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Figure S-1. Isotope patterns of the labelled biosynthetic intermediates (arginine, Int-A’, and Int-
C’2) on Day 10
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Figure S-2. Isotope patterns of the labelled biosynthetic intermediates (11-hydroxy-Int-C’2, Int-E’, 
and Cyclic-C’) on Day 10
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Figure S-3. Isotope patterns of  the  labelled STX analogues (C1, C2, GTX4, and GTX5) on Day 10
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Figure S-4. MS/MS spectra of non-labelled (A) and perfectly labelled (B) arginine
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Figure S-5. MS/MS spectra of non-labelled (A) and perfectly labelled (B) Int-A’
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Figure S-6. MS/MS spectra of non-labelled (A) and perfectly labelled (B) Int-C’2
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15N6-11-hydroxyl-Int-C’2

11-hydroxyl-Int-C’2

80.0484
91.0524

122.0715

150.1059

0

500

1000

1500

2000

Intens.

80 100 120 140 160 180 200 220m/z

81.0500

94.0565

153.0960

189.2010
0

200

400

600

800

Intens.

80 100 120 140 160 180 200 220m/z

C8H14N3
+

m/z 150.1026

C8H14
15N3

+

m/z 153.0937

C7H10N+

m/z 108.0808

C7H10
15N+

m/z 109.0778
109.0812

108.0836

x

C6H8N3
+

m/z 122.0713

C5H6
15N+

m/z 81.0465

C5H6N+

m/z 81.0495

Figure S-7. MS/MS spectra of non-labelled (A) and perfectly labelled (B) 11-hydroxy-Int-C’2
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Figure S-9. MS/MS spectra of non-labelled (A) and perfectly labelled (B) Cyclic-C’
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GTX5

15N7-GTX5

Figure S-10. MS/MS spectra of non-labelled (A) and perfectly labelled (B) GTX5
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Figure S-11. MS/MS spectra of non-labelled (A) and perfectly labelled (B) C2
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GTX4

15N7-GTX4
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Figure S-12. MS/MS spectra of non-labelled (A) and perfectly labelled (B) GTX4
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Figure S-13. Relative abundance % of each isotopomer of the biosynthetic intermediates 
in A. catenella after a 2-month passage in 15N-NaNO3 medium
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Figure S-14. Growth curve of A. catenella cultured with 15N-NO3 or 14N-NO3
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Figure S-15. Day-10 toxin contents of A. catenella cultured in 15N-NaNO3 or 14N-NO3.
(A) C-toxins, (B) GTXs.
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Figure S-16. Relative % of peak area of each isotopomer of the precursor and the biosynthetic 
intermediates at 3, 6, and 10 days after the addition of 15N-NO3 medium to A. catenella
Data are presented as mean ± SD (n=3).
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Figure S-17. Relative % of peak area of each isotopomer the biosynthetic intermediates, 11-hydroxyl-
Int-C’2 and Int-E’  at 3, 6, and 10 days after the addition of 15N-NO3 medium to A. catenella
Data are presented as mean ± SD (n=3). * This isotopomer was suppressed by matrix.
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Figure S-18. Relative % of peak of each isotopomer of the STXs at 3, 6, and 10 days after the addition 
of 15N-NO3 medium in A. catenella
Data are presented as mean ± SD (n=3).
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Figure S-20. Three populations stochastically predicted by empirical relative % of each isotopomer on Day 10 
Arginine (a, b, c), Int-A’ (e, f, g), Int-C’2 (i, j, k) and 11-hydroxyl-Int-C’2 (m, n, o),  hypothesizing the 
binominal distribution and the merged graph (d, h, l and p) of predicted data and empirical data
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Figure S-21. Three populations stochastically predicted by empirical relative % of each isotopomer on 
Day 6
Int-E’ (a, b, c), GTX5(e, f, g), GTX4 (i, j, k) and C2 (m, n, o), hypothesizing the binominal distribution 
and the merged graph (d, h, l and p) of predicted data and empirical data
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Figure S-22. Three populations stochastically predicted by empirical relative % of each isotopomer on 
Day 10
Int-E’ (a, b, c), GTX5(e, f, g), GTX4 (i, j, k) and C1 (m, n, o), hypothesizing the binominal distribution 
and the merged graph (d, h, l and p) of predicted data and empirical data
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Figure S-23. HILIC-MS-MRM chromatogram of toxic G. catenatum extract
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Figure S-24. HILIC-MS-MRM chromatogram of non-toxic A. insuetum extract
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Number of 15N 0 1 2 3 4 5 6 7

