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Supplementary Discussion

When the quantum dot array is tuned away from all interdot charge transitions, its ground

state has an effective classical electrostatic description in which each quantum dot is replaced by a

conductor that is constrained to carry integer charge.1 In this formulation we can write the system

Hamiltonian in terms of two capacitance matrices C and CV

H =
∑
ij

vijninj +
∑
i

(µi − µ0i)ni, (1)

vij ≡
e2

2
[C−1]ij , µi ≡ eα1ui, µ0i = eα1

∑
j

GijV
off

Pj = eα1u
off
i , (2)

ui ≡
∑
j

GijVPj , Gij ≡ −
1

α1

∑
k

[C−1]ikC
kj
V , (3)

where ni is the dimensionless total electron number operator on dot i and e is the negative electron

charge. The vij term has units of energy and describes the Coulomb interaction between electrons

on dots i and j. The dimensionless matrix Gij is used to convert between plunger gate voltages

VPi and the virtual gate voltages ui with the convention G11 = 1. The positive dimensionless

lever arm for dot 1, α1 ≡ −[C−1CV ]11 is used to convert from the virtual gate voltages ui to the

chemical potential µi of dot i. The lever arm for dot i is given by αi = α1Gii. Diagonal elements

of C represent the total capacitance of each dot and the off-diagonal terms are the negative of the

cross-capacitances between dots. The elements of the matrix CV are the negative of the capacitive

couplings between the plunger gates and the dots. In the notation of Supplementary Reference 1,

the matrix C = Ccc and CV = Ccv. The effects of random background charges are accounted for

by including a threshold chemical potential µ0i on each dot or, equivalently, an offset voltage on

The terms in the Hamiltonian can be extracted from measurements of pairwise charge stability

diagrams for the array of dots (e.g. VP1 -vs- VP2, VP2 -vs- VP3, etc.). Diagonal elements of vii are

determined by measuring the addition voltage ∆V i
21 of dot i and then using the simple relation

vii
α1|e|

=
Gii

2
∆V i

21. (4)

∆V i
21 can be directly extracted from charge stability diagrams (see Supplementary Figure 1). We

have obtained an estimate of the lever arm for dot 1, α1 = 0.12±0.01, for the fully-configured array

by using measurements of finite bias triangles with just dots 1 and 2 configured as a DQD.1 This

estimate is sufficient for our purposes because knowledge of the precise value of α1 is not needed to

This offset is expressed in virtual gate voltage space aseach g e VP
off
i (Supplementary Table

iu
off ≡

at∑
j GijVP

off
j .

1).



2

navigate the charge-stability space in virtual gate voltage space. The nearest-neighbor, off-diagonal

terms of vij , offset voltages V off
Pi , diagonal and nearest-neighbor, off-diagonal elements of the matrix

Gij can be found by measuring the slopes of the charge transitions and triple point positions using

the relations given in Supplementary Equations (6)–(10). Parameterizing charge transition k© in

Fig. 1 by the formula

VPi = rikVPi+1 + bik, (5)

we have the following relations

ri1 = −Gii+1

Gii
, ri2 = −Gi+1i+1

Gi+1i
, ri3 =

Gi+1i+1 −Gii+1

Gii −Gi+1i
, (6)

vii+1

α1|e|
=
Gii

2
(bi5 − bi1), (7)

uoff
i = Giib

i
1 −

vii
α1|e|

+Gii−1VPi−1, (8)

uoff
i+1 = Gi+1ib

i
2 −

vi+1i+1

α1|e|
+Gi+1i+2VPi+2, (9)

V off
Pi =

∑
j

[G−1]ij u
off
j , (10)

where uioff is the virtual gate voltage offset on dot i.
As an example of the data analysis, we measure the charge stability diagram associated with 

dots 1 and 2 as a function of the gate voltages VP1 and VP2, see Supplementary Figure 2. The dot 1 
and dot 2 charge transitions are fit to extract the slopes r1 and r2. From the electron and hole triple 
point positions Te and Th, and these two slopes, we can compute r3 and the intercepts b1−5. From 
the extracted values we compute G and make the transformation to virtual gate voltage space.

When a new dot N is added to the array, we define new virtual gate voltages in terms of an 
expanded matrix G equal to the old G with the extensions GNN = 1 and GNi = GiN = 0 for i 6= N . 
We then tune the newly added dot into the single electron regime and take pairwise charge stability 
diagrams to determine the corrected matrix elements for G in the new device configuration. For the 
example of adding dot 4, shown in Supplementary Figure 3, we can see that the dot 1–dot 2 charge 
stability diagram in Supplementary Figure 3a is unaffected by the addition of the 4th dot. The dot 
3 charge transition is slightly tilted in the dot 2–dot 3 charge stability diagram (see Supplementary 
Figure 3b), and the dot 3–dot 4 charge stability diagram appears as if it were acquired in plunger 
gate voltage space (see Supplementary Figure 3c). By fitting these data and adjusting G, the 
charge transitions become orthogonal in each pairwise stability diagram when measured in virtual 
gate voltage space, as shown in Supplementary Figure 3d–f. Additional dots are added to the array 
following this procedure.

