miR-124 dosage regulates prefrontal cortex function by dopaminergic modulation

Takashi Kozuka^{1,2,#}, Yoshihiro Omori^{1,2,#}, Satoshi Watanabe^{1,2}, Etsuko Tarusawa³, Haruka Yamamoto¹, Taro Chaya^{1,2}, Mayu Furuhashi¹, Makiko Morita⁴, Tetsuya Sato⁵, Shinichi Hirose⁷, Yasuyuki Ohkawa⁶, Yumiko Yoshimura³, Takatoshi Hikida^{4,8}, Takahisa Furukawa^{1,2,*}

¹Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.

²JST, CREST, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.

³Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan.

⁴Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

⁵Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

⁶Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

⁷Department of Pediatrics, School of Medicine, Fukuoka University, 45-1-7 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.

⁸Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.

[#]These authors contributed equally to this work.

*Corresponding author: Takahisa Furukawa

b, *c*, Both a-wave and b-wave amplitudes in $miR-124-1^{+/-}$ mice were not significantly altered compared with those in WT mice (WT, n = 4; Het, n = 5; n.s., not significant).

d, The retinal sections of WT and *miR-124-1*^{+/-} mice at 2M were immunostained with the anti-M-opsin (a green-cone outer segment marker, green), and the anti-S-opsin (a blue-cone outer segment marker, red) antibodies. The distribution of the M-opsin and the S-opsin signals was normal in the *miR-124-1*^{+/-} retina. Scale bars, 50 μ m. OS, outer segment; ONL, outer nuclear layer; INL, inner nuclear layer.

e, *f*, The expression level of *miR-124* in the PFC was analyzed using qRT-PCR at 1M (*e*) or 2M (*f*). *miR-124* expression significantly decreased in the *miR-124-1*^{+/-} PFC at 1M and 2M (WT, n = 5; Het, n = 5; ** p < 0.01, **** p < 0.0001). Error bars represent mean ± SD.

Figure S2. Expression levels of previously reported *miR-124* target genes in the *miR-124-1*^{+/-} PFC and hippocampus.

a, *Gria2*, 3 and 4 expressions were not significantly altered between 2M $miR-124-1^{+/-}$ and WT PFCs (WT, n = 7; Het, n = 6).

b, Quantification of *miR-124* expression level in the hippocampus. *miR-124* expression significantly decreased in the 2M *miR-124-1*^{+/-} hippocampus (WT, n = 3; Het, n = 3; *p < 0.05).

c, *Gsk3b* expression was not significantly affected between the 2M *miR-124-1*^{+/-} and WT hippocampus (WT, n = 3; Het, n = 3).

d, *Zif268* (*Egr1*) expression in the PFC (WT, n = 7; Het, n = 6) and hippocampus (WT, n = 3; Het, n = 3) was not significantly altered between the 2M *miR-124-1*^{+/-} and WT mice. Error bars represent \pm SD.