Arginine 175.1190 176.1160 177.1130 178.1101 179.1071

Int-A' 187.1553 188.1524 189.1494 190.1464 191.1435

Int-C'2 211.1666 212.1636 213.1606 214.1577 215.1547 216.1517 217.1488

11-hydroxy-Int-C’2 227.1615 228.1585 229.1556 230.1526 231.1496 232.1467 233.1437

Int-E’ 225.1458 226.1429 227.1399 228.1369 229.1340 230.1310 231.1280

Cyclic-C’ 209.1509 210.1480 211.1450 212.1420 213.1391 214.1361 215.1331

C2-SO3 396.0932 397.0902 398.0873 399.0843 400.0813 401.0784 402.0754 403.0725

GTX5 380.0983 381.0953 382.0924 383.0894 384.0864 385.0835 386.0851 387.0775

GTX4 412.0881 413.0852 414.0822 415.0792 416.0763 417.0733 418.0703 419.0674

Table S-1.
The theoretical values for the isotopomers with different numbers of 15N

C1 was analyzed by the same theoretical values as for C2.
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Entry 
#

Conditioning Washing Elution Recovered compounds

1
CH3CN-H2O with 

0.1% HCOOH = 8:2
CH3CN-H2O with 0.1% 

HCOOH = 8:2
CH3CN-H2O with 0.1% 

HCOOH = 1:9
GTX1-5, STXs, C1, C2

2 THF THF
0.5 M AcOH or 0.2M 

HCOOH
Arg, Int-A’, IntC’2, Cyclic-

C’, GTX1-3, GTX5, STXs 

3 THF
THF, CH3CN, CH3CN-H2O 

with 0.1% HCOOH = 9:1
0.2 M HCOOH

Arg, Int-A’, IntC’2, Cyclic-
C’, GTX1-5, STXs, C1, C2

Table S-2. Clean up conditions employed for ChromabondR HILIC and the 
resulting recovered compounds
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Table S-3. Example of calculation of peak areas removing the contribution of the naturally 
occurring stable isotope

Peak area of each isotopomer of C2

m/z 396 397 398 399 400 401 402 403

Absolute peak area of C2 57129 10746 4704 9902 7942 25581 13239 12015

theoretical peak area (none of labelled 15N was introduced) 57129 7655 3485 0 0

expected peak area after subtraction of nonlabelled C2 0 3091 1219 9902 7942

theoretical peak area C2 involving one unit of labelled 15N 3091 433 189 0 0

expected peak area after subtraction of C2 which involves 0 and 1 labelled 15N 0 786 9714 7942 25581

theoretical peak area C2 involving 2 unit of labelled 15N 786 99 48 0 0

expected peak area after subtraction of C2 which involves 0-2 labelled 15N 0 9615 7894 25581 13239

theoretical peak area C2 involving 3 unit of labelled 15N 9615 1183 587 0 0

expected peak area after subtraction of C2 which involves 0-3 labelled 15N 0 6712 24994 13239 0

theoretical peak area C2 involving 4 unit of labelled 15N 6712 799 49 0

expected peak area after subtraction of C2 which involves 0-4 labelled 15N 0 24196 13190 12015

theoretical peak area C2 involving 5 unit of labelled 15N 24196 2613 1476

expected peak area after subtraction of C2 which involves 0-5 labelled 15N 0 10577 10539

