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n, represents the number of cases, n, represents the number of controls,
y; = 1 indicates the i-th subject is a case, y; = 0 indicates the /-th subject is a

control,
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2.The formulas for ST3
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In the following, we will derive the formula for w/™.
Denote
M,, = median of x; wherey; =1, M, = median of z; wherey; =1,

1
M, = median of x; wherey; =0, M, = median of z; where y; = 0.
Denote the within-group absolute deviations as
Q" = |x; — My,| wherey; =1,Q* = |z; — M, | wherey; =1,
Q;° = |x; — My,| wherey; =0,Q* = |z; — M, | wherey; =0.
Denote the ordered within-group absolute deviations as
Qi) € < Qnyy Oy < < Qi Q) < < Qg Q) < < Qi
Denote the 100(1 — B) percentiles of the within-group absolute deviations as
B, = Qimyy 1Bz = Qmy By = Qmy + Bz = Qg
where my; = (1 - B)ny, my = (1—B)ny, and B =0.2.

Next, we find the quantiles of the within-group standardized random variables:
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Then, we calculate trimmed within-group sums:
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We next calculate adjusted trimmed within-group means:
~ . X . X ~ . Z Z
.~ a)xl(lzl —111)+Sx1 . a)zl(lz1 —111)+SZ1
d)xl - . X1 . X1 ’ z1 . Zq :Z1 )
ny — it — i ny — it — 10
~ X . X ~ . Z . Z
L Oy (Lz" - 110) + S, .~ wzo(lz" - 110) + S,
¢x° - . X0 X0 ) Zo .Z( -Zo
ng—i,° — i ng —i,° — I}

We then calculate within-group scaled random variables:
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We next make sure the within-group scaled random variables are within the
range [-1, 1]:

A; = @Uy), By = o(V1),
where @(x) = max[—1, min(1,x)].
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Finally, we define w;" as the product of group size and the sample

correlations based on the within-group scaled random variables:
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We can obtain
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3.The definition of a g-and-h-distribution
Let Z be a random variable having the standard normal distribution. Then the

random variable W(Z; g, h) constructed below follows a g-and-h distribution:
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4. The pre-processing of the real miRNA data GSE15008

There are 1,614 probes in the GSE15008 dataset, including miRNAs,
control probes, and negative controls (blank). We first drew (1) the boxplots
of the expression levels of all hsa-miRNAs, (2) the boxplots of the expression
values of miRNAs with “SPOT _ID” equal to “control:50%DSMQO”, and (3) the
boxplots of the expression values of miRNAs with “SPOT _ID” equal to “BLANK”
(Figure S1). We then calculated the median expression level for each of the 3
groups of miRNAs. For miRNAs with duplicated observations, we kept the one
having largest average expression value. After this cleaning, 538 hsa-miRNAs
kept. Finally, we kept 178 hsa-miRNAs with expression values of all subjects

larger than the median expression level of control probes.
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Figure-S1 boxplots of expression values of 3 groups of probes in the
GSE15008 dataset.



5.The quantile plots of GSE15008 after data cleaning
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Figure-S2 Plot of percentiles of the miRNA expression levels across samples
after data cleaning for the GSE15008 dataset

6.The scatter plot of the first principal component (PC1) versus the

second principal component (PC2) of GSE15008 after data cleaning
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Figure-S3 Scatter plot of the first principal component
(PC1) versus the second principal component (PC2).

7. The parallel boxplots of tests in all scenarios in simulation studies

Please see the compressed file figure_S4.zip



8. Table of ranks of powers in all scenarios and the scenarios including
twopcor and twocor

Please see the file table S1.xlsx

9. Table of targeted genes of hubs detected in real analysis obtained by
miRSystem

Please see the file table S2.xlsx

10. Table of Functional Annotation of hubs detected in real analysis
obtained by miRSystem

Please see the file table S3.xlsx
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A Deriviation of the asymptotic distribution of the
ST6 test statistic

Let Y; denote the disease status of subject ¢, where ¢ = 1,2,...,n, n = ng + ny, ng is the
number of the non-diseased subjects (controls, Y; = 0) and n; is the number of the diseased
subjects (cases, Y; = 1).

