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Supplementary Methods 

 

Basic preprocessing of NGS data 

BWA-MEM1 (http://bio-bwa.sourceforge.net/) was used to align raw sequence reads to the reference 

genome for both types of Illumina sequencing data (ILH and ILA). Read sorting and indexing were 

performed by Picard (http://broadinstitute.github.io/picard/) for all BAM files. Marking PCR duplicates 

was applied only to the data from ILH. Indel realignment of Genome Analysis Tool Kit2 (GATK, 

https://software.broadinstitute.org/gatk/) was finally applied to make analysis-ready mapped data. 

We followed the pipeline of OTG-snpcaller3 to preprocess data from ITA. TMAP 

(https://github.com/iontorrent/TMAP/) was used for sequence read alignment. Removing duplicates 

according to the alignment score tag (RDAST) and alignment optimize structure (AOS) processes were 

carried out following the workflow of OTG-snpcaller. Indel realignment of GATK was identically applied 

for ITA data as a final step. 

 

Parameter adjustment of variant calling algorithms 

Eight independent callers were tested to detect variants from the mixture datasets: MuTect, VarScan2, 

Strelka, VarDict, FreeBayes, Virmid, LoFreq, and deepSNV. Since all somatic callers had difficulties with 

detecting mutations from sample A and B (0.5% and 1% VAF) with their default settings, we adjusted 

parameters to obtain better performance. Besides each caller-specific options, following three criteria 

were commonly applied for adjustments: 1) if a given caller requires a proportion of disease cell 

population (e.g. tumor purity/cellularity, contamination level of normal cell, expected VAF), we provided 

exact value for each mixture sample to achieve the best performance (1% cellularity (0.5% VAF) for 

sample A, 2% cellularity (1% VAF) for sample B, 10% cellularity (5% VAF) for sample C, and 20% 

cellularity (10% VAF) for sample D). 2) if a given caller accepts the threshold for minimum allele 

frequency, we provided 0.25% (a half of true VAF from sample A) to remove low-level background noises 

without affecting true mutation detection. 3) For amplicon datasets (ILA and ITA), we disabled filters for 

strand bias and clustered positions due to the nature of their generation. Specific settings used for each 

caller are described as follows. Despite these individual parameter adjustments, all callers were failed to 

discriminate true low-VAF mutations (0.5% and 1%) from background errors; all adjusted calls that 

achieved fair sensitivity for sample A and B were accompanied with enormous false positive rates. 

 

MuTect4: v1.1.7 was used for all analyses in this study. Three count-based thresholds (-dcov, --

max_alt_alleles_in_normal_count, and –max_alt_alleles_in_normal_qscore_sum) were disabled to discard 

unsuitable limit for high-depth data. Fraction-based thresholds (e.g. –max_alt_alleles_in_normal_fraction) 

were kept with default values to maintain the intended uses. --fraction_contamination and --

tumor_f_pretest were set to 0 to disable those filters, which prevent variant calls with low-frequency 

http://bio-bwa.sourceforge.net/
http://broadinstitute.github.io/picard/
https://software.broadinstitute.org/gatk/
https://github.com/iontorrent/TMAP/
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because of the possibility of contamination or computational efficiency. For ILA and ITA datasets, four 

filters related with strand bias and clustered positions including --strand_artifact_lod, --

pir_median_threshold, --pir_mad_threshold, and --gap_events_threshold were additionally disabled due to 

the natural property of amplicon data. dbSNP filter was not applied because most of the true variants in 

test-base and reference standards are dbSNP entries. Calls with ‘KEEP’ judgement were considered as 

final somatic candidates. 

 

VarScan25: v2.3.9 was used with samtools v0.1.19 that generates mpileup files for input data. Coverage 

limit was disabled (-d) to cover the entire high-depth information. Tumor purity (--tumor-purity) was 

adjusted from 0.01 (sample A) to 0.2 (sample D) for all datasets based on the true cellularity of each 

mixture. VAF thresholds (--min-var-freq) was set to 0.0025, to reduce background errors without 

affecting true mutation detection from sample A. Unlike other callers, VarScan2 was evaluated with raw 

SNV call results rather than high-confidence set, because its high-confidence filter (processSomatic) is 

fixed to filter out the variants with VAF<0.1. 

