. Yet, the propagator associated
with the process is non-Gaussian (it is the sum of two
Gaussians). The non-Gaussian parameter has a constant
value, b ¼ f ð1� f ÞðD� D

0 Þ2=D2
avg. The ACFs (a weighted

sum of the ACFs that would be obtained from either
population of tracers) are self-similar, with an apparent
ax0:8 in the conditions of our simulation. Because of the
non-Gaussian nature of the process, h er2iðtÞ coincides with
hr2iðtÞ only for t � t1=2. For t[ t1=2, all the h er2iðtÞ
instead approach a simple diffusion MSD with diffu-
sion coefficient DN ¼ DD

0
=ðð1� f ÞD3=2 þ fD

03=2Þ2=3. The
diffusion law is linear in time, with an apparent diffusion
coefficient comprised between Davg and DN.

We then considered the general case, in which particles
can switch back and forth between two simple diffusion
modes with Poisson statistics (kon ¼ koff ¼ 500 s�1). In
this scenario (one of the few considered before in the
context of VLS-FCS (46,47)), we expect a crossover around
the relaxation time, tc ¼ 1/(kon þ koff). In the ‘‘fast diffu-
sion’’ regime (t � tc), tracers remain in the same state
while crossing the observation volume and behave as two
separate populations. In the ‘‘fast reaction’’ regime
(t[ tc), tracers switch state many times while crossing
the observation volume and appear to be undergoing simple
diffusion with diffusion coefficient Davg. Meanwhile,

b passes from f ð1� f ÞðD� D
0 Þ2=D2

avg to 0 around tc, and

a becomes subdiffusive below wc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Davgtc

p
(Fig. 8).

As in the previous case, the actual MSD is linear in time
at all lag times. However, this time the propagator is

Gaussian for t > tc; thus, h er2i coincides with hr2i both
below t1/2 and above tc and tends toward DN in between.

Notably, for large w > wc (i.e., t1/2 > tc), h er2i ¼ hr2i at
all lag times.

Finally, we considered the limiting case in which tracers
transiently experience immobilization (D0 ¼ 0). The signa-
ture of this ‘‘stick-and-diffuse’’ model has been considered
in the case of single-scale FCS experiments (48). It differs
significantly from a CTRW because the distribution of
immobilization times is exponential. Its VLS-FCS signature
is no different from that of the general case, with a crossover
from anomalous and non-Gaussian to Gaussian around
the crossover time tc ¼ 1 ms (Fig. S1) but with higher
non-Gaussianity (b ¼ (1 � f)/f at small t), lower Davg ¼
fD, and DN ¼ 0.
Diffusing diffusivity

As another example of a diffusive process with linear MSD
but non-Gaussian propagator, we considered the diffusive
diffusivity model (38). Particles were given a diffusion
coefficient that varied in time according to a one-dimen-
sional random walk between Dmax ¼ 500 mm2/s and
Dmin¼ 0 mm2/s. We then expect—and observe—a crossover
around tc ¼ (Dmax � Dmin)

2/(2d)¼ 2 ms. The MSD is linear
at all lag times, with apparent diffusion coefficient Dapp ¼
(Dmax � Dmin)/2 and a switch from non-Gaussian
(bx0:35) to Gaussian (b ¼ 0) behavior around tc
(Fig. 9). Below tc, the distribution of displacements ap-
proaches an exponential distribution, as previously noted
by Chubynsky and Slater (38). Accordingly, the ACFs
display an anomalous shape for w<wcx1 mm, with a ap-
proaching 0.9 at the smallest detection volumes. As for
the two-component models, h er2i coincide with hr2i both
for t � t1=2 and t[ tc. Overall, the signature of
diffusing diffusivity (which should be a more realistic model
of diffusion for proteins in cells than the pure two-compo-
nent models) resembles that of a two-component model
but with fewer marked anomalous features.
Obstructed diffusion

