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1. PRELIMINARIES

1.1. Mathematical models of microbial communities. Some defining characteristics of microbial
communities are:

1. Dynamic abundance profiles of their species. Microbial communities are dynamic ecosys-
tems. The abundance of their species can exhibit rich temporal behavior including equilibria,
periodic oscillations, and chaos [1, 2].

2. Complex ecological networks. Within a microbial community, the species form a complex
network of ecological interactions through metabolic, physical, regulatory, and signaling ex-
changes [3]. This ecological network is a key attribute of microbial communities, in the sense
that some species can survive only due their interactions with other species [4]. The eco-
logical network of a microbial community can be directly computed from mono-culture and
co-culture experiments [5], inferred from time-resolved abundance data using system iden-
tification techniques [6, 7], or inferred from steady-state samples that have distinct species
collections [8].

3. Spatial organization. Microbial communities can exhibit complex spatial structures such as
dense free-floating aggregates or surface-attached biofilms [3]. This happens, among other
factors, due to motility and gradients of metabolites, light, and temperature.

4. Host-microbe interactions. Examples include immunologic processes in the gut microbiota of
animals, and nutrient limitation in the rhizosphere microbiota of crops.

5. Environmental factors. Examples include salinity, temperature, pH, conductivity, etc.
To build a mathematical model of a microbial community, the first step is to decide which of its

defining characteristics should be considered in the model. Such decision is summarized by defin-
ing the state of the community. The second step is then to select which level of details should be
considered in the model. Different combinations of the above two steps produce different modeling
frameworks (see e.g. [3, 9] for recent reviews), including:

1. Population dynamics models. These models focus on modeling changes in size and composi-
tion of the abundance profile of a microbial community. Examples of this framework are the
canonical Generalized Lotka-Volterra (GLV) equations and other models based on Ordinary
Differential Equations (ODEs), see below.

2. Individual-based models. These models focus on individual microbes as “agents” that have a
set of predefined rules determining their behavior.

3. Stoichiometric models. These models focus on modeling metabolites inside microbial cells.
Usually, the transformation of metabolites is captured by chemical reaction networks. Exam-
ples of this framework are the static and dynamic versions of Flux Balance Analysis (FBA).

4. Spatially resolved models. These models focus on explicitly modeling the spatial distribution
of microbial communities. Examples of this framework include Partial Differential Equations
modeling motility and chemical diffusion.

In our modeling framework, we focus on exploring the impact that manipulating a subset of species
(i.e., the driver species) has on the abundances of other species. To achieve that, a population dynamics
model written as a set of ODEs is sufficient. More precisely, we make the following assumption:

Assumption 1.
a. The state of a microbial community can be determined by the abundance profile x ∈ RN of its
N species1. Here, the i-th entry xi of this vector is the absolute abundance of the i-th species.

b. Spatial organization effects can be incorporated into the ecological network between the mi-
crobial species (e.g., determining if two species can interact or not).

1As in the main paper, here the term “species” is used in the general context of ecology, i.e., a set of organisms adapted
to a particular set of resources in the environment. It doesn’t necessarily represent the lowest major taxonomic rank. In
fact, one could think of organizing microbes by strains, genera, or operational taxonomical units as well.
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c. Host-microbe interactions and environmental factors remain constant during the time interval
the control is performed.

d. Stochastic effects, such as drift [10, 11], are negligible.

We note that a more holistic assumption would consider that the state includes a combination of
the abundance of the microbial species and the concentration of some biomolecules of the host. As-
sumption 1a can be relaxed in such way without changing the theoretical analysis that follows. Note
also that, if necessary, the state of a microbial community could include the abundance of different
strains of the same species. This can be useful if they have different effects to the host (e.g., in the
case of metabolites produced by probiotic and pathogenic strains of E. coli). In analogy to the case of
biochemical reactions, Assumption 1d is reasonable when the number of microbes of each species is
sufficiently large and the microbial community is sufficiently “well-mixed”.

Remark 1.
• Assumptions 1a and 1b justify the use of population dynamics model based on ODEs to

describe the temporal evolution of the state of a microbial community.
• Due to Assumption 1c, host-microbe interactions and other environmental factors can be con-

sidered as constant parameters of such models.
• Assumption 1d allows us to use deterministic ODEs instead of stochastic ones, considerably

simplifying the mathematical analysis.

We thus consider that the temporal evolution of the state x(t) ∈ RN of the microbial community
along time t can be described by the ODE model

(S1)
dx(t)

dt
:= ẋ(t) = f(x(t)), x(0) = x0,

where the vector field f : RN → RN models the population dynamics of the community, characteriz-
ing the intrinsic growth and intra/inter-species interactions. Here x0 ∈ RN represents the initial state
of the community.

Examples of population dynamics of the above form are:
1. The Generalized Lotka-Volterra (GLV) equations with

(S2) f(x) = diag(x)[Ax+ r].

Here A = (aij) ∈ RN×N is the interaction matrix, r ∈ RN is the intrinsic growth rate
vector. The operator diag maps a vector x ∈ RN into a diagonal matrix diag(x) ∈ RN×N

with diagonal entries x1, · · · , xN . The GLV is the canonical population dynamic model for
microbial communities in soils, lakes, human bodies, and even cheese [12–21].

2. Pairwise interaction models. In these models, the i-th entry fi(x) of f(x) is given by

fi(x) = qi(xi) +
N∑
j=1

aijhij(xi, xj), i = 1, · · · , N.

Here A = (aij) ∈ RN×N is the interaction matrix, qi : R → R is the intrinsic growth of the
i-th species, and hij : R×R→ R is the so-called functional response of species j on species
i. A standard and rather general form of the intrinsic growth is the logistic function [22]:

(S3) qi(xi) = xi

[
θi,1 +

(
1− xi

θi,2

)(
xi
θi,3
− 1

)]
,

where the parameters θi,1, θi,2 and θi,3 are the migration rate, the Allee constant and the car-
rying capacity for the i-th species, respectively. The so-called “Crowley-Martin” (CM) func-
tional response is one of the most general ones, taking the form

(S4) hij(xi, xj) =
θ4,ijxixj

(1 + θ4,ijθ5,ijxi)(1 + θ6,ijxj)
,
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for some constants parameters θ4,ij, θ5,ij and θ6,ij characterizing the saturation of the func-
tional response. In predator-pray interactions, these three parameters model the capture rate,
the handling time, and interference between predators, respectively. Note that the CM func-
tional response includes as special cases the Lotka-Volterra, Holling-Type II and the DeAngelis-
Beddington ones [22].

1.2. Modeling control actions in microbial communities. As described in the main paper, we con-
sider the following control actions for controlling a microbial community:

1. Prebiotics and bacteriostatic agents. These are chemical compounds that modify the intrinsic
growth rate of the actuated species. According to how the intrinsic growth rate is modeled in
the GLV (S2), we model the effect of M such control actions as a continuous signal u(t) ∈
RM , t ∈ R, modifying the dynamics of (S1) as follows:

(S5) ẋ(t) = f(x(t)) + g(x(t))u(t).

Here g(x) = [gij(x)] ∈ RN×M is the susceptibility matrix, with gij determining the suscep-
tibility of the i-th species to the j-th control action. At time t the j-th control action is a
prebiotic if uj(t) > 0, and a bacteriostatic agent if uj(t) < 0.

A particular case of the above model is the controlled Generalized Lotka-Volterra model
used in [15, 23], which takes the form

(S6) ẋ(t) = diag(x(t))[Ax(t) + r +Bu(t)].

Here A ∈ RN×N , r ∈ RN and B ∈ RN×M are the interaction matrix, intrinsic growth rate
vector and susceptibility matrix of the community, respectively. This model corresponds to
f(x) = diag(x)[Ax + r] and g(x) = diag(x)B. Note that the term Bu(t) can be interpreted
as modifying the intrinsic growth rates of the species.

2. Transplantations and bactericides. We model these control actions as instantaneously mod-
ifying the state of the microbial community, in the sense they instantaneously increase or
decrease the abundance of the actuated species. Thus, we consider an impulsive control signal
u(tk) ∈ RM applied at certain intervention times T = {t1, t2, · · · }, transforming the dynamics
(S1) into the impulsive control system

(S7) ẋ(t) = f(x(t)), ∆x(t) = g(x(t))u(t).

Above g(x) = [gij(x)] ∈ RN×M is again the susceptibility matrix and ∆x(t) := x(t+)− x(t)
denotes the jump operator at time t. Here x(t+) := limτ↗t x(τ). At the intervention instant
tk ∈ T, the j-th control action is a transplantation if uj(tk) > 0, and a bactericide if uj(tk) <
0. We assume that T can be infinitely long and that it excludes the so-called “Zeno-behavior”2.