 

Strelka6: v1.0.14 was used to call SNV candidates. Depth filter was turned off by adjusting related 

parameters (isSkipDepthFilters and maxInputDepth). For amplicon datasets, ssnvNoiseStrandBiasFrac 

was adjusted to zero to disable strand bias filtering. To detect mutations with low-frequency (≤1% VAF), 

ssnvNoise and sindelNoise values in the configuration option were lowered up to 1000-fold but hardly 

showed any improvements for their detection. Calls from the passed.somatic.snvs.vcf were considered as 

final somatic candidates. 

 

Vardict7: Paired variant calling mode was applied to all three platforms by using var2vcf_paired.pl. 

Minimum allele frequency (-f) was set to 0.0025 to remove error calls without affecting mutation 

detection from sample A. For ILA and ITA datasets, amplicon mode calling of Vardict was additionally 

tested, which filters out candidates partially observed within targeted amplicons. Customized BED files 

that includes the genomic location information of PCR primer and insert were prepared to apply this 

mode. Only variant calls with ‘PASS’ tag at the FILTER field are considered as somatic candidates for both 

modes. 

 

FreeBayes: v1.1.0 was used to call SNV candidates. Paired variant calling was performed by applying both 

of disease and normal BAM files simultaneously. --pooled-continuous option was used to get all results 

regardless of genotype model. Minimum alternative fraction (-F) was set to 0.0025 to remove error calls 

without affecting mutation detection from sample A. 

 

Virmid8: v1.1.1 was used to call SNV candidates. Depth filter was disabled with the option -M -1. We 

provided exact value of alpha (proportion of control sample, 0.99, 0.98, 0.9, and 0.8 for sample A, B, C, and 

D, respectively) rather than used the estimated value to obtain the best detecting performance. Calls from 
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the virmid.som.passed.vcf were considered as final somatic candidates. 

 

LoFreq9: v2.1.2 was used with the somatic mode. The option --tumor-mtc was set to FDR to get more 

sensitive calls. Although the use of dbSNP information is highly recommended by the author, we didn’t use 

this filter because most of the true variants in test-base and reference standards are dbSNP entries. Calls 

from the somatic_final.snvs.vcf were considered as final somatic candidates. 

 

deepSNV10: v1.22.0 was installed through the deepSNV Bioconductor package. Benjamini-Hochberg 

correction with the significance level of 0.05 was used for multiple testing to get more sensitive calls. The 

entire calls were considered as final somatic candidates. 

 

Filtration of variant candidates in the RePlow model 

Although a given position is called as a variant by RePlow model, it can still be a false positive due to 

various causes including mapping ambiguity, indel proximity, or misclassification of germline variants. To 

reduce them, we applied several filtering criteria that have been commonly used for conventional 

methods. Two different categories of filters are designed, position quality filter and data quality filter, 

which removes false positives arisen from the genomic complexity of target location or from the poor 

quality of sequenced data, respectively. Most filters adopt fraction- or probability-based thresholds rather 

than count-based ones, for general use with high-depth sequencing data. Lenient thresholds were applied 

as default settings compared with conventional methods, to create a universal model which is not 

platform-dependent. 

Position quality filter removes variant candidates if at least one sequencing data corresponds to the 

following criteria: 

1. Low mapping quality: if overall ratio of ambiguously mapped reads (MQ<20) exceeds a half of 

sequencing depth at the corresponding site 

2. Indel proximity: if more than 50% of the mapped reads possess indels located within 3 bp from 

the corresponding site 

3. Observed in control: if variant alleles are observed at the corresponding site of matched control 

data and the probability that an error will cause a larger VAF is less than 0.01 (P(X>xBE|M0)<0.01) 

4. Homopolymeric artifact: If four or more identical reference bases are continuously connected 

from the corresponding site and the variant allele is the same as the first inconsistent base next 

to them 

For data quality filter, eight criteria are adopted as follows. Criteria 7 and 8 are applied if more than half of 

replicates are corresponding to the same criteria. 