Another model often invoked to account for anomalous
diffusion in complex media is obstructed diffusion, in which
the motion of the tracers is restricted by the presence of
immobile obstacles. If the obstacle concentration is below
the percolation limit, anomalous diffusion occurs as a tran-
sient regime between unhindered short-scale diffusion and
large-scale effective diffusion. We simulated obstructed
diffusion using randomly placed cubic obstacles of size L
at a volume fraction f slightly below the percolation limit
(f* ¼ 0.3116 in this geometry). As seen before in 2D sim-
ulations (29,49), the apparent diffusion coefficient of the
tracers switches from their actual diffusion coefficient
(D ¼ 500 mm2/s) to an effective value (DN ¼ 360 mm2/s
in our conditions) around tc ¼ L2=ð6Df2=3Þx0:4 ms
(Fig. 10). This transient anomalous regime is visible in the
ACFs around wc ¼ L=f1=3x1mm, where a has a minimum.
Just above tc, a small peak is observed for the non-
Gaussianity factor (a similarly weak non-Gaussianity was
shown for 2D simulation of obstructed diffusion at large
lag time (50)). Accordingly, h er2i deviates very slightly
Biophysical Journal 116, 791–806, March 5, 2019 801
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from hr2i in that region for curves for which t1/2 is around
or below tc. We expect the same signature to be visible in
more realistic cases in which obstacles would have a range
of shapes and sizes, i.e., a near-Gaussian process with a
crossover from faster to slower diffusion, only with a larger
crossover range.
Caged diffusion

The last considered model was caged diffusion, in which
tracer particles diffuse through an array of semipermeable
cages. As for obstructed diffusion, a transitory anomalous
regime visible in the ACFs is expected (51–53). We simu-
lated caged diffusion for regularly arranged cubic cages of
size L ¼ 1 mm and a probability p ¼ 0.005 to cross the
barriers between cages when encountering them (Fig. 11).
We observe the expected crossover between short-term
and long-term diffusion coefficients, with an MSD that
more or less follows the approximate 2D analytical expres-
sion derived by Destainville et al. (i.e., a switch from
microscopic to effective diffusion coefficient around the
relaxation time of the particles in the cages) (39,52,54).
Interestingly, the non-Gaussian parameter displays two
small amplitude peaks. The first, found below tc ¼ (L)2/
6D ¼ 0.3 ms, corresponds to the particles equilibrating in
a cage. The second corresponds to the particles leaving
the cage. Yet as b remains small, h er2ixhr2i at all lag times
(the strongest deviation is observed just above tc). ACFs
with wxL reflect the imperfect confinement of the particles
in the cage by displaying two separate timescales, and
therefore a < 1. As in the obstructed diffusion case, we
expect the same signature to be visible in more realistic
cases with cages with a range of shapes and sizes, only
with a larger crossover region.

An interesting particular case is that of impermeable
cages (p ¼ 0). In practice, FCS experiments would be diffi-
cult to perform for such a system because confined particles
photobleach rapidly, yet it is interesting to think about the
signature of such processes. In this case, the apparent diffu-
sion coefficient falls all the way to 0 above tc, and instead of
a second peak, b goes to negative values (Fig. S2). The dis-
tribution of displacements has a hard limit at x ¼ L, eventu-
ally assuming a triangular shape at large t. As w increases,
the ACFs rapidly assume a shape reflecting confinement,
with a > 1 and with a characteristic decay time t1/2 that
no longer depends on w.
DISCUSSION

Each of the models considered in this work is representative
of a class of diffusion processes relevant to biological sys-
tems. CTRW and two-component diffusion are plausible
models of molecules interacting with slow or immobile
binding partners, whereas diffusing diffusivity, obstructed
diffusion, and caged diffusion reflect different crowding sce-
802 Biophysical Journal 116, 791–806, March 5, 2019
narios. In cells, crowding and molecular interactions both
play a part in protein mobility. Our simulations highlight
the signature of these different processes in VLS-FCS
experiments.

Until recently, the information contained in VLS-FCS
experiments has been exploited via the dependence of t1/2
on w2 (diffusion law), initially introduced to distinguish
simple diffusive processes (t1/2 f w2) from photophysical
processes (t1/2 independent of w) (55). This model-indepen-
dent approach has also proved useful to help distinguish
between different types of diffusion (12,14,20,56). For
example, in 2D, caged diffusion and dynamic partitioning
into domains result in negative and positive t ¼ 0 intercepts
of the diffusion law, respectively (20,51). However, an
important limitation of the diffusion law, which our simula-
tions illustrate, is that it coincides with the MSD only for
Gaussian or near-Gaussian processes. In more complex
cases (CTRW, two-component diffusion), the diffusion
law relates to the MSD in a nontrivial and ill-defined way,
and thus one must make assumptions about the underlying
diffusion process to extract information from it (a problem
already pointed out in the context of imaging FCS (57)).