theoretical peak area C2 involving 6 unit of labelled 15N 10577 1142

expected peak area after subtraction of C2 which involves 0-6 labelled 15N 0 9397

theoretical peak area C2 involving 7 unit of labelled 15N 9397

Natural Abundance (%) M M+1 M+2 M+3 M+4 M+5 M+6 M+7

non-labelled 100 13.4 6.1

15N 100 14 6.1

15N2 100 12.6 6.1

15N3 100 12.3 6.1

15N4 100 11.9 6.1

15N5 100 10.8 6.1

15N6 100 10.8

15N7 100

number of incorporated 15N 0 1 2 3 4 5 6 7

Peak areas after removing those of the naturally occurring stable isotope 57129 3091 786 9615 6712 24196 10577 9397
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Day Arginine Int-A' Int-C'2 Cyclic-C' 11-OH-Int-C'2 Int-E' GTX5 GTX4 C2 C1

3 -162 0 ND ND -7 ND -5 -4 10 -31
6 73 8 ND 12 15 15 42 9 136 -14

10 75 4 7 5 3 9 13 14 61 -6

Table S-4. Production rate (nM/d)

ND: not determined
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Table S-5. 15N incorporation and their ratio calculated by three-population 
model for the isotopomer distribution % of Day 6 and Day 10 

S31

Arginine 6d Int-E' 6d Arginine 10d Int-E' 10d

15N % Ratio 15N % Ratio 15N % Ratio 15N % Ratio 

p 99% A 3 p 99% A 3 p 99% A 11 p 96% A 5

q 69% B 42 q 67% B 72 q 76% B 78 q 79% B 86

r 0% C 55 r 29% C 25 r 0% C 11 r 32% C 9

Int-A' 6d GTX5 6d Int-A' 10d GTX5 10d

15N % Ratio 15N % Ratio 15N % Ratio Incorporat
ion % Ratio 

p 90% A 19 p 60% A 23 p 84% A 2 p 80% A 47

q 89% B 5 q 22% B 16 q 83% B 71 q 53% B 25

r 0% C 76 r 0% C 61 r 0% C 27 r 1% C 28

Int-C'2 GTX4 6d Int-C'2 10d GTX4 10d

15N % Ratio 15N % Ratio 15N % Ratio Incorporat
ion % Ratio 

p A p 65% A 16 p 99% A 13 p 77% A 49

q B q 14% B 8 q 70% B 85 q 38% B 14

r C r 0% C 76 r 0% C 2 r 1% C 37

11-hydroxy-Int-C'2 6d C2 6d 11-hydroxy-Int-C'2 10d C2 10d

15N % Ratio 15N % Ratio 15N % Ratio 15N % Ratio 

p 81% A 23 p 92% A 1 p 87% A 34 p 77% A 49

q 49% B 31 q 56% B 14 q 58% B 40 q 42% B 13

r 2% C 46 r 0% C 85 r 3% C 26 r 1% C 38

C1 10d

15N % Ratio 

p 90% A 8

q 52% B 13

r 0% C 79



Table S-6. The detection limits (fmol/cell) for non-
toxic species A. insuetum and P. triestinum

A. insuetum 
NIES-678

P. triestinum 
Ptri060930Ohi

C1 < 0.74 < 0.04

C2 < 0.60 < 0.03

C3 < 6.19 < 0.30

C4 < 2.26 < 0.11

GTX1 < 1.43 < 0.07

GTX2 < 1.94 < 0.09

GTX3 < 2.52 < 0.12

GTX4 < 0.37 < 0.02

GTX5 < 1.02 < 0.05

GTX6 < 0.55 < 0.03

neoSTX < 2.25 < 0.11

dcSTX < 0.53 < 0.03

STX < 0.24 < 0.01

Int-A' < 0.05 < 0.002

Int-C'2 < 0.05 < 0.002

11-hydroxy-Int-C'2 < 8.55 < 0.41

Int-E' < 4.59 < 0.22

Cyclic-C' < 0.06 < 0.003
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Optimization of ChromabondR HILIC SPE conditions using the
non-labelled standard