The final v, G, C, and CV matrices are given in Supplementary Figure 5. Since the cross-

capacitances fall off rapidly in our device design these matrices only include terms up to the first

off-diagonal elements. The VP offsets for dot i, VP
off
i , and the initial charging energies for dot i,

Eci, are given in Supplementary Table 1.
stability diagrams taken as dots are added to the array and are similar to the charging energies

previously reported on a similar device.2 In a fully tuned configuration with barriers low enough for

the shuttling experiment, the charging energies are expected to be lower as there is less confinement.

These charging energies are extracted from single dot
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Using the relation Eci = 2vii, we can verify this expected trend by comparing the initial values 
of Eci from Supplementary Table 1 to our measurement of the matrix v for the fully tuned array 
shown in Supplementary Figure 5.

Once the capacitance matrices and voltage offsets are known it becomes possible to individually

tune the chemical potential of each dot using voltage coordinates defined in virtual gate voltage

space ui through the relation

VPi =
∑
ij

[
G−1

]
ij
uj . (11)

In virtual gate voltage space, it is relatively straightforward to design pulse sequences that can

shuttle electrons across the array. We use the approach described in the main text, where each

interdot transition in the array is navigated in a pairwise fashion in three steps. In the first step,

dots i and i+ 1 are brought from deep inside (1,0) close to the interdot charge transition. Here the

indices (Ni, Ni+1) refer to the charge occupation of dots i and i+ 1. In step two, we adiabatically

navigate the interdot charge transition to move the electron from dot i to dot i+ 1. In step three,

we then move the system deep into the (0,1) charge configuration with the chemical potential of

dot i brought above the Fermi energy of the source and drain electrodes. This prevents “back-flow”

of electrons in the subsequent shuttling sequences in which an electron could hop from dot i to dot

i− 1 during the i to i+ 1 transfer sequence. The amplitudes of the pulses are computed from the

addition energies to ensure that the lowest chemical potential of each dot during the dwell times

are well away from the resonance condition for the addition of the next electron. This prevents

accidental loading and shuttling of two electrons within the same dots.

In order to efficiently transfer an electron from one dot to the next during the shuttling sequence,

the interdot charge transitions should be navigated at a rate slow compared to the interdot tunnel

couplings. To more quantitatively determine the effect of non-adiabatic corrections on the shuttling

efficiency we use an approach whereby we purposely introduce errors by lowering the interdot tunnel

coupling, as shown in Supplementary Figure 4. If the tunneling rate is too slow compared to the

speed of the pulse sequence,3 then the electrons get stuck in the array more often and the current

deviates from I = ef at higher frequencies as is visible in the inset of Supplementary Figure 4.

At our highest pulsing frequency 45.5 MHz for 4 dots, we start to detect errors in the electron

shuttle when the tunnel coupling of one of the barriers in the device is lowered below 2.4 GHz. To

avoid pumping errors, we set all tunnel couplings around 5 GHz. A Tektronix AWG5208 ran at

2 GS/s is used to generate the voltage pulses for the charge pumping sequence. Each AWG output

is low-pass filtered using a Mini-circuits SBLP-117+ filter. The cryostat wiring is identical to that

used in a previous experiment.4
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SUPPLEMENTARY FIG. 1. Double dot charge stability diagram of dots i and i+1. The charge transitions 
are defined by 5 lines, which are uniquely determined by the two slopes ri1,2 and the two triple point positions 
T ie,h. The charging energy of dot i can be extracted from the addition voltage ∆V i21.
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SUPPLEMENTARY FIG. 2. Double dot charge stability diagram with lines fit to the dot 1 and 2 charge 
transitions. The slopes of the dot 1 and 2 charge transitions, r1 and r2, and the triple point positions, Te and Th,

are labeled. These parameters are used to calculate G.
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SUPPLEMENTARY FIG. 3. Pairwise charge stability diagrams measured on a 4-dot array. Panels (a–c) 
show the pairwise charge stability diagrams as measured before accounting for the cross-capacitance to

plunger gate 4. Panels (d–f) show stability diagrams measured after G is recalibrated.
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SUPPLEMENTARY FIG. 4. The number of electrons on dot 2, N2, as a function of detuning, ε, for several 
values of the barrier gate voltage VB3. The inset shows the pumped current I through 4 dots vs f , where f is the

frequency of a full shuttling cycle, measured for different values of the interdot tunnel coupling tc23. The solid

black line shows the expected current I = ef , while the light grey lines above and below indicate the 3% gain

error of our preamp. An error of about 6% is measured when shuttling at 45.5 MHz with tc23 = 2.4 GHz and

more significant errors are detected when tc23 < 2.4 GHz. In these experiments, T ≈ 120 mK.
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SUPPLEMENTARY FIG. 5. Measurements of the interaction matrix v (units of meV), the 
dimensionless matrix G, and the capacitance matrices C and CV (units of aF) using iterative correction

approach.
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V off
Pi (mV) Eci (meV)

Dot 1 583 5.4± 0.3

Dot 2 605 5.6± 0.3

Dot 3 588 5.1± 0.5

Dot 4 660 4.6± 0.5

Dot 5 707 5.3± 0.6

Dot 6 750 5.2± 0.2

Dot 7 650 4.9± 0.5

Dot 8 640 5.1± 0.3

Dot 9 635 5.3± 0.4

V off
PiSUPPLEMENTARY TABLE 1: The plunger offset voltages       and charging energies Eci are listed for the 

9 dots in the array. The charging energies are extracted from single dot charge stability diagrams that are 
acquired as dots are added to the array. In this configuration, we use an estimated lever arm of    = 0.12 
for each dot.
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