Ultimately, the issue with the diffusion law is that it col-
lapses the rich information contained in the shape of the
ACF into a single value, t1/2. In contrast, analysis of the
detailed shape of the ACFs obtained at different w can
give a lot of information about the underlying process (as
shown for obstructed diffusion (29), two-component diffu-
sion (46,47), and diffusion in phase-separated membranes
(58)). However, shape analysis via fitting is model depen-
dent. This is why the inversion procedure introduced by
Krichevsky et al. to obtain the MSD from the ACF (see
ACF Inversion ), and its combination with length-scale
variation as first considered by Höfling et al. (29), is so
powerful. It uses the full range of information contained
in the ACFs to allow a precise characterization of the diffu-
sion process over many decades in time in a model-indepen-
dent manner.

By using the same framework to study different classes of
diffusion models and simulate VLS-FCS experiments, we
provide here a library of inverted ACFs and thus an unbiased
way to interpret the results of such experiments. Although
comparisons of different anomalous diffusion models using
simulations are available (notably a comparison of frac-
tional Brownian motion and CTRW (36)), they have not
yet been examined from the point of view of inverted
VLS-FCS. All the considered models (except for simple
diffusion) resulted in ACFs with ‘‘anomalous’’ behavior,
i.e., with a < 1 for at least some of the observation volume
sizes considered. However, they varied greatly with respect
to several essential features that can be accessed through
a VLS-FCS experiment (see Table 1 for a summary),
namely 1) self-similarity versus presence of a characteristic
timescale (visible as a crossover in the inverted ACFs),
2) linearity of the MSD, and 3) Gaussianity of the



TABLE 1 Characteristics of the Different Classes of Models Considered in This Work plus Fractional Brownian Motion

Model Class Characteristic Timescale(s) MSD Propagator

Simple diffusion no (self-similar) linear Gaussian

Fractional Brownian motion no (self-similar) power law Gaussian (nonlinear time

dependance of the variance)

CTRW no (ensemble-averaged

ACF self-similar), but aging

produces non-self-similar

time-averaged ACF

linear (time average),

power law (ensemble average)

non-Gaussian

Two-component diffusion Relaxation time, tc ¼ 1/(k01 þ k10) linear sum of two Gaussians well

below tc, Gaussian well above

Diffusing diffusivity Time required to explore diffusion

space, tc ¼ (DM � Dm)
2/2d

linear quasiexponential well below tc,

Gaussian well above

Caged diffusion Cage relaxation time, tc ¼ L2/(6D),

escape time t0c ¼ tc/p

linear well below tc
and well above t0c

Gaussian well below tc and

well above t0c
Obstructed diffusion Average time before obstacle

encounter, tc ¼ L2/(6Df2/3))

linear well below

and well above tc

Gaussian well below and

well above tc
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distribution of displacement. All these models are non-
Gaussian, an important characteristic observed in many
biological systems (59), e.g., RNA-protein particle diffusion
in cells (60). Of particular interest, the models involving
interchange between different diffusion modes with Poisson
statistics (two-component models) or via a continuous
diffusive process (diffusing diffusivity) exhibit an ‘‘anoma-
lous, yet Brownian’’ behavior (non-Gaussian propagators
associated with a ‘‘normal’’ linear MSD), a feature observed
in many biologically relevant contexts (for example, diffu-
sion in crowded polymer solutions (27) or actin networks
(61)). This linear behavior of the MSD can be observed in
inverted VLS-FCS, whereas the diffusion law has an
apparent power-law dependence on time (Figs. 8 and 9).