In this case, the controlled GLV model used in the main text assumes constant susceptibili-
ties, leading to the equation

(S8) ẋ(t) = diag(x(t))[Ax(t) + r], ∆x(t) = Bu(t).

Thus, control actions are classified as impulsive if they instantaneously modify the actuated species,
and continuous otherwise.

1.3. Controlled population dynamics with meromorphic functions. As in the main text, we con-
sider the following assumption:

Assumption 2. The pair {f(x), g(x)} are meromorphic functions of x. Moreover, without loss of
generality, we assume that rank g(x) = M for almost all x ∈ RN .

2That is, there is no accumulation point in T. This means that there exists a constant τ∗ > 0 such that tk+1 − tk ≥ τ∗
for all k.
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A function is said meromorphic if it is the quotient of analytical functions [24]. Recall that analytic
functions are those functions that admit Taylor series expansions. More generally, vector or matrix
functions are meromorphic if each of their entries is meromorphic. Examples of analytical functions
are polynomials and the trigonometric functions sin and cos. Thus, both the logistic growth in Eq.
(S3) and the Crowley-Martin functional response of Eq. (S4) are meromorphic functions. Assumption
2 is very mild in the sense that it is satisfied by most population dynamics models.

For N = 1 (i.e., x ∈ R), an example of a function that is not meromorphic is

f(x) =

{
e−1/x

2 if x 6= 0
0 if x = 0

Despite this function is infinitely differentiable (i.e., of class C∞), this function is not meromorphic
because it does not have the property of being generically zero nor generically non-zero. For further
details we refer the reader to [24] and Supplementary Note 2.
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2. MATHEMATICAL FORMALISM TO DETECT AUTONOMOUS ELEMENTS

2.1. Notation. We use rank to denote the rank of a constant matrix. The notation g-rank denotes the
generic rank of a matrix with varying parameters. In what follows, all such matrices have meromor-
phic dependence on their parameters, so their generic rank is defined as the maximal rank that such
matrix can attain when varying its parameters. Due to this fact, we emphasize that the generic rank
is always larger or equal to the rank of the matrix at a given point of the parameter space [24]. The
points at which the rank drops are called “singularities”.

2.2. Characterizing autonomous elements in continuous control systems. For the continuous
control systems of Eq. (S5) we have the following notions [24]:

Definition 1. An autonomous element of Eq. (S5) is a non-constant function ξ(x) such that there
exists an integer ν ≥ 0 and a meromorphic function F such that F (ξ, ξ̇, · · · , ξ(ν)) = 0.

Definition 2. System (S5) is said accessible if it has no autonomous element.

In the above setting, the chain rule provides a way to formally operate with one-forms, such as
taking time derivatives: if ω = βᵀdx then ω̇ := β̇ᵀdx+βᵀdẋ. To identify the presence of autonomous
elements in the dynamics with continuous control of Eq. (S5), one calculates the sequence of sub-
spacesHk ⊂ X defined recursively by

(S9) Hk = {ω ∈ Hk|ω̇ ∈ Hk}, k ≥ 1,

starting withH1 = X . Then, we have the following result:

Theorem 1. [24, pp. 49, Thm. 3.17] System (S5) lacks autonomous elements if and only if there
exists an integer k∗ ≤ N + 1 such thatHk∗ = {0}.

2.3. Characterizing autonomous elements in impulsive control systems. For the impulsive con-
trol systems of Eq. (S7), the notions of autonomous elements and accessibility are rather unexplored.
Here we start by introducing a general definition of autonomous elements for this class of systems.
Then, we provide a full characterization of their absence in a given controlled population dynamics.

First, note that an autonomous element is an internal variable of the system that is completely
unaffected by the control actions. For the impulsive control systems of Eq. (S7), the control actions
cause “jumps” in some state variables (i.e., discontinuities). Such jumps are then propagated to other
state variables by the continuous dynamics. This observation motivates the following definition:

Definition 3. An autonomous element of (S7) is a non-constant function ξ(x) such that ξ(x(t)), t ∈ R,
is a C∞ function (i.e., infinitely differentiable function) under any impulsive input.

By analogy to the case with continuous control, we say that system (S7) is accessible if it has no
autonomous element according to the above definition.

To characterize the accessibility of impulsive control systems, our strategy is to characterize the
sequence of subspaces Hk of all functions of the state variables that can be differentiated at least
(k−1) times (hence these functions are “jump free”). The functions belonging to the limitH∞ will be
the autonomous elements of the system, since they are completely unaffected by the control actions.
Consequently, if the limit subspace H∞ is “integrable” (informally, it does not contain “fictitious”
autonomous elements, see below for the mathematical definition), accessibility should be equivalent
to the conditionH∞ = {0}.

To implement the above strategy, we define a new “jump” operator ∆ acting on a one-form ω =
βᵀdx ∈ X as ∆ω := βᵀd∆x = βᵀd{g(x)u}. This new operator allows us to characterize the subspace
H2 of X of all one-forms that do not have jumps as

(S10) H2 = {ω ∈ X |∆ω = 0}.
Next, the subspace of all one-form that can be differentiated once and do not have jumps is

H3 = {ω ∈ H2| ω̇ exists and ω̇ ∈ H2}.
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In general, for k ≥ 4, the subspacesHk of all one-forms that can be differentiated at least k− 1 times
and do not have jumps can be recursively calculated by

Hk = {ω ∈ Hk−1|ω̇ ∈ Hk−1}, k ≥ 4.

Note that the subspace Hk characterizes all functions of the state that are Ck−1-continuous. By
construction, the above sequence is nested (i.e.,X ⊇ Hk ⊇ Hk+1) and eachHk is a finite-dimensional
K-vector space. Therefore, either the dimension decreases at least by one from Hk to Hk+1, or
otherwise it follows that Hk+1 = Hk for all subsequent k’s. This last observation has the following
implication: since the dimension ofH2 is at most N −M because g-rank g(x) = M , then there exists
k∗ ≤ N −M such thatHk∗ = Hk∗+1 = · · · = H∞.

Consequently, since an autonomous element for impulsive control systems is identified with a C∞
function, the accessibility of nonlinear impulsive systems has the following algebraic characterization:

Theorem 2. System (S7) is accessible if and only ifH∞ = {0}.

Proof.
[Accessibility ⇒ H∞ = {0}] By contradiction. Suppose that there exists a non-zero one-form

ω = βᵀdx ∈ H∞. If this one-form is exact, ω = dϕ for some function ϕ, then ϕ(x) is an autonomous
element and the system is not accessible, concluding the proof of the claim. Hence we just need to
show thatH∞ is always closed, i.e., it is spanned by a basis of exact one-forms. This comes from the
fact that the subspaces Hk, k ≥ 2, coincide with the subspaces Hk+1 defined for ẋ = f(x) + g(x)u
(cf. [24]), which are closed [25].

[H∞ = {0} ⇒ Accessibility ] By contradiction. If the system is not accessible, there exists non-
constant ξ(x) that is an autonomous element. Its associated one-form hence satisfies ω = dξ ∈ H2.
All its derivatives are also continuous, so ω ∈ Hk for all k. Hence ω ∈ H∞, and H∞ contains other
elements in addition to the zero element. �

Remark 2. A consequence of Theorem 2 is that the accessibility properties of the impulsive control
system of Eq. (S7) and the continuous control system of Eq. (S5) are identical. That is, the conditions
for the absence of autonomous elements are identical in continuous and impulsive control systems. We
note that this equivalence was only known for the linear systems ẋ = Ax+Bu and ẋ = Ax,∆x = Bu
(see, e.g., [26] or [27]).

We also note that it is possible to construct in an unified way the subspaces Hk for continuous
and impulsive control systems, using a mathematically more sophisticated framework based on the
concept of “distributions” (also called “generalized functions”). For this, we denote by δ(t) the Dirac
delta distribution at time t, which can be loosely defined as

δ(t) =

{
+∞ if t = 0

0 if t 6= 0

and satisfying the property
∫∞
−∞ δ(t)dt = 1. 3 In the framework of distributions, the dynamics of the

impulsive control system of Eq. (S7) can be rewritten as

ẋ(t) = f(x(t)) + g(x(t))u(tk)δ(tk),

where tk ∈ T. Note that ẋ(t) = f(x(t)) if t 6= tk. Given a one-form ω = βᵀdx with β ∈ KN , we use
the Chain Rule to define its time derivative ω̇ as:

• For t 6= tk, we define ω̇ = β̇ᵀdx+ βᵀdẋ = β̇ᵀdx+ βᵀdf .
• For t = tk, we define

ω̇ = β̇ᵀdx+ βᵀ
∂{f(x) + g(x)u(tk)δ(tk)}

∂x
dx+ g(x)δ(tk)du.