1. Low mapping quality: if more than half of reads with the B allele are ambiguously mapped 
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(MQ<20)  

2. Indel proximity: if more than 40% of the B alleles are located within 3 bp from indels 

3. Excessive number of mismatches: if more than 30% of reads with B allele possess more than 5% 

of the read length as mismatch 

4. Clustered position: if more than 80% of the B alleles are located within 3 bp from the end of read 

5. Successive mutation: if more than 80% of the B alleles are successively located with another 

mismatch 

6. Read-pair orientation bias: if more than 95% of reads with B allele are skewed to one read-pair 

orientation and reads with reference allele are not 

7.  Low base quality: if more than 50% of the B alleles have poor base quality scores (BQ<15) or 

expected count of background error is less than a half of B allele count (bBEij<bij /2) 

8. Variant-free fraction: if the B allele is not observed in more than half of replicates 

Note that there is no filter for the triallelic site, because RePlow performs analysis by substitution type 

rather than position; RePlow separately assesses each substitution type for a given position. This 

approach is especially effective when additional background errors occur in a variant site, which is 

common in high-depth sequencing data (Supplementary Fig. 2). All threshold values of each filter can be 

adjusted by a user in a practical use. 

 

The benchmarks for the conventional post-filtering steps 

Most modern sequence analysis pipelines have included additional post-filtering steps after variant 

calling to reduce many systematic errors, such as OxoG or FFPE artifacts. Despite the great false positive 

reduction in RePlow, it may raise concern that such improvements will also be achieved by conventional 

post-filtering steps. In order to prove that false positives cannot be removed by conventional filters to the 

same dramatic extent as with our method, we have applied four post-filtering steps to the results of 

MuTect and compared them to our results (Supplementary Fig. 5). Followings are the detailed description 

of the used external filters. 

 

Panel of Normals (PoN): The PoN filter has been used to remove germline variants and systematic 

artifacts that commonly arise from particular platforms or experimental procedures. Since there is no 

publically available PoN, we constructed our own PoN using 2,520 whole-exome sequencing data from the 

1000 Genomes project, following the instruction from the GATK best practice workflow to remove every 

variant that has been detected in ≥2 normal individuals. When we apply the PoN filter to our test data 

sets, we exempted all true positive sites from the PoN filter because all true sites in our spike-in data sets 
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are common SNPs that are easily filtered out by PoN. This makes the PoN filter suffers no sensitivity loss 

in the benchmark, which may show the most optimistic results by removing the risk of using PoN at all. 

 

Read-pair orientation filter: Specific type of artifacts such as OxoG or FFPE artifacts are well-known to 

have a significant read-orientation bias based on their source of origin11,12. Previous study12 has deeply 

analyzed the pattern of these artifacts and developed a trained model to eliminate them considering the 

measured read-pair orientation bias and LODT values from the MuTect call. We utilized the same trained 

model and threshold in the previous work to remove the biased artifacts: 

LODT > -10+(100/3)×FoxoG 

 

FFPE and low-confidence filters: We adopted two computational filters from the ngs-filter modules 

developed by Memorial Sloan Kettering Cancer Center (https://github.com/mskcc/ngs-filters). Since 

FFPE artifacts are well-known to be easily generated at the CpG sites (NCG>NTG), the FFPE filter 

eliminates the candidates within this context if the allele fraction is less than 0.1. The low-confidence filter 

removes the candidate if it fulfills either one of followings: i) alternative count > 1 in the matched normal, 

ii) total depth < 20 in the disease sample, iii) alternative count < 4 in the disease sample. 

 

RePlow command line used in the analysis  

All RePlow results were obtained by version 1.1 with the default parameter settings regardless of 

sequencing platform, with the sole exception of mutation rate for the test-base data sets as we have 

described (see Assessment of performance with replicates in Methods). We have used the mutation rate of 

8.05×10-3, 8.60×10-3, and 4.83×10-3 for ILH, ILA, and ITA with the test-base data sets. For the independent 

validation data set (commercial reference standard sequenced using cancer panels) and the epilepsy 

patient data, a default mutation rate (3×10-6) was applied for all samples. The following is a RePlow 

command line template that used in the analysis: 

 

java -jar RePlow.jar \ 

        -r <reference_genome.fa> \ 

        -b <rep1.bam, rep2.bam> \ 

        -N <normal.bam> \ 

        -T <target_region.bed> \ 

        -v <GATK_germline_call_from_normal_bam.vcf> \ 

        -R <Rscript_path> \ 

        -o <output_dir_path> \ 

        -m <mutation_rate>  

 

https://github.com/mskcc/ngs-filters


7 

 