The SPE treatment for sample preparation prior to the HR-HILIC-
quadrupole time-of-flight (Q-Tof) MS was modified from the previously
described method developed for STXs [43]. Since the ZIC-HILICR SPE
used in the original method is not commercially available so far, this
reagent was replaced with ChromabondR HILIC, a sorbent that has the same
functional group. Moreover, the recovery rate of the biosynthetic
intermediates was very low by the original method [43], which therefore
was modified to permit the simultaneous analysis of both the labelled
biosynthetic intermediates and the STXs. In the previous paper [15], cell
pellets were lyophilized to recover the relatively less-polar compounds
corresponding to the biosynthetic intermediates from early stages of the
pathway, namely arginine, Int-A’, and Int-C’2. For example, recovery of
Int-C’2 was 5% by the original procedure [15]. Moreover lyophilization is
time-consuming and difficult to apply for the multiple samples expected
from a time-course study. Therefore, a clean-up procedure without
lyophilization was developed. Simply performing the original procedure
without lyophilization yielded low amounts of Int-A’ and Int-C’2
(Supplementary Information Table S-2, Entry 1). The use of THF for
application and washing of the sample yielded improved recovery of these
biosynthetic intermediates. However, attempts at elution with 0.5 M acetic
acid or 0.2 M formic acid directly after THF washing did not permit
recovery of GTX4, C1, or C2 (Entry 2). Stepwise washing with THF,
acetonitrile, and 95% acetonitrile containing 0.1% formic acid improved the
elution of these STXs with 0.2 M formic acid (Entry 3). The recovery rates
of the main toxins and the biosynthetic intermediates from 50 mg of
ChromabondR HILIC adsorbent were determined using a standard mixture
prepared at a concentration range similar to that observed experimentally in
the cell extracts of dinoflagellate cultures. The elution volume was set to
200 L to enable direct analysis without the need for a concentration step,
although the recovery rate could be improved by using a higher volume of
elution solution.
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Optimized sample clean-up for HR HILIC-ESI-Q-tof-MS and
MS/MS

Aliquots of the harvested cultures were used to obtain cell counts by
microscopy. The cultures (20 mL each) then were centrifuged at 1,700 g for
5 min at 4°C to pellet the cells. After removal of the supernatant, the pellet
was transferred to a new micro-tube, re-suspended, and pelleted again by
centrifugation. After removal of the supernatant, the pellet was re-
suspended in 300 μL of 0.5 M acetic acid. Samples were stored at -30°C
until use. After thawing on ice, the cell suspension was subjected to
sonication (three cycles at 100 Hz, 40% amplitude, for 30 s on ice with 30 s
intervals). The homogenate was centrifuged at 20,000 g for 5 min at 4°C.
The supernatant of each sample was subjected to ultra-filtration (Ultra-Free
C3LGC, 10,000-Da cut-off, Millipore) at 4°C. An aliquot (100 μL) of the
resulting filtrate was transferred to a new tube and mixed with three
volumes of THF. In parallel, a column of ChromabondR HILIC adsorbent
(50 mg, MACHEREY-NAGEL) was generated by packing into a disposable
empty cartridge (syringe type cartridge (CS0111, S size) and frits (CF0003),
Tomoe, Amagasaki, Japan) and conditioned with 200 μL of MilliQ water
and 1 mL of THF. The sample was loaded onto the column and the column
was sequentially washed with 500 μL of THF, 500 μL of CH3CN, and 500
μL of CH3CN/water/HCOOH (95:5:0.1, v/v/v). The column was eluted with
200 μL of 0.2 M HCOOH and an aliquot of the eluate (10 or 20 μL) was
subjected to LC-MS.