3More formally, the Diract delta can be defined as a measure δ such that Lebesgue integral
∫∞
−∞ f(t)δ{dt} = f(0) for

all continuous compactly supported functions f .
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With a little abuse of notation, we denote by spanK the span over meromorphic functions and distribu-
tions (i.e., impulses and more). Then, for impulsive control systems, the subspacesHk can be defined
as

Hk+1 = {ω ∈ Hk|ω̇ ∈ Hk}, k ≥ 1,

starting from H1 = spanK{dx}. Note the above equation is identical to the characterization of the
subspaces Hk for continuous control systems. Indeed, one can verify that H2 = g(x)⊥, which is
precisely Eq. (S10).

Example 1. Consider the microbial community with N = 3 species and M = 1 control inputs as in
Fig. 1 of the main text. Its controlled population dynamics is given by

ẋ1 = 0.1 + x1(1− x1/5)(x1/3− 1)− 0.1
x1x3

1 + x3
,

ẋ2 = 0.1 + x2(1− x2/4)(x2 − 1) +
x2x3

1 + x3
,

ẋ3 = x3(1− x3/2)(x3 − 1),

∆x3 = u.

(S11)

Computing the sequence Hk one finds H1 = spanK{dx1, dx2, dx3},H2 = spanK{dx2, dx1},H3 =
spanK{x2dx1 + x1dx2} and H4 = {0}. Therefore, the controlled population dynamics is free of
autonomous elements and hence accessible.

Example 2. For the microbial community of N = 3 species and M = 1 control inputs in Fig. 2 of
the main text, its controlled population dynamics is given by the cGLV model

ẋ1 = x1(−1 + x3),

ẋ2 = x2(1− x3),
ẋ3 = x3(−0.5 + 1.5x3)

∆x3 = u1.

(S12)

Computing the sequence Hk we find H1 = spanK{dx1, dx2, dx3}, H2 = spanK{dx1, dx2} and Hk =
spanK{x1dx2 + x2dx1} for k ≥ 3. Indeed, for ω = x1dx2 + x2dx1 one has that ∆ω = 0. Thus, since
Hk 6= {0} for k ≥ 3, the controlled population dynamics has an autonomous element. Note that the
autonomous element can be obtained by integrating the one-form ω. Namely, since ω = d(x1x2), the
autonomous element is ξ = x1x2.
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3. DETECTING AUTONOMOUS ELEMENTS WITHOUT KNOWLEDGE OF THE POPULATION
DYNAMICS

3.1. Characterizing the generic absence of autonomous elements. We start by defining the graph
(i.e., network) associated with a given pair of functions {f, g} characterizing the controlled population
dynamics of a microbial community:

Definition 4. Given a pair {f, g} of meromorphic functions, its graph Gf,g = (X ∪ U,Ef,g ∪ Bf,g) is
the network with nodes X ∪ U corresponding to states and inputs, respectively, and edges Ef,g ∪ Bf,g
determined by the following rules:

(xj → xi) ∈ Ef,g ⇔ Jij 6≡ 0, (uj → xi) ∈ Bf,g ⇔ gij 6≡ 0.

Above we denoted by Jij(x, u) and gij(x) the (i, j)-th element of the matrices J(x) = ∂{f(x) +
g(x)u}/∂x and g(x), respectively. Thus the edges (xj → xi) and (uj → xi) simply mean that xj and
uj appear in the right-hand side of the differential equation corresponding to ẋi, respectively.

Remark 3. For defining the graph Gf,g of a given pair {f, g}, it is instrumental to assume this pair is
meromorphic. Only when this assumption is satisfied the conditions Jij 6≡ 0 and gij 6≡ 0 have a well
defining meaning (i.e., they mean these functions are identically zero).

Definition 5. Two meromorphic pairs {f, g} and {f̃ , g̃} are graph equivalent if Gf̃ ,g̃ = Gf,g.

Note that {f, g} is graph equivalent to itself, implying that graph-equivalence is an equivalence
relation.

Given the controlled ecological network Gc of the community, we characterize the class D of all
controlled population dynamics that the community may take as follows. The class D contains all
base models {f ∗, g∗} such that Gf∗,g∗ = Gc, together with all deformations of each of those base
models. The base models, characterizing the simplest controlled dynamics that the community can
take, are chosen as controlled GLV models with constant susceptibilities (see Eq.(4) of the main text).
The notion of a deformation is defined as:

Definition 6. A meromorphic pair {f, g} is a deformation of the base model {f ∗, g∗} if: (i) {f, g} is
graph equivalent to {f ∗, g∗}; (ii) there exists a finite set of parameters θ ∈ RC such that {f(x), g(x)} =

{f̃(x; θ), g̃(x; θ)}; and (iii) the identity {f̃(x; 0), g̃(x; 0)} = {f ∗(x), g∗(x)} holds.

For a given deformation {f, g}, its size is the minimum over all C for which conditions (i), (ii) and
(iii) above are satisfied.

When we only know the ecological network underlying the microbial community and its base
models, then the class D characterizes all possible population dynamics that the microbial community
can have. Because graph equivalence is an equivalence relation, the class D is an equivalence class.

Definition 7. The class D is said structurally accessible if almost all of its base models and almost
all of their deformations lack autonomous elements.

Based on the above framework, our first result is the following:

Proposition 1. If {f ∗, g∗} lacks autonomous elements, then almost all of its deformations also lack
autonomous elements.

Proof. Let {f, g} ∈ D be a deformation. Since {f(x; 0), g(x; 0)} = {f ∗(x), g∗(x)} lacks au-
tonomous elements, the meromorphic dependence of the function on their parameters imply that
for almost all values of θ ∈ RC the corresponding deformation {f(x; θ), g(x; θ)} lacks autonomous
elements. �

The above proposition allows us to characterize the structural accessibility of D by focusing only
on the subclass D0 ⊂ D of deformations with size C = 0. That is, D0 consists of all cGLV models
{f ∗, g∗} such that Gf∗,g∗ = Gc. We next analyze the absence of autonomous elements in D0.



10 M.T. ANGULO, C.H. MOOG AND Y.-Y. LIU

3.2. Generic absence of autonomous elements in cGLV models. Recall that the base cGLV models
{f ∗, g∗} constituting D0 are given by

f ∗(x) = diag(x)[Ax+ r], g∗(x) = B.

By themselves, these models have three parameters (A, r,B), corresponding to the interaction matrix,
intrinsic growth vector, and susceptibility matrix of the community, respectively. By assumption, we
consider that rankB = M . Thus, the subclass D0 is parametrized by the set of all triplets (A, r,B)
such that the graph Gf∗,g∗ coincides with Gc.

The next result characterizes the lack of autonomous elements in almost all the base models in D0.

Proposition 2. Almost all cGLV models lack autonomous elements iff (i) each species node can be
reached by a path that starts in a control-input node, and (ii) g-rank

(
A B

)
= N .

Proof. Since the absence of autonomous elements guarantees that the system can explore a full N -
dimensional space, we assume that xi > 0 without loss of generality. Additionally, since the acces-
sibility properties with continuous and impulsive control are identical (see Remark 2), we consider
without loss of generality the cGLV models with impulsive control. In coordinates z = ln(x) (i.e.,
x = ez interpreted component-wise), the dynamics cGLV dynamics can be written as

(S13) ż = r + Aez, ∆z = Bv,

where v = B+ [ln(ez +Bu)− z] is a new input. Here B+ denotes the Moore-Penrose pseudoinverse
of B that, since B has full column rank, satisfies B+B = I (i.e., u = B+[ez+Bv − x]).

(⇒) By contradiction, showing that not satisfying condition (i) or (ii) implies the existence of an
autonomous element. If condition (i) is not satisfied, the state variables associated to those
nodes are autonomous elements. If condition (ii) is not satisfied then g-rank

(
A B

)
< N . In

turn, this condition implies that rank
(
A B

)
< N . Therefore there exists β ∈ RN such that

βᵀA = βᵀB = 0. Consequently ξ = βᵀz is an autonomous element because ξ̇ = βᵀr and
∆ξ = 0.

(⇐) Under conditions (i) and (ii), the pair (A,B) is structurally controllable. This means that al-
most all pairs (A,B) are linearly controllable. Next we consider the linearization (S13) at
z = 0 which coincides with the linear system δ̇z = Aδz, ∆δz = Bv. Due to the linear struc-
tural controllability, for almost all pairs (A,B) this linearization is controllable. The claim
follows since linear controllability is a sufficient condition for the absence of autonomous
elements in the original nonlinear system.

�

Remark 4.
1. Proposition 2 shows that the growth rate vector r does not play any role in the generic pres-

ence/absence of autonomous elements in the cGLV model.
2. Note that for cGLV models, a self-loop in their graph could exists due to intrinsic growth

terms rixi, or due to intra-species interactions aiixixj .