In addition to the features mentioned above that can be
retrieved by inversion of the VLS-FCS data, our study
also highlights the possibility of investigating the ergodicity
of the process by calculating purely ensemble-averaged
ACFs, meaning that each point G(t) in the correlation
function is obtained as an average of the correlation between
pair of intensities (I(0) and I(t)), each of which is recorded
for the same times (t ¼ 0 and t ¼ t) but for different simul-
taneous repeats of the experiment, for example, at different
positions in the same sample. This is not currently easy to
achieve experimentally because it would require acquiring
many fluorescence traces simultaneously. However, the
recent advances in camera performance that have permitted
the development of imaging FCS modalities (e.g., spinning-
disk confocal FCS, total internal reflection FCS, single-
plane illumination FCS) suggests that it might one day
become possible. Collecting imaging FCS data for a
200 � 200 pixel field of view in a homogeneous sample
(4 � 104 repeats of a single FCS measurement) would result
in a quality of the ensemble-averaged ACF around t ¼ 1 ms
(i.e., for time bins of 0.1 ms) equivalent to that obtained for
an ACF time-averaged over 4 s. This should be enough to
detect clear violation of ergodicity such as those expected
for the CTRW model.
It has been pointed out that a limitation of the inversion
procedure (the fact that it faithfully returns the MSD only
for Gaussian processes) could be turned to an advantage
in the case of VLS-FCS because it can be used as a test
for Gaussianity (27,30). Indeed, for all the models consid-
ered here, at those lag times for which the process is not
Gaussian (i.e., where bðtÞs0), we observe a spread in
the value of the inverted ACFs obtained for different w
(i.e., h er2i depends on w). Moreover, the further b(t) is
from 0, the further the family of inverted ACFs deviate
from one another. More than a simple test for Gaussianity,
an inverted VLS-FCS can thus inform on the range of lag
times over which the process is non-Gaussian and on how
far from Gaussian the process is.

Maybe the most interesting result from our study is that,
regardless of Gaussianity, the inversion procedure based on
Eq. 3 returns the actual MSD if t � t1=2. This can be
proven by performing a Taylor expansion of the ACF in
hr2i=w2 (as shown in Relationship between ACF and
MSD at Short Lag Times) and can be seen in for all the
models simulated here. The linear relationship existing be-
tween the ACF and the MSD at short lag time has been
noted before (31,62). However, we show here that this linear
regime can be greatly extended by increasing w. Performing
a single-point FCS experiment for a large detection volume
will allow recovering the actual MSD from z20Dt (where
Dt is the experiment’s time resolution) up to xt1=2=10,
whether the underlying process is Gaussian or not. The
MSD can then be retrieved for all kinds of diffusive pro-
cesses over several orders of magnitude in time (something
which we have previously observed for fluorescent beads
diffusing in gels (27)). Remarkably, the MSD can then
extend below the diffraction limit (a point that has been
made before eloquently (21,63)): correlations at timescales
shorter than tD come from fluctuations in the signal due to
displacements of the fluorophore within the detection
volume at length scales smaller than w. Thus, in FCS exper-
iments, the best strategy to retrieve information on processes
Biophysical Journal 116, 791–806, March 5, 2019 803
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at a short timescale may not be to physically achieve
subdiffraction-limited detection volume but instead to
work on achieving high-quality point-spread function for
larger detection volumes with a shape as close as possible
to a 3D Gaussian profile (ensuring the inversion procedure
faithfully returns the MSD at short lag time).

In practice, fully exploiting the rich information present
in VLS-FCS experiments will only be possible if the noise
levels in the ACFs are low. Two sources of noise are partic-
ularly relevant for FCS experiments: the shot noise due to
the Poissonian nature of photon detection and the particle
noise due to the limited number of detected events during
a single measurement (64). The effect of particle noise is
visible in the simulated ACFs at long lag times (as it would
be in experimental ACFs). It therefore greatly limits the
precision with which the MSD can be retrieved at these
timescales (see, e.g., Fig. 4 a; Fig. S3). On the other
hand, to clearly show the characteristic features of the
different models studied, the photon noise was not taken
into account in the simulations presented here (a simulation
taking into account photon noise is shown in Fig. S3).
Photon noise is large when the number of photons collected
per time bin is small, i.e., it becomes predominant at short
lag times. It will be a problem particularly when trying to
invert ACFs obtained for rapidly diffusing molecules and
small observation volumes. Photon noise can be reduced
by increasing the molecular brightness of the fluorophores.
Meanwhile, the issues with both photon and particle noise
can be alleviated by taking long measurements. This, how-
ever, requires the system to be sufficiently stable, a condi-
tion rarely met in living systems. A better solution, if one
needs to access the short lag-time region of the MSD,
could be to average many different measurements acquired,
ideally simultaneously, in the same sample. Another prac-
tical limitation is the photophysics of the dye (its effect on
the inversion is illustrated in Fig. S4) because it can pre-
vent a proper normalization of the amplitude of the
ACFs, an essential first step in the inversion procedure.
Unless this process can be accounted for with confidence,
it will be difficult to invert the ACF and recover the
MSD at the timescales at which photophysics occur. A bet-
ter solution in this case will be to use dyes—and condi-
tions—in which photophysics is absent or negligible.
There is no doubt that it is an experimental challenge to
produce data of high enough quality for the inversion pro-
cedure to work, although we have demonstrated it to be
possible for in vitro systems (27). However, should those
challenges be overcome, this work shows that a lot of
information about the nature of diffusive processes will
become available.
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1. Autocorrelation function calculation 