For the MS/MS sample, a ChromabondR HILIC polypropylene column
(500-mg) was pre-conditioned with 1 mL of MilliQ water and 5 mL of THF.
The total extract from a 20-mL culture was loaded onto the column, and the
column then was sequentially washed with 3 mL of THF, 3 mL of CH3CN,
and 3 mL of CH3CN/water/HCOOH (95:5:0.1, v/v/v). The column was
eluted with 3 mL of 0.2 M HCOOH and the eluate was concentrated under
a stream of nitrogen gas. After reconstitution with 100 μL of MilliQ water,
the sample was filtered through a Cosmospin filter H (0.45 μm) and an
aliquot of the eluate (10 μL) was subjected to LC-MS/MS .
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The linearity, detection limit and retention time of standard of
modified column-switching HR HILIC-ESI-Q-tof-MS

The standards (GTX1 and 4, GTX2 and 3, C1 and C2) were used as a
mixture of the stereoisomers at a ratio of equilibrium. The stock solutions
of STXs and the synthetic standards of the biosynthetic intermediates were
stored in 0.05 M acetic acid and 0.5 M acetic acid, respectively, at −30 °C.
The stock solutions were diluted with 0.5 M acetic acid to yield dilutions
appropriate to the sensitivity of each analysis. The linearity of the
calibration curve was 0.997 (C2) – 0.999 (Int-C’2) in the range of 0. 4 – 4.3
M (C2), 0.3 – 13.9 M (GTX5), 0.5 – 10.4 M (GTX4), 1.0 – 19.8 M
(C1), 0.1 – 1.0 M (Int-A’), 0.05 – 2.5 M (arginine), 0.01 – 1.0 M (Int-
C’2), and 0.25 – 1.0 M (11-hydroxyl-Int-C’2, Int-E’ and Cyclic-C’). The
detection limit (S/N = 5) of the standard ranged from 0.01 M (Int-C’2) to
0.3  M (C2) for 10-  L injections. The retention times were 12.3, 13.2,
24.9, 25.1, 27.8, 30.1, 30.6, 31.0, 34.9, and 35.2 min for Int-C’2, Cyclic-C’,
Int-A’, 11-hydroxyl-Int-C’2, arginine, C1, Int-E’, GTX4, GTX5, and C2,
respectively. The primary metabolites that might affect the mass spectra of
these target molecules were analyzed to determine retention times. Notably,
the primary metabolites acetyl-ornithine (C7H15N2O3

+, [M+H]+ = m/z
175.1077) and citrullin (C6H14N3O3

+, [M+H]+ =m/z 176.1030) either of
which might affect the intensity of isotopomers for arginine (C6H15N4O2

+,
[M+H]+ =m/z 175.1190, m+1 C6H15N3

15N O2
+, [M+H]+ =m/z 176.1160),

eluted at 14.8 and 14.6 min, respectively. Thus, neither of these metabolites
should influence the intensity of the isotopomers of arginine that eluted at
27.8 min. Acetyl-lysine (C8H17N2O3

+, [M+H]+ =m/z 189.1234) eluted at
13.1 min, and therefore should not overlap with Int-A’ (m+2,
C8H19N2

15N2O+, [M+H]+ =m/z 189.1494), which itself eluted at 24.9 min.
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Validation by the highly labelled sample mixed with the non-
labelled standard

The two-month exposure was initiated in the same manner as the time-
course study and passage was carried out three times for a total interval of
two months (each passage was performed at 2 weeks). After 2 months, the
cell cultures had achieved a cell density of 5 x 103 cells mL-1 and aliquots
(60 mL each) were harvested by centrifugation at 890 g for 3 min at 4 C.
The supernatants were decanted and discarded. Each cell pellet was re-
suspended in 300 L of 0.5 M acetic acid and stored at −30 C until
analysis. The mono-isotopic ions of the non-labelled compounds were not
detected except for arginine; the completely labelled isotopomers
constituted the primary peak for each compound (Supplementary
Information Fig. S-13). After ultrafiltration, the filtrate was mixed with a
standard solution containing arginine, Int-A’, Int-C’2, C1, C2, and GTX1-
5 at final concentrations of 5.0, 0.5, 0.5, 4.9, 1.1, 7.6, 2.2, 0.8, 2.6, and 3.5
M, respectively. The same procedure was performed for the control
(without standard) sample and the standard mixture only. The recovery
rates were calculated as follows: the area of mono-isotopic ion in the
fortified sample minus that of the control was divided by that of the
standard solution treated the same as the fortified sample. The samples for
the validation study were prepared in triplicate. For the evaluation of
matrix effects, the eluates of un-mixed cell extract from ChromabondR