To obtain a graph-characterization of the structural accessibility of the class D, it will be useful to
recall the following result:

Lemma 1. (Lemma 2 in [28]) The condition g-rank
(
A B

)
= N admits the following equivalent

graph characterization: there exists a disjoint union of paths starting at the input nodes and cycles that
cover all state nodes.

As discussed in Remark 4.2, given the ecological network Gc of a microbial community, we cannot
know if self-loops occur due to the presence of intrinsic growth terms or due to intra-species inter-
actions. For example, if the only incoming edge to species xi is the self-loop xi → xi, this could
correspond to three different dynamics:

ẋi = rixi or ẋi = rixi + aiix
2
i or ẋi = aiix

2
i .
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Considering Remark 4.1, the intrinsic growth rates do not play any role in the absence or presence
of autonomous elements in the cGLV model. By contrast, intra-species interactions can contribute
to remove autonomous elements by helping the pair (A,B) to be linearly structurally controllable.
Therefore, being agnostic to whether a self-loop corresponds to an intrinsic growth term or an intra-
species interaction (or both), we should consider as worst case that all self-loops in Gc occur due
to intrinsic growth terms. With this observation, we obtain the following graph-characterization of
structural accessibility:

Theorem 3. The class D is structurally accessible if and only if: (i) each state node is the end-node of
a U-rooted path, and (ii) there is a disjoint union of paths that start in input nodes and cycles (excluding
self-loops) that cover state nodes.

Proof. Proposition 2 and Lemma 1 imply that almost all cGLV models in D0 lack autonomous ele-
ments if and only if conditions (i) and (ii) are satisfied. Then, the claim follows by using Proposition
1. �
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4. IDENTIFYING A MINIMAL SET OF DRIVER SPECIES

Let G = (X,E) denote the ecological network underlying the microbial community. To simplify
the notation, recall we also denote this graph as G(X) or simply G. Note that G is a directed graph or
digraph. Next consider the controlled ecological network Gc = (X ∪ U,E ∪ B) obtained by adding
M control input nodes U = {u1, · · · , uM} and edges of form (uj → xi) ∈ B. Recall that the control
input uj is said to actuate species xi iff (uj → xi) ∈ B.

We will use of the following notions:

Definition 8.
a) The controlled network Gc is said to have a dedicated input configuration if each control input

actuates a single species.
b) Gc is said to have a feasible dedicated input configuration if it has a dedicated input configu-

ration and it is structurally accessible. If in addition Gc has the minimal possible number of
control input nodes, then Gc is said to have a minimal feasible dedicated input configuration
(mFDIC).

The notion of a “dedicated input configuration” was introduced in Ref. [29] in the context of (linear)
structural controllability for linear systems. Definition 8 above is an extension to nonlinear systems
in the context of the notion of structural accessibility.

Note that if Gc has a mFDIC, then the set of actuated species XD ⊆ X in Gc is a minimal set of
driver species. Conversely, if XD ⊆ X is a minimal set of driver species, then we can build a mFDIC
just by actuating each driver species with a different control input. As a consequence, a minimal set
of driver species can be characterized as a mFDIC. Using this observation, we can identify a minimal
set of driver species by using the methods to find mFDICs developed in Ref. [29].

More precisely, let G̃(X) be the subgraph obtained by removing all self-loops in G(X). Let B̃(X− ∪
X+) be the bipartite representation of G̃(X), built by placing the edge (x+j , x

−
i ) in B̃ if there is a directed

edge (xj → xi) in G̃. Next, let us introduce the following notions:

Definition 9. [29]
a) A strongly connected component (SCC) is called non-top linked if it has no incoming edges

from other SCCs.
b) Consider the bipartite representation B̃(X− ∪ X+) of G̃(X). Let M∗ be a maximum matching

in B̃. Then, a non-top linked SCC is said to be top assignable with respect to M∗ if it contains
at least one right-unmatched node in M∗.

Finally, let Z ⊆ X be the set of right-unmatched nodes of some maximum matching of B̃ with
maximum top assignability. Let W ⊆ X be a set consisting of one state node from each non-top
linked SCC of G̃ not already present in Z. Then we have the following result:

Proposition 3. A set XD ⊆ X is a minimal set of driver species if and only if there exist two disjoint
subsets Z and W, as defined above, such that XD = Z ∪W.

Proof. Under the assumptions of Proposition 3, Theorem 5 of [29] implies that the resulting G̃c is
linearly structurally controllable. Then, Theorem 1 of [30] implies that G̃c satisfies the following two
conditions: (i) each state node is the end-node of a U-rooted path, and (ii) there is a disjoint union
of paths that start in input nodes and cycles that cover all state nodes. Finally, by recalling that G̃
was obtained from G by discarding all self-loops, it follows from Theorem 3 that Gc is structurally
accessible. �

Using the above Proposition, we can identify a minimal set of driver species by applying Algo-
rithm 1 of [29] to G̃. We implemented this algorithm in Julia as the DriverSpecies function in the
DriverSpeciesModule package, available at the following GitHub repository:

https://github.com/mtangulo/DriverSpecies
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Remark 5. From Theorem 11 of [29], it follows that the algorithm to find a minimal set of driver
species has complexity O(N3). For communities with N = 100 species, the provided Julia imple-
mentation finds a minimal set of driver species in milliseconds.
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5. SUFFICIENT NUMBER OF IMPULSES TO DRIVE A MICROBIAL COMMUNITY

We start recalling the following elementary notions [24]:

Definition 10. A one-form ω ∈ X is closed if dω = 0.

Examples of closed one-forms are exact one-forms, i.e., ω’s for which there exists a meromorphic
function φ ∈ K such that dφ = ω.

Consider now a given pair {f, g} and its associated sequence of subspaces {Hk, k ≥ 1}.

Definition 11. A subspaceHk ⊆ X is closed if it has a basis of closed one-forms.

We then have the following characterization:

Theorem 4. Consider the impulsive control system of Eq. (S7). Assume that there exists integer k∗

such thatHk∗ = {0} and all subspacesHk’s, k ≤ k∗ are closed. Then L = k∗ − 1 impulses suffice to
locally steer the system to almost any desired state.

Proof. Under these assumptions, the static feedback linearization theorem [24, Theorem 9.1] ensures
that there exists local coordinates ζ = ϕ(x) and inputs v ∈ RM (i.e., u = g+(x)v) such that the
system reads as

ζ
(ri)
i = αi(x), ∆ζi = vi; i = 1, · · ·M.

Here, ri ≥ 1 are some integers and and αi(x) is some nonlinear functions. To complete the proof of
the theorem, we first show that the above system can be steered to any desired state using ri impulses at
times T = {t0, t1, · · · , tri−1}. Finally, since the integers ri’s are the so-called controllability indices
of the system and they satisfy k∗ − 1 = max{r1, · · · , rM} (see e.g., [24, Section 3.7]), the claim
follows.

Define the vector zi ∈ Rri as zi,1 = ζi and zi,k = ζ
(k−1)
i (i.e., k − 1 time derivative). Then, the

above dynamics can be rewritten as

(S14) żi(t) = A0zi(t) + bαi(t), ∆zi(t) = bvi(t), i = 1, · · · ,M,

where αi(t) := αi(x(t)), and

A0 =


0 1 0 · · · 0
0 0 1 · · · 0
... . . .
0 0 · · · 1
0 0 0 · · · 0

 , b =


0
0
...
0
1

 .

Consider an initial state zi(t0). Then:
• The impulse vi(t0) at t0 will set zi(t+0 ) = zi(t0) + bvi(t0).
• Using the variation of parameters formula, flowing from t0 to t1 yields

zi(t1) = eA0t1 [zi(t0) + bvi(t0)] +

∫ t1

t0

eA0(t1−τ)bα(τ)dτ.

• The impulse vi(t1) at t1 will set

zi(t
+
1 ) = bvi(t1) + eA0t1bvi(t0) + γ1,

where γ1 = eA0t1zi(t0) +
∫ t1
t0
eA0(t1−τ)bα(τ)dτ .

• Flowing from t1 to t2 yields

zi(t2) = eA0t2bvi(t1) + eA0(t1+t2)bvi(t0) + γ2

where γ2 = eA0(t1+t2)zi(t0)+eA0t2
∫ t1
t0
eA0(t1−τ)bα(τ)dτ +

∫ t2
t1
eA(t2−τ)bα(τ)dτ . Here we have

used the identity eA0t1eA0t2 = eA(t1+t2).
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• The impulse vi(t2) at t2 will set

zi(t
+
2 ) = bvi(t2) + eA0t2bvi(t1) + eA0(t1+t2)bvi(t0) + γ2.