Let’s consider the following logistic regression model

logit [Pr (Y; =1 ‘wIH wlv)] =70 + nw + yw!V. (A1)

A )



We would like to test the composite hypotheses HY! : v, = 75 = 0 versus H, : 7; # 0 or

Y2 # 0.

The log-likelihood function of the logistic regression (A1) is

1(©) = Zyi (70 + 71wZ-HI + WQUJZ-IV) log [1 + exp (% + vleI + ygwfv)],
i=1

where © = (70771772)71-

The score statistics are partial derivatives of the log-likelihood function with respect
ot the parameters of interest, evaluated at the values postulated by the null hypothesis
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where

exp(Yo + nwi + yw!Y)
1+ exp(yo + Mw! + yw!V)

= Pr(Y; = 1w wH?h) =

2

Under HY! : vy =7 =0,
Hy! exp(0)  _
‘ 1+ exp(7o)

Let 01(©) /0y, = 0 under HY!. We got an estimate of mo:

y = Z yi/n.
=1



Hence, the score statistics are
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By simple alegra and the fact that y; = 1 or 0, we can get
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The ST6 test statistic TV = Ufomtiﬂlthjomt is the quadratic form of the two score

statistics U/ and UV for the above logistic regression, where Ujoint = (U Hr IV)T and

A

Yjoint 1s the estimate the covariance matrix Cov(U jpint)-

Note that in logistic regression (A1), y; are random variables, while w!!! and w!" are

i



conditionally fixed (i.e., conditionally non-random). We can get

EU™)=> w!"E(y;—y) =0,
=1

EU"Y)=> w/VE(y;—y) =0.
=1

The above equalities are true, no matter whether the null hypothesis H}! holds or not.

Hence, we have
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Note that y? = y;. We have
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We also have
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And

Hence,
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Under HJ'? : 71 = 75 = 0, we can estimate Ty by ¥ = n;/n and can estimate E (UHI)2
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That is,
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Similarly, we can estimate Var (U'V) by
Var (U = B [(07) 11" =50 = 9) Y (! —a™)”.
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Next, we calculate (UHIUIV).
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Note that y? = y; since y; is binary variable taking values 1 or 0. We can calculate
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We have E (y;) = m;. Based on Formula (A3), we also can calculate
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We next calculate E (y; — ) (y; — g) for i # j:
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Therefore we then can get under HY!
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Therefore, we have
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where 62,,, = >0 (w/ — @")?/n and 62,, = Y " (w!V — @")?/n are the sample
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variances for w/' and w!", and 61, =Y (W] W) (w!Y — w!'V) /n is the sample
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covariance between w!!! and w/".

Note that in logistic regression (A1), the random variables are y;, while w/! and w!" are
conditionally fixed (i.e., conditionally non-random). Hence, the (asymptotic) distributions
of the UM UV and Tjoint do not depend on the distributions of wH! and w!V. In this

sense, we can say that the joint statistic T}, are robust to the violation of the normality

117

assumptions for the predictors w/!’ and w!".

Based on Dobson (1990),
HVI
Ujoint i) N(O, COU(Ujoint))'
Denote © = Cov(U i HY'). We have
VI
QV2U i % N(0,L).

By the relationship beween multivariate normal distribution and chi square distribution, we

have
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Based on the Law of Large Numbers, we have

HVI

@(Ujoint) i> COU<Uj0int) .

Hence, we have
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Note that we can derive an estimate of Cov(Ujyn:) under the alternative hypothesis

based on formulas (A2), (A4), and (AT7).

B The asymptotic distribution of the ST6 test statistic
when Couv (Ujint) is not full rank

_ _ 1
When the rank of Cov (Ujyine) is one, which lead to non existence of [C’ov (Ujoimt)i| , we

replace the inverse of Cov (Ujoine) by its Penrose-Moore generalized inverse and we have

HYI

71joint = UT i> X%) (Ag)

joint

[60\1) (Ujoint)] ’ Ujoint

— + —
where [Cov (Ujoint)] is the Penrose-Moore generalized inverse of C'ov (U jint).
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