HILIC sorbent were mixed with the standard solution. The matrix effects
were calculated as follows: the area of mono-isotopic ion in the mixed
sample minus the area of the control was divided by that of the standard
solution. The values of recovery rate and matrix effect of Int-C’2 and
those of arginine were used for Cyclic-C’, 11-hydroxyl-Int-C’2 and Int-E’.
The relative % was calculated as follows: the area of mono-isotopic ion in
the mixed sample minus that of the control was divided by the sum of the
areas of all isotopomers containing 15N as observed in the EICs of the
fortified samples.
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Calculation of peak area removing the contribution of the naturally
occurring stable isotopes

The concept of calculation
Arginine, Int-A’, 11-hydroxy-Int-C’2, Int-E’ and consist of C, H, O, and N. Int-C’2
consists of C, H, and N. STXs (GTX4, GTX5, C1, and C2) consist of C, H, O, N, and S.
Therefore, the 15N-labelled compounds contain not only the incorporated 15N, but also
the naturally occurring stable isotopes such as 13C, 2H, 17O, 18O, 15N, 33S, and 34S. To
obtain the newly synthesized isotopomer peak areas, it is necessary to remove the
contribution by these naturally occurring stable isotopes. Since the natural abundances
of the stable isotopes 13C, 15N, 18O, and 34S are 1.07, 0.364, 0.205 and 4.25%,
respectively, two different isotopomers with the same nominal mass can exist for
compounds containing these atoms. Since the mass spectrometer used in this study
could not distinguish these isotopomers, the total of the theoretical natural abundances
of two isotopomers having the same nominal mass with different formulae was used.
For example, the natural abundances for C2 [M–SO3]+ were m/z 396.0932 (100.0%),
397.0966 (10.8%), 398.0890 (4.5%), 397.0902 (2.6%), and 398.0975 (1.6%). The
theoretical natural abundance for m+1 (m/z 397) was 13.4% and that for m+2 (m/z 398)
was 6.1%. Please see Table S-3 for the example of the calculation.
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Quantitation of the biosynthetic intermediates, the shunt product, 
and STXs in non-toxic and toxic dinoflagellates using column-
switching HILIC- MS/MS (MRM)

Aliquots of cultured cells (15 mL of A. insuetum (NIES-678) at 5.7 × 103

cells mL−1, 20 mL of P. triestinum (Ptri060930Ohi) at 1.2 × 105 cells mL−1, 
and 10 mL of G. catenatum (GC-18) at 2.8 × 103 cells mL−1) were 
centrifuged at 1700 g (A. insuetum and P. triestinum) or 2300 g (G. 
catenatum) for 5 min to pellet the cells. The pellets were re-suspended in 300 
μL of 0.5 M acetic acid, and the cells were disrupted by sonication (3 times 
at 100 Hz for 30 sec on, 30 sec off) on ice. The suspensions then were 
centrifuged (20,000 g for 5 min at 4 ºC), and the resulting supernatants were 
subjected to ultra-filtration (Ultra-Free C3LGC, 10-kDa cut-off, Millipore). 
Triplicate samples were prepared for each strain. An aliquot of each filtrate 
was subjected to quantitative analysis by HILIC-MS-MRM (10 μL) using an 
API2000 triple-quadrupole tandem MS equipped with an ESI source, as 
described previously [20].
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