Supplementary Figures 
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Supplementary Figure 1. Sensitivity and FPR of conventional callers by sequencing depth and VAF. Performances for the near default setting (disabled coverage 

limit) of MuTect, VarScan2, Strelka, FreeBayes, Virmid, LoFreq, deepSNV, and VarDict are depicted. The vast majority of callers lost most of the true mutations in 

sample A and B (VAF≤1%) regardless of their coverage. Error bars, 95% confidence interval. Source data are provided as a Source Data file. 
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Supplementary Figure 2. Sensitivity and FPR of conventional callers by sequencing depth and VAF after parameter adjustment. Performances with adjusted 
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parameters are depicted for all callers. Parameter adjustment rescued low-level mutations in sample A and B for many callers, but an explosion of FPR were 

inevitably followed. Detailed parameter settings for each caller are described in Supplementary Methods. Error bars, 95% confidence interval. Source data are 

provided as a Source Data file. 
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Supplementary Figure 3. Rejected ratio of true variant by triallelic site. In high-depth sequencing data, 

accumulated errors at true variant sites hinder the mutation detection by inducing the triallelic-like signals. 

At 10,000x coverage in ILA, about 30% of true variants are detected but rejected by the triallelic filter of 

MuTect, regardless of the VAF of mutations. Error bars, 95% confidence interval. Source data are provided 

as a Source Data file. 
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Supplementary Figure 4. Receiver-operating characteristic (ROC) curves for the classification of true and 

false positive calls from the test-base data of sample B (1% VAF). Seven sequencing features that are 

commonly used for the computational quality filters were selected and tested to classify true low-level 

variants from error calls. Except read-pair orientation bias in ILH, all features failed to discriminate true 

variants regardless of the sequencing platform. Note that read-pair orientation bias in ITA could not be 

calculated, because it is single-end data. The area under the ROC curve (AUC) is indicated for each feature. 

Features with the AUC less than 0.5 represent that false positive calls had better quality (e.g. higher base 

call quality, lower number of indel-containing read count, etc) than true mutations. 
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Supplementary Figure 5. The benchmarks of conventional post-filtering steps from the test-base data of 

sample B (1% VAF). Four conventional filters (Panel of Normals (PoN), read-pair orientation bias, FFPE, 

and low-confidence filters) were tested and compared to the results of our method (RePlow). Note that 

read-pair orientation filter could not be applied in ITA because it is single-end data. The detailed 

information of the used external filters is described in the Supplementary Methods. Source data are 

provided as a Source Data file. 
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Supplementary Figure 6. Sensitivity and FPR of primitive approaches with sample A (0.5% VAF) for each 

platform. Primitive approaches were applied for both library (solid lines) and sequencing (dotted lines) 

duplicates. Calls from the single sample (dashed lines) are also depicted to evaluate the improvement with 

replicates. All mutation calls were made by MuTect. Source data are provided as a Source Data file. 
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Supplementary Figure 7. The fraction of non-variant sites with the false positive call for all depths and 

platforms. The fraction is calculated by dividing the number of false positive call by the total size of target 

region except the true variant sites. The number of false positive calls at non-variant sites is increased in 

higher read-depths regardless of the sequencing platform. At 10,000x of ILA, 50% of non-variant sites were 

called by MuTect due to the excessive occurrence of background error. Source data are provided as a Source 

Data file. 
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Supplementary Figure 8. Increased number of triallelic rejection at non-variant sites. Due to the increased 

occurrence of background error in higher depth, triallelic rejection is occurred even at non-variant sites 

according to the accumulation of more than two different erroneous alleles at the same position. Such 

rejection prevents making calls at non-variant sites and thus reduces overall false positive rate. In ILA, the 

number of triallelic rejection is linearly increased. Source data are provided as a Source Data file. 
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Supplementary Figure 9. Comparison of VAF concordance between true and false positive calls. For each called candidate (each dot in Fig. 3b), cosine similarity 

from y=x line was calculated for the VAF concordance measure between replicates, not to be affected by the absolute value of VAF. Distribution of cosine similarities 

are statistically compared between true and false positives using Kolmogorov–Smirnov (KS) test.