Repeating the above process ri − 1 times, we obtain the expression

zi(t
+
ri−1) = CVi + Γ,

where the matrix C ∈ Rri×ri is given4 by

C =
(
b eA0Tri−1b eA0Tri−2b · · · eA0T1b

)
,

with Tri−1 =
∑1

k=ri−1 tk. That is Tri−1 = tri−1, Tri−2 = tri−1 + tri−2, ..., T1 = tri−1 + · · ·+ t1 + t0.
The vector Vi ∈ Rri contains all impulses:

Vi =
(
vi(tri−1) vi(tri−2) · · · vi(t1) vi(t0)

)ᵀ
,

and Γ ∈ Rri is the vector of the scalars γi.
Due to the form of A0, direct computation shows that

eA0Tkb =
(
T

ri−1

k

(ri−1)!
T

ri−2

k

(ri−2)! · · ·
T 2
k

2!
Tk 1

)ᵀ
.

Since all tk’s are different by assumption, this implies that all columns of C are linearly independent
and thus rankC = ri. Therefore, choosing the j-th control impulse as u(tj) = Vij∗ with V ∗i =
C−1(z∗i − Γ) ensures that zi(t+ri−1) = z∗i as desired. �

Remark 6. The case when Hk∗ = {0} for some k∗, but some Hk is not closed, suggests that the
system can only be locally asymptotically steered as t→∞.

Example 3. Consider a microbial community with N = 3 species, M = 1 control input, and the
following controlled population dynamics:

ẋ1 =
1− x1 + x3

1 + x3
, ẋ2 =

1− x3
1 + x3

, ẋ3 = 0, ∆x3 = u.

Computing the sequenceHk one finds:

H1 = span
K
{dx1, dx2, dx3}, H2 = span

K
{dx2, dx1}, H3 = span

K
{2dx1 + x1dx2}, H4 = {0}

implying that the system is free of autonomous elements and hence accessible. To apply Theorem
4, note that H1 and H2 are obviously integrable. The subspace H3 is also integrable, since ω =
2dx1 + x1dx2 can be integrated to d(ex1x2/2). Therefore, L = 3 impulses are required to steer this
microbial community.

We also use this example to illustrate the procedure that leads to Eq. (S14). In this example, using
the coordinates

z1 = ex2/2x1, z2 = −e
x2/2

2
(−2 + x1), z3 =

ex2/2

4(1 + x3)
(−4x3 + x1 + x1x3)

the system reads as
ż1 = z2, ż2 = z3, ż3 = α(z),

where α(z) = (z22−z1z2+2z2z3+4z23)/(2z1+4z2). In addition, since x3 = (z1−4z3)/(z2+4(z2+z3)),
choosing

u =
z1 − 4(z3 + v)

z2 + 4(z2 + z3 + v)
− z1 − 4z3
z2 + 4(z2 + z3)

,

where v ∈ R is a new control input, leads to the equation

∆z3 = v.

4Note here C is a matrix, not the size of a deformation.
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Example 4. For the microbial community of Fig. 1 in the main text, we previously calculated that

H1 = span
K
{dx1, dx2, dx3}, H2 = span

K
{dx2, dx1}, H3 = span

K
{x2dx1 + x1dx2}, H4 = {0}.

The subspacesH1 andH2 are obviously closed. The subspaceH3 is closed because x2dx1 +x1dx2 =
d(x1x2) and d(dx1x2) = 0. Therefore, an horizon of L = 3 control actions can steer this microbial
community to the desired state.

Remark 7. Some remarks are in order:
a. In general, the condition that the subspacesHk are closed does not depend on the “complexity”

of the dynamics in the sense of how complicated are its defining equations. Indeed, even the
base cGLV dynamics can produce non-closed subspaces.

b. The key step in the proof of Theorem 4 is the transformation ϕ(x) into the so-called “cascade
form” of Eq. (S14). This allows us to calculate the solution of the system trajectories and
to calculate the impulsive control inputs that will steer the system towards the desired state.
Indeed, this same method can be used to calculate the control inputs even if the system is not
linearized. The only requirement is that the graph of the system is acyclic.

Example 5. To illustrate Remark 7a, consider the following cGLV with one control input:

ẋ1 = x1(x1 + x2)

ẋ2 = x2(x1 + 2x2)

ẋ3 = x3(x1 + 2x2 + 3x3)

∆x1 = ∆x2 = ∆x3 = u.

One can compute

H1 = span
K
{dx1, dx2, dx3}, H2 = span

K
{−dx1 + dx3,−dx1 + dx3},

H3 = span
K
{3(x2 − 3x3)dx1 + (−2x1 + x2 + 9x3)dx2 + 2(x1 − 2x2)dx3}, H4 = {0}.

HereH3 is not closed.

Example 6. To illustrate Remark 7b, we consider the microbial community in Fig. 2b of the main
text. This community has the cGLV controlled population dynamics

ẋ1 = x1(−1 + x3)

ẋ2 = x2(1− x3)
ẋ3 = x3(−0.5 + 1.5x3)

∆x1 = u2

∆x3 = u1.

Denote the initial state as x(0) = (x10, x20, x30)
ᵀ, and the desired state as xd = (x1d, x2d, x3d)

ᵀ.
Let us choose t0 = 0 as the first intervention instant and define u1(t0) = u10. Considering the

third equation ẋ3 = x3(−0.5 + 1.5x3) with the initial condition x30 + u10 obtained after the first
intervention, its solution at time t can be calculated by direct integration as

x3(t) =
1.

e0.5t(1−3(u10+x30))
u10+x30

+ 3
.

Consider now the second equation ẋ2 = x2(1 − x3). Using the above expression for x3(t), the
abundance of x2 at the time of the second intervention t1 can be again obtained by direct integration:∫ x2(t1)

x20

dx2
x2

=

∫ t1

0

[1− x3(t)]dt,



A THEORETICAL FRAMEWORK FOR CONTROLLING COMPLEX MICROBIAL COMMUNITIES 17

leading to

lnx2(t1)− lnx20 =
2

3
ln

(
u10
(
1− e0.5t1

)
+ x30

(
1− e0.5t1

)
+

1

3
e0.5t1

)
+

2

3
t1 + 0.732408.

Choosing the value u10 such that x2(t1) = x2d we obtain

(S15) u10 = −
−

1
3
x1.52d

x1.520
+ (et1 − e1.5t1)x30 + 1

3
e1.5t1

et1 − e1.5t1
.

Therefore, choosing the control actions as

(S16) u(t0) = (u10, 0)ᵀ, u(t1) = (x3d − x2(t1), x1d − x1(t1))ᵀ,
guarantee that x(t1) = xd, as desired.

Remark 8. Note that in the extreme case of driving all N species we obtain g-rank g(x) = N ,
implying that H2 = {0} which is evidently exact. Indeed, in this case a single impulse is sufficient
to steer the system to almost any desired state. This fact suggests that, by increasing the number of
control inputs (i.e., driver species), it may be possible to drive the system to the desired state using a
finite number of impulses.

Remark 9. There exists a tradeoff between the number of driver species and the complexity of the
control signal needed to drive the microbial community towards the desired state. To illustrate this
point, let’s consider the microbial community of Example 6 with N = 3 species and M = 2 driver
species. Here it is necessary to use the two impulsive control inputs of Eq. (S16) to reach the desired
state. The component u10 of these control inputs is rather complicated as shown in Eq. (S15). By
contrast, if we enlarge the set of driver species to M = 3 (i.e., we control all species), then a single
control input u(t0) = xd−x(t) can evidently drive the microbial community to xd. Note also that the
control signal is simpler compared to the case of using M = 2 driver species. In general, it can be
expected that the complexity of the signal needed to drive the community increases as the number of
driver species decreases.
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6. CALCULATING CONTROL INPUTS FOR MICROBIAL COMMUNITIES WITH UNCERTAIN
POPULATION DYNAMICS OR LARGE NUMBER OF SPECIES

We consider the linear pair {Âx, B̂} to predict the states X̂k,L = {x̂(tk+1), · · · , x̂(tk+L+1)} that
the community will take in response to a sequence of L impulsive control inputs Uk,L = {u(tk),
· · · , u(tk+L−1)}. For simplicity, we assume that tk+1 − tk = τ for all k.

As discussed in the main text, at each intervention instant tk ∈ T, the control input is chosen as
u(tk) = u∗1(tk). Here u∗1(tk) is the first element of the optimal control input sequence U∗k,L calculated
by solving the optimization problem

(S17) U∗k,L = arg min
Uk,L∈RM×L

Jxd(X̂k,L, Uk,L),

where the cost function Jxd is quadratic:

(S18) Jxd(X̂k,L, Uk,L) =
L∑
i=k

[x̂(ti)− xd]
ᵀQ[x̂(ti)− xd] + u(ti)

ᵀRu(ti).