1a. Time-averaged autocorrelation function 

By definition, the autocorrelation function (ACF) of a signal !  is: 

    ! ,                  SI Eq. 1 

where the brackets usually denote temporal averaging.  
The numerator in SI Eq. 1 is a convolution, and the convolution of any two functions !  and !  can 

be rewritten as the inverse Fourier transform of the product of !  and ! , the Fourier transforms of 
!  and ! : 

   ! . 

As a result of our simulations, we obtain for each observation volume size a discrete list of !  intensities, 
! . Here !  is the time interval between two recordings of the intensity, and !  is an integer which can 
take any value between !  and ! . The temporal averaging of the signal was then done with a discrete sum, 
using symmetric normalization to improve accuracy at large lag-times (1,2): 

  ! .            SI Eq. 2 

In order to save computation time when calculating the numerator in SI Eq. 2, which is a discrete 
convolution over a limited time range, we used a Discrete Fourier transform (DFT). The Fourier 
transform of the signal was thus calculated as: 

    ! .                                SI Eq. 3 
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In order to avoid aliasing due to the DFT producing a periodic function of length ! , the time domain of 
the data was zero-padded so that !  had a length of ! .  

The denominator in SI Eq. 2 was calculated directly from the intensity data for each value of ! , after 
which !  was straightforwardly calculated by dividing the numerator by the denominator. 

1b. Ensemble-averaged autocorrelation function 

In some cases (for the CTRW model), in order to test the ergodicity of the diffusion process, a second 
ACF was calculated, by performing an ensemble average instead of a time average. In this case, a 
separate intensity trace, ! , was generated for each of !  particles (with j = 1 to N, and 
! ). The ensemble averaged ACF was then calculated (without performing a Fourier 
transform) as: 

                       ! .                               SI Eq. 4 

1. Schätzel, K., M. Drelle, and Stimac, 1988. Photon correlation measurements at large lag times: 
improving statistical accuracy. Journal of Modern Optics 35:711-718. 

2. Shi, X. And T. Wohland, 2010. Fluorescence correlation spectroscopy.  In Diaspro, editor, Nanoscopy 
and multidimensional optical fluorescence microscopy, CRC press.  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2. Stick-and-diffuse model 
 

Fig. 1. Two-component diffusion with D = 500 µm2/s and D' = 0 µm2/s (corresponding to the stick-and-
diffuse model). Panels are as in Figs. 5-11 in the main text: (a) ACFs, (b) MSDs, (c) anomalous exponent 
(d) non-Gaussian parameter, (e) distribution of displacements. The transition rates were kon = koff = 500 
s-1, thus f = 0.5. Then Davg = 250 µm2/s, D∞ =  0 µm2/s, and β = 1 at small . The characteristic time is 
!  ms, corresponding to !  ~ 1 µm. 

τ
τc = 1 wc



3. Diffusion in impermeable cages 

Fig. 2. Caged diffusion with D = 500 µm2/s, L = 1 µm and p = 0, corresponding to a case where the cages 
are completely impermeable. Panels are as in Figs. 5-11 in the main text. The ACFs converge very 
quickly to a form that has a very sharp decay ( !  ~1.4), with a characteristic decay time depending on the 
size of the cages rather than the size of the observation volume, and connected to the cage relaxation time, 
𝜏c =  L2/6D = 0.33 ms here. 