18 

 

 

Supplementary Figure 10. Performance assessment with the library duplicates of test-base data. FPR, 

precision, sensitivity, and F-score were measured for sample A (0.5% VAF). All three combinations of 

duplicates were tested and their average performances were reported with 95% confidence interval. 

(typically smaller than marks). Source data are provided as a Source Data file. 
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Supplementary Figure 11. Performance assessment with the single and duplicate libraries for the same 

depth of coverage. The depth of coverage for each replicate in the duplicate methods (RePlow, intersection) 

is exactly a half of a single library. For example, the results of RePlow at 1,000x are made from two 500x 

replicates. FPR, precision, sensitivity, and F-score were measured for sample B (1% VAF). All three 

combinations of duplicates were tested and their average performances were reported with 95% 

confidence interval. (typically smaller than marks). Source data are provided as a Source Data file. 
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Supplementary Figure 12. Performance assessment with the library triplicates of test-base data. FPR, 

precision, sensitivity, and F-score were measured for sample B (1% VAF). With triplicates, RePlow 

demonstrated higher sensitivity than duplicates but showed decrease of precision in ILA datasets due to 

the increased number of overlapping errors which induce the over-estimation of concordance between 

replicates. Source data are provided as a Source Data file. 
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Supplementary Figure 13. Performance assessment with the library triplicates of test-base data. FPR, 

precision, sensitivity, and F-score were measured for sample A (0.5% VAF). With triplicates, RePlow 

demonstrated higher sensitivity than duplicates but showed decrease of precision in ILA datasets due to 

the increased number of overlapping errors which induce the over-estimation of concordance between 

replicates. Source data are provided as a Source Data file. 
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Supplementary Figure 14. Experimental validation of low-level mutations from the samples negative for 

pathogenic mutations in previous analysis. Among the seven low-VAF mutation candidates called by RePlow, 

two functional (missense) mutations (Fig. 4d) and three silent mutations were validated by droplet digital 

PCR. Designing PCR primers for the remaining two candidates failed. 
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Supplementary Figure 15. Performance assessment of RePlow with the typical mutation rate (3×10-6) for 

the library duplicates of sample B (1% VAF). Since excessive number of true mutations was prepared in the 

test-base data compared to the typical mutation rate, application of the default value to RePlow severely 

underestimated the amount of true variant and resulted in a significantly decreased sensitivity. 

Nevertheless, RePlow demonstrated the best overall performance (F-score) with the typical mutation rate 

based on the extraordinarily low number of false positive calls. All three combinations of duplicates were 

tested and their average performances were reported with 95% confidence interval. (typically smaller than 

marks). Source data are provided as a Source Data file. 
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Supplementary Tables 

 

 Supplementary Table 1. Summary of the test-base sequencing data and read-depth information

Platform Abbr. Sequencer 
Read 

length 
(bp) 

Target 
size 
(bp) 

Covered 
true 

variant 
count 

Average on-target depth (x) 

A11 A12 A21 A31 B11 B12 B21 B31 C11 C12 D11 D12 

Illumina 
hybrid-
capture 

ILH HiSeq 2000 101x2 63,729 513 740.4 370.8 664.2 858.1 964.9 585.7 1,044.6 1,942.4 1,585.0 1,539.7 1,256.2 1,254.8 

Illumina 
amplicon 

ILA HiSeq 2500 151x2 62,772 540 43,530.0 24,486.0 38,689.7 40,642.8 27,660.9 27,989.1 27,347.1 25,048.4 43,230.8 27,266.1 41,842.7 25,237.3 

Ion Torrent 
amplicon 

ITA Ion Proton 125-275 122,311 591 12,500.3 12,395.1 10,580.0 12,362.5 10,367.5 7,926.7 12,327.3 11,089.1 7,777.7 8,908.4 8,940.1 10,208.8 
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Supplementary Table 2. Summary of the reference standard sequencing data and read-depth information

Platform Cancer panel Sequencer Read length (bp) Target size (bp) 
Covered true 
variant count 

Average on-target depth (x) 

Rep1 Rep2 Rep3 

ILH SureSelect custom panel HiSeq 2000 101x2 466,634 35 2,196.8 795.6 2,194.4 

ITA 
Ion AmpliSeq cancer 

hotspot panel v2 
Ion Proton 111-187 22,027 35 55,785.8 40,902.5 61,467.7 
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