The matrices Q = Qᵀ ∈ RN×N , Q � 0, and R = Rᵀ ∈ RM×M , R � 0, penalize deviations from the
desired state and control “effort”, respectively. In this cost function, we choose the matrix Q such that
(Q, eÂτ ) is observable.

Note that using the linear pair {Âx, B̂} the predicted state of the community satisfies
˙̂x(t) = Âx(t) if t 6∈ T; ∆x̂(t) = B̂u(t) if t ∈ T.

Therefore, we can compute the predicted state x̂(tk+1) that the community will take after we apply
the control input u(tk) by integrating the above equation between the intervention instants tk+1 and
tk. This yields the recursive discrete-time equations

(S19) x̂(tk+1) = eÂτ x̂(tk) + eÂτ B̂u(tk).

With this observation, solving the optimization problem of Eq. (S17) becomes equivalent to minimiz-
ing the cost function of Eq. (S18) subject to the linear discrete-time dynamics (S19). The solution to
this minimization problem is a well-known Linear Quadratic Regulator, see e.g., [31]. In the partic-
ular case of an infinite prediction horizon L → ∞, this implies that the solution to the optimization
problem of Eq. (S17) takes the form of the linear feedback controller u(tk) = K(x̂(tk) − xd) where
K ∈ RM×N is the gain matrix. Since we can measure the current state of the community, the pre-
dicted value of the current state x̂(tk) simply coincides with the current state x(tk), giving the final
form for the controller:

(S20) u(tk) = K(x(tk)− xd).

Above, the gain matrix is given by K = [(eÂτ B̂)ᵀPeÂτ B̂]−1[(eÂτ B̂)ᵀPeÂτ ] with P ∈ RN×N the
solution to the Riccati equation

eÂ
ᵀτPeÂτ − P − [eÂ

ᵀτPeÂτ B̂](BᵀPeÂτ B̂)−1(eÂτ B̂)ᵀPeÂτ +Q = 0.

For the results in the main paper, the matrix gain K was computed using the Julia command dlqr in
the ControlSystems module.

Remark 10. In the case of continuous control, the solution to the analogous optimization problem

arg min

∫ ∞
t=0

[x̂(t)− xd]
ᵀQ[x̂(t)− xd] + u(t)ᵀRu(t)dt,

subject to ˙̂x(t) = Âx(t)+B̂u(t) also takes the form of the linear feedback controller u(t) = K(x̂(t)−
xd) = K(x(t)−xd), see, e.g., [32, pp. 194] or [31,33]. In this case, the gain-matrix is K = R−1BᵀP
with P the solution to the Riccati equation

ÂᵀP + PÂ+ PB̂R−1B̂ᵀP +Q = 0.
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Remark 11. The performance of the linear MPC also depends on the chosen (Â, B̂) and the desired
state. In general, the linear MPC is guaranteed to succeed only if the desired state is “close enough”
to the initial state. In this statement, how “close” or “far” is a desired state depends on how well the
linear dynamics approximates the true population dynamics of the community. If the approximation
is perfect, any desired state in RN can be reached using a linear MPC with arbitraryQ � 0 andR � 0.

Remark 12. Since the linear impulsive and continuous MPCs we proposed here coincide with the
solution to discrete and continuous LQR problems, respectively, our proposed controllers will nat-
urally inherit the robustness properties of LQRs. The excellent robustness properties of continuous
time LQRs (such as 50% gain reduction tolerance, +∞ gain margin, and 60 degrees of phase mar-
gin) were derived in the 70’s in a series of now classical papers by Safonov, Athans, Rosenbrock and
others, summarized in books such as [33]. Similarly, the robustness properties of discrete time LQRs
were derived in seminal contributions from the 80’s, such as [34].

Remark 13. In Ref. [35], the authors proposed a strategy to optimally control complex networks
based on the linearization of their nonlinear dynamics. To apply this approach for controlling mi-
crobial communities, it would be necessary to have exact knowledge of their population dynamics in
order to calculate the linearization. Our approach circumvents this limitation, requiring only to know
a proxy (Â, B̂) of the interaction matrix and susceptibility matrix of the community. We emphasize
that (Â, B̂) does not need to coincide with the linearization of the dynamics (see, e.g., Fig. 4c,d and
Fig. 5 of the main text).
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7. SIMULATION RESULTS USING REAL MICROBIAL NETWORKS

For both the mice gut microbiota and the Ircinia oros core microbiota presented in Fig. 6 of the
main text, we selected a controlled GLV model to produce the simulation because it was used as the
basis for the network inference algorithms (see the ecological networks in Fig. 3 of the main text).
More precisely, with continuous control, the controlled GLV model is obtained from the general
model by choosing

f(x) = diag(x)[Ax+ r], g(x) = diag(x)B,

while for impulsive control reads

f(x) = diag(x)[Ax+ r], g(x) = B.

In both models, the zero/non-zero pattern of these two matrices A and B is determined by the con-
trolled ecological network.

node OTU number in Ircinia oros core microbiota Species in mice gut microbiota
1 001801 R. mirabilis
2 001400 B. ovalus
3 001048 B. vulgatus
4 000669 R. hominis
5 000555 P. dislasonis
6 000271 A. muciniphila
7 290392 C. difficile
8 288080 B. fragilis
9 287579 K. oxytoca
10 238548 C. ramnosum
11 235338 E. coli
12 112902 R. obeum
13 107308 C. scindens
14 091937 C. hiranonis
15 042838 —
16 031796 —
17 009959 —
18 003837 —
19 002329 —
20 001995 —

SUPPLEMENTARY TABLE 1. Correspondence between state nodes and species/O-
TUs of Fig. 3 in the main text. OTUs as in [7] correspond to the state nodes in the
Ircinia oros core microbiota network. Species as in [15] corresponding to nodes in the
network of mice gut microbiota infected by C. difficile.

7.1. Simulation results for the core microbiota of Ircinia oros. The network inferred in [7], with
20 species (Table 1), was used to determine the zero-pattern of the A matrix. Its non-zero terms were
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(approximately) chosen to fit the reported strength and sign of the interactions, leading to:

A =



0 0 0 0 0 0 0 0 0 0 0 0 0 0.12 0 0 0 0 0 0
0 −0.42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1.5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.45 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0 0 0 −0.15 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0.35 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.11 0 0 0

0 0 3.69 0 0 0.12 0 0 0 0 0 0 0 0 0 −0.21 0.11 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.14 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −5.98 0 0 0 0 0 0 0

0 0 −2.51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6.14 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0.36 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

Note that A ∈ R14×14 does not have full rank, implying that the corresponding GLV model admits
true multi-stability. Indeed, if x∗ is an equilibrium of the cGLV model without control, then x∗+kerA
is also an equilibrium.

A minimal set of driver species was obtained as described in Section 4, defining the zero-pattern of
the B matrix. Its non-zero entries were uniformly randomly chosen from the interval [−1, 1] leading
to

B =



0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1.15 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. −1.49 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 1.40 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 1.27
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 1.42 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 1.18 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. −1.19 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. −1.19 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. −1.198 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. −1.15 0. 0.


We considered a “diseased” initial state

x0 = (0.4066, 0.5492, 0.4721, 0.5000, 0.5924, 0.4164, 1.4685, 0.5672, 0.5011, 0.5382,

0.5901, 0.4707, 0.5289, 0.5382, 0.4966, 0.5202, 0.4827, 0.4844, 0.5672, 0.5783)ᵀ.

in which one species is overabundant (blue) compared to the rest. The growth rate vector r of the
GLV model was chosen to ensure this initial state was an equilibrium, leading to

r = (−0.0652252, 0.232317,−0.885135, 0.23632, 0.027358, 0.,−0.237912, 0.0542032,−1.74108,

0.0710623,−0.758838, 0., 3.16484, 1.18613, 3.19597, 0., 0.,−0.172444, 0.,−0.176742)ᵀ.

For the desired state, we considered another equilibrium with a better balance of species

xd = (0.3658, 0.5492, 0.4721, 1.5400, 0.1776, 0.4164, 0.5835, 1.1573, 1.8976, 1.5352, 0.5901,

0.4707, 0.5289, 0.5382, 0.4966, 0.5202, 0.4827, 1.4844, 0.5672, 0.5783)ᵀ.