α



4. Effect of photon noise on the inverted ACFs 
 

Fig. 3. Effect of photon noise on the inversion of the ACFs. All the simulations presented in this figure 
were done taking into account photon noise, i.e. drawing the value of the intensity for each !  
time bin from a Poisson distribution with average value calculated using Eq. 14 in the main text.  (a,b) 
Result of simulations done for particles undergoing simple diffusion (same parameters as in Fig. 4 in the 
main text), with a molecular brightness B = 10 photons/time bin (a) or B = 0.01 photons/time bin. The 
upper panels show the ACFs obtained for !  (red curve), !  (blue curve) and !  
(green curve), each normalized to the average of the first 5 points of the ACF. The three middle panels 
show the residuals obtained when fitting the ACF with a simple diffusion model. The lower panels show 
the inverted and normalized ACFs (the black curve shows the actual MSD as calculated from the 
trajectories). Note that a larger range of inverted data is shown here (compared to the results shown in the 
main text), to better show the limits of the useful inversion range. The effect of photon noise is visible for 
the lowest value of B, for lag times ! , where the correlation is calculated using small !  
time bins, and by perturbing the proper normalization of the ACF it reduces the range of lag time (at short 
lag times) where the inversion procedure works. The photon noise is no longer visible for !  when 
larger !  time bins are used. With a multi-tau correlation scheme (rather than the 2-tau correlation 
scheme employed here), the photon noise would gradually decrease as !  increases. Particle noise is visible 

Δt = 10−7s

w = 0.3μm w = 3μm w = 30μm

τ < 5m s Δt = 10−7s

τ > 5m s
10−3s

τ



for the larger observation volumes at long lag times. (c) Result of simulations performed for particles 
undergoing diffusing diffusivity (same parameters as in Fig. 9 in the main text), for different values of ! , 
showing the gradual increase in statistical noise for the inverted ACFs as !  decreases. This increase in 
statistical photon noise is accompanied by a reduction of the range accessible for proper ACF inversion at 
short lag times. Despite this noise, the characteristic dip observed for the smallest observation volume is 
still clearly visible for B = 0.01 photons/time bin. 

5. Effect of fluorophore photophysics on the inverted ACFs 
 

Fig. 4. Inversion of ACFs containing a photophysics term. ACFs for a range of detection volumes 
c o m p r i s e d b e t w e e n 0 . 3 a n d 3 0 µ m w e r e g e n e r a t e d u s i n g t h e e x p r e s s i o n 
! , where !  is the form of the ACF for simple diffusion (Eq. 
15 in the main text with ! ), !  is the triplet state relaxation time, and !  is the fraction of molecules in 
the triplet state. (a) T= 0, (b) !  and ! , (c) !  and ! . For each conditions, 
the calculated ACFs are shown in the left panel (normalized to the value of their first point), followed by 
the inverted ACFs using an average of the first 5 points of the ACF for normalization before the inversion 
(middle panel), and the by a second inversion using an average of 5 points around !  for the 
normalization instead (right panel). Although the inversion procedure is seriously affected when the ACF 
normalization is done at lag time around or below ! , it is barely affected when the normalization is done 
for ! . It is therefore possible to use the inversion procedure in the presence of photophysics, but 

B
B

G (τ) = GSD(τ) × (1 + T /(1 − T )e−τ/τT ) GSD(τ)
α = 1 τT T

τT = 2μs T = 0.02 τT = 2μs T = 0.05
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care has to be taken to normalize the ACF properly. A fitting of the photophysics term would yield even 
better results and allow to recover data for inversion below ! . 

6. Effect of observation volume calibration errors on the inverted ACFs 
 

Fig. 5. Influence of calibration errors on the inverted ACFs. ACFs were first calculated for a range of 
detection volumes with w comprised between 0.3 and 30 µm using Eq. 15 in the main text with !  
(simple diffusion) and S = 5. The inversion was then performed using incorrect values for either w or S as 
an input (denoted as w’ and S’). (a) Inverted ACFs (apparent MSD) obtained for values of w' that were 
1%, 5%, 10% and 25% larger than the actual values. The black line indicate the actual value of 

. The inverted curves are shifted by a factor of (w’/w)2 compared to this actual MSD. An 
error on w therefore leads to an error on the estimate of the value of the diffusion coefficient (as it would 
in single point FCS), but not on the nature of the diffusion. (b) Inverted ACFs obtained for values of S' 
that were either 25% higher or 25% lower than the actual value of S. The black line indicate the actual 
value of ! . The inversion procedure is very robust against small (~10% or less) errors on the 
value of S, but for larger errors issues arise at long lag times (where S influences the asymptotic 
behaviour of the ACF). 
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