A feedback controller u(t) = K[x(t)−xd] with continuous control was designed using the method-
ology of Section 6 with Â = A, B̂ = B, Q = I and R = I . Note this linear controller aims to control
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the nonlinear GLV equations, despite the linearization of this nonlinear model at the desired state does
not coincide with Â and B̂. This yields the gain matrix K =

0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.41 0 0.2 0 0.05 1.07 0 0.42 0.81 0.01 0.14 0 0 1.12 −0.03 0 0.03 0 −0.01 0.04
0 0 0 0 0 0 0 0 0 0 0 1.23 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0
−0.01 0 0.05 0.03 0 0 −0.03 0 0.02 −1 0.02 0 0 −0.02 1.08 −3.48 0 0 0 0

−0.24 0 −0.2 0 −0.04 −0.03 0 0.91 −0.34 −0.01 −0.14 0 0 −0.43 0.01 0 −1.11 0 0.01 −0.04
−0.25 0 −0.21 0 0.97 0.01 0 0 0.07 0 −0.13 0 0 0.21 0 0 0.01 0 −1.12 −0.03
0.84 0 −7.55 0 0.25 −0.03 0 0.05 −0.48 −0.02 −7.96 0 0 1.27 0.02 0 −0.04 0 −0.03 −4.37
0 0 0 −1 0 0 0 0 0 −0.03 0 0 0 0 0.04 0.04 0 0 0 0

0 0 0.05 0 0 0 1 0 0 −0.03 0.02 0 0 0.01 0.03 0.03 0 0 0 0


In the case of impulsive control u(tk) = K[x(tk)− xd], we set τ = 1 and choose Â = A, B̂ = B,

B̂ = B,Q = 9I and R = I . This yields the gain matrix K =

0 0.73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.27 0 0.12 0 0.03 0.68 0 0.28 0.51 0.01 0.06 0 0 0.71 −0.02 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.68 0 0 0 0 0 0.56 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.01 0 0 0 0 0 0 −0.12 0 0 0 0 0.14 −0.83 0 0 0 0
−0.17 0 −0.14 0 −0.03 0 0 0.66 −0.24 −0.01 −0.07 0 0 −0.3 0.01 0 −0.79 0 0 0

−0.18 0 −0.11 0 0.7 0 0 0 0.04 0 −0.05 0 0 0.14 0 0 0 0 −0.79 0

0.09 0 −0.98 0 0.02 0 0 0 −0.04 0 −1.21 0 0 0.14 0 0 0 0 0 −0.87
0 0 0 −0.64 0 0 0 0 0 −0.04 0 0 0 0 0.05 0 0 0 0 0

0 0 0.05 0 0 0 0.74 0 0 −0.04 0.02 0 0 0 0.04 0 0 0 0 0


.

7.2. Simulation results for the mice gut microbiota. We considered the ecological network inferred
in [15] with 14 species as in Table 1. We used this network to set the zero pattern of the A matrix.
We next randomly choose the non-zero entries of A, keeping the relative strength and sign of the
interactions as originally reported. This lead us to the matrix:

A =



0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 1.1 0. 0. 0. 0. 0. 0.95 0. 0. 0. 0. 0.98
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. −1.9
0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.97
0. 0. 0. 0. 0. 0. 0. 0. 1.1 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.94 0. 1.2 0. 0. 0. 0. 0.

0. 0. 0. −1. 0. 0. 0. 0. 0. 0. 0. 0. −0.99 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. −1.2 0. 0.

−1.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.2 0. 0. 0.95

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.
0. 0. −1.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.99 0. 0.
0. 0. 2.1 0. 0. −2.1 0. 2.2 0. 0. −2.1 0. 0. 0.


Next we identified a minimal set of driver species as described in Section 4. This yields a set of

five species (see main text) which set the zero pattern of the B matrix. The non-zero entries of this
matrix were randomly chosen from the interval [−1, 1] to obtain

B =



0.7 0. 0. 0. 0.
0. −0.34 0. 0. 0.

0. 0. 0. 0. 0.

0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. −0.54 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.

0. 0. 0. 0. 0.
0. 0. 0. 0.38 0.
0. 0. 0. 0. 0.

0. 0. 0. 0. −0.047
0. 0. 0. 0. 0.

0. 0. 0. 0. 0.


.
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The initial state was chosen as a “diseased” one in which C. difficile is overabundant compared to
the rest of the species:

x0 = (0.5664, 0.5004, 0.5492, 0.5395, 0.5703, 0.4399, 1.5035,

0.5853, 0.4707, 0.5515, 0.4102, 0.5406, 0.4803, 0.5375)ᵀ.

The growth rate vector was then chosen to ensured that the above diseased state was an equilibrium,
leading to

r = −A−1x0 = (0,−1.5571, 0.9947,−2.0445,−0.5321,−1.9722, 1.0222,

0.6225,−0.7628,−0.5556, 0.6245, 0,−1.7054,−0.6232)ᵀ.

We found that in this dynamic model all equilibria have the same abundance of C. difficile. We then
choose the desired state as another equilibrium with a better balance of species:

xd = (0.5664, 1.2993, 0.5492, 0.7009, 1.6392, 1.0561, 1.5035,

1.1888, 0.4707, 1.3033, 0.4102, 0.5406, 0.3161, 0.5375)ᵀ.

A feedback controller u(t) = K[x(t)−xd] with continuous control was designed using the method-
ology of Section 6, using Â = A, B̂ = B and

Q = 2I + diag(−1.5, 10, 0, 0,−1.5, 4, 0, 0, 0, 0, 0, 5, 0, 0), R = diag(1.8, 1, 0.5, 0.5, 0.5).

This leads to the gain matrix

K =

 4.4 −0.4 0.39 1.06 −0.29 0.13 −1.28 −0.13 −1.77 0 −2.86 0.82 2.25 −0.78
0.35 −3.41 −2.12 −0.23 0.11 0.12 0.08 −0.14 −2 0 −2.01 −0.24 −0.39 −0.41
−0.36 0.4 −2.32 0.98 0.81 −10.6 −1.56 11.22 3.26 0.03 7.71 −0.49 2.54 12.73

0.01 0 0.97 −0.01 −0.01 −0.02 −0.01 0.01 −0.09 2 −0.51 −0.03 −0.04 0.06

−0.2 −0.07 0.21 −0.17 −0.08 −0.04 0 4.09 −0.43 0 −0.56 −15.02 −0.32 −0.28

 .

A feedback controller u(tk) = K[x(tk) − xd] was also constructed as in Section 6, using τ = 1,
Â = A, B̂ = B and

Q = 9I + diag(0, 0, 0, 0,−8, 0, 0, 0, 0, 0, 0, 0, 0, 0), R = I.

This yields the gain matrix

K =

 1.42 −0.02 0.24 0.35 −0.05 0 −0.32 0.01 −0.37 0 −0.68 0.19 0.68 −0.19
0.01 −1.81 −1.49 −0.35 0.14 0.01 0.1 −0.01 −1.82 0 −2.45 −0.33 −0.63 −0.29
0 0.01 0.89 0.18 0.07 −1.83 −0.67 1.83 −0.47 0 −0.54 −0.42 0.25 0.67

0 0 1.25 −0.02 −0.02 0 0.01 −0.04 −0.14 1.74 −0.78 −0.03 −0.08 −0.07
−0.01 −0.05 0.68 −0.16 −0.19 −0.04 −0.23 2.89 −0.86 0 −1.33 −11.06 −0.3 −0.91

 .

Note, again, that both linear controllers aim to control a nonlinear cGLV model.
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FIGURE S1. Controlling host-associated microbial communities. A, B. Abundance of
species in the microbial community without control (color). This corresponds to the initial
state of the community x0. One species (C. difficile in the case of the mice gut microbiota)
is overabundant with respect to the rest. The desired state xd is shown in grey. C, D. Control
inputs obtained using the linear MPC for the continuous control scheme. These control inputs
succeed in steering the state of the microbial community (solid) to the desired state (dashed).
E, F. Control inputs obtained using the linear MPC for the impulsive control scheme. These
control inputs succeed in steering the state of the microbial community (solid) to the desired
state (dashed).

SUPPLEMENTARY FIGURE 1. Controlling host-associated microbial communities. A,
B. Abundance of species in the microbial community without control (color). This corresponds
to the initial state of the community x0. One species (C. difficile in the case of the mice gut
microbiota) is overabundant with respect to the rest. The desired state xd is shown in grey.
C, D. Control inputs obtained using the linear MPC for the continuous control scheme. These
control inputs succeed in steering the state of the microbial community (solid) to the desired
state (dashed). E, F. Control inputs obtained using the linear MPC for the impulsive control
scheme. These control inputs succeed in steering the state of the microbial community (solid)
to the desired state (dashed).
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8. NUMERICAL VALIDATION IN LARGE MICROBIAL COMMUNITIES

To validate the proposed driver species and the linear MPC control method on large communities,
we considered controlled population dynamics of the form

(S21) ẋ = diag(x)[Afθ(x) + r], ∆x = Bu.

Above, A ∈ RN×N and B ∈ RM×N are the interaction and susceptibility matrices of the community,
r ∈ RN is the intrinsic growth vector, and the function fθ : RN → RN is chosen as:

fθ(x1, · · · , xN) =

(
x1

1 + θ1x1
, · · · , xN

1 + θNxN

)ᵀ
.

Note that f0 correspond to Holling Type I functional responses, reducing Eq. (S21) to the GLV model.
For θ 6= 0, the function fθ corresponds to Holling Type II functional responses.

As desired state xd ∈ RN , we chose an interior equilibrium of the community (i.e., a state where all
species are present). This means that the control objective is to drive the community towards a state
where all species coexist. We next generated random communities by choosing the parameters of Eq.
(S21) as follows:

(1) First, an ecological network G(N, c) of a community was randomly generated using an Erdös-
Rényi graph model for digraphs (without self-loops). In this model, N is the number of
species and c ∈ [0, 1] is the desired connectivity of the network. The edge-weights of this
network were randomly chosen from a normal distributionN (0, σ), where σ ≥ 0 captures the
characteristic interspecies interaction strength. Second, a weighted adjacency matrix A0 was
calculated from G(N, c). Finally, we set A = A0 + δIN×N , where δ = −1 is the intraspecies
interaction strength.

(2) The parameters θ = (θ1, · · · , θN) of the deformation were chosen uniformly at random from
the interval [0, θmax], with θmax > 0 a parameter to be selected.

(3) To ensure all randomly generated communities have xd as interior equilibrium, we set r =
−Afθ(xd).

(4) Based on generated ecological network G(N, c) a minimal set of driver species XD ⊆ {1, · · · , N}
was identified according to Supplementary Note 4. We set M = |XD| (i.e., the cardinality of
XD). For each driver species j ∈ XD, the corresponding column of the B matrix was chosen
of the form (0, · · · , 0, bj, 0, · · · , 0)ᵀ, where bj (located in j-th row) was chosen uniformly at
random from the interval [0, 1].

(5) We choose equally spaced intervention instants tk ∈ T, where tk+1− tk = τ for τ = 0.1. The
linear MPC controller u(tk) = K[x(tk) − xd] is calculated as in Supplementary Note 6. The
matrices Q = 2× 104I and R = 1.5× 10−1I were used for all ecosystems.

The result of the above procedure are illustrated in the Supplementary Figure 2 for N = 100
species, c = 0.04, σ = 0.7, and θmax = 0.01. For this community, we identified a minimal set
of just three driver species XD = {36, 52, 60}. The linear impulsive MPC applied to these three
driver species succeeds in driving the whole community to the desired state xd (Supplementary Figure
2b,c). By contrast, the uncontrolled community does not reach the desired state and enters into a very
oscillatory response where some species become extinct and others are overabundant (Supplementary
Figure 2d). In other words, the community will not naturally evolve towards the desired state.

We used the above procedure to calculate the success rate sε(d,N, c, σ, θmax) of our control frame-
work, defined as the probability that the state x(t) of a controlled random community with parameters
(N, c, σ, θmax), and that starts at distance d from xd, is driven to an ε-neighborhood of xd. Specifically,
for each realization of a community with parameters (N, c, σ, θmax), this probability was estimated as
follows:

(6) Given the distance d ≥ 0, we generate a set X0 ⊆ RN of k initial conditions sampling from
xd + d η, where η ∈ RN is a random vector with unit norm. If for some initial condition
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x0 ∈ X0 the initial abundance of species i is negative x0,i < 0, we reset its initial abundance
as x0,i = 0.1.

(7) Discard from X0 all those initial conditions that naturally evolve to the desired state xd.
Specifically, we denote by xNC(x0;T ) the state of the uncontrolled community starting at x0
at time T . Then, we only keep those x0 ∈ X0 such that ‖xNC(x0;T )− xd‖∞ > ‖x0 − xd‖∞
for T = 10τ .

(8) For each remaining initial condition x0 ∈ X0, simulate the controlled population dynamics
for a sufficiently large time T > 0. Let x(x0;T ) denote the state of the controlled community
at time T given it had x0 as initial condition. Then, the success rate sε is calculated as

sε(d,N,C, σ, θmax) =
|{x0 ∈ X0 : ‖x(x0;T )− xd‖∞ ≤ ε}|

|X0|
.

Above, the symbol |A| denotes the cardinality of the set A.
Finally, we calculate the mean success rate 〈sε(d,N)〉 as the average of sε(d,N, c, σ, θmax) over 100
random communities with parameters (c, σ, θmax). For the results in Fig. 5 of the main text, we used
N = 100, T = 700, k = 300 and ε = 10−2. In the DriverSpeciesModule Julia package, the func-
tion GetControllerSucess Rate OverNetworkRealizations implements the above procedure.

Next, to introduce errors into the ecological network used to identify the sensor species and to build
the linear MPC, we define a rewiring probability p ∈ [0, 1]. The end-node of each edge in the network
G(N, c) is rewired with probability p, choosing the new end-node uniformly among all nodes in the
network. This is implemented as the RewireNetwork function in the DriverSpeciesModule Julia
package.

The DriverSpeciesModule package is available at GitHub address:
https://github.com/mtangulo/DriverSpecies
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SUPPLEMENTARY FIGURE 2. Controlling a large community. Simulation results on
a random microbial community of N = 100 species with network parameters c = 0.04 and
σ = 0.7. The desired state is chosen as xd = (1, · · · , 1)ᵀ. The rest of the parameters are
τ = 0.1 and θmax = 0.01. Based on the ecological network of this community, we identified
a minimal set of driver species with three elements XD = {36, 52, 60}. a. Matrix plot of the
adjacency matrix A0 of the ecological network of the community. The network contains 405
interactions. b. The initial condition of the community x0 is chosen randomly as x0 = xd+dη,
where the distance is d = 0.4. The controlled community is driven to the desired state (solid
lines) using the linear MPC applied to the three driver species. Notice that control action
remove and the reintroduce some driver species. By contrast, the uncontrolled community does
not reach the desired state, and some of its species become extinct (dashed lines). c. Impulsive
control strategy applied to the three driver species generated by the linear MPC method. d.
Trajectories of the uncontrolled community. The community does not reach the desired state,
but enters into a rather complex temporal response.
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9. CONTROLLING THE REPRESSILATOR

We consider the repressilator with the parametrization and assumptions used in [36]. In such case,
its biochemical dynamics take the form

ẋ1 =
α

1 + xp2
− x1, ẋ2 =

α

1 + xp3
− x2, ẋ3 =

α

1 + xp1
− x3,

where xi is proportional to the protein concentration, α > 0 represents the gene expression from the
promoters, and p > 0 characterizes the form of the saturation. The repressilator has been shown to
produce sustained oscillations for p > 2 and large enough α. For the results we present, we consider
the parameters α = 4 and p = 3 that produce sustained oscillations. Also, these parameters yield the
following equilibrium:

xd = (1.2837, 1.2837, 1.2837)ᵀ.

Next we aim to “kill” the oscillations in the repressilator by driving its state to xd. The underlying
network of the repressilator suggest that it is sufficient to actuate one of its three proteins, because that
will provide a path that covers all nodes (Supplementary Figure 2A). We thus consider one control
input u1 impulsively actuating one protein (without loss of generality we choose x3), leading to the
equation:

x3(t
+) = x3(t) + u1(t), t ∈ T = {0, 1, 2, · · · }.

To test for the absence of autonomous elements, we compute the corresponding sequence of subspaces
Hk’s to obtain

H1 = span
K
{dx1, dx2, dx3}, H2 = span

K
{dx1, dx2}, H3 = span

K
{dx1}, H4 = {0}.

According to Theorem 2, actuating x3 is enough to eliminate all autonomous elements. Therefore,
{x3} alone is a “driver protein”.

To design the control actions to be applied to the above driver protein, notice thatH3 is integrable.
Therefore, according to Theorem 5, this implies that an impulsive (nonlinear) MPC with a prediction
horizon of L = 3 is sufficient to steer the system to xd. We calculated this MPC strategy from the
initial state x(0) = (1.2742, 1.0297, 1.6544)ᵀ obtaining

u(t1) = −0.4536, u(t2) = 0.2283, u(t3) = 5.3518× 10−9,

as shown in Supplementary Figure 3A. The calculated MPC control strategy can drive the represilator
to xd with a precision of 1.0184 × 10−13, as shown in Supplementary Figure 3B. This figure also
compares the effectivity of the MPC control strategy with respect to the behavior of the repressilator
without control.
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SUPPLEMENTARY FIGURE 3. Controlling the repressilator. A. Network underlying the
repressilator with each node representing a protein. B. Control actions obtained by using MPC
on the driver protein. C. Trajectories of the repressilator with and without control. The initial
state is x(0) = (1.2742, 1.0297, 1.6544)ᵀ.
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