¹ **Supplementary Materials**

² **Radiated and guided optical waves of a magnetic**

³ **dipole-nanofiber system**

- **Shaghik Atakaramians**1,2,***, Feng Q. Dong**2,****, Tanya M. Monro**3,+ ⁴ **, and**
- **Shahraam Afshar V.**3,++ 5
- 6 ¹ School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
- ² Institute of Photonics and Optical Science, School of Physics, The University of Sydney, Sydney, NSW 2006,
- ⁸ Australia
- ³ Laser Physics and Photonic Devices Laboratories, School of Engineering, University of South Australia, Mawson
- ¹⁰ Lakes, SA 5095, Australia
- * ¹¹ s.atakaramians@unsw.edu.au,T:+61431465884., F:+61293855993
- 12 ** fengqiu.dong@gmail.com
- 13 tanya.monro@unisa.edu.au
- 14 $+$ shahraam.afshar@unisa.edu.au

¹⁵ **ABSTRACT**

Here we calculate the radiation modes of a step index fiber, where we derive all the electric and magnetic components. 16

Radiation modes of a step index fiber

To calculate the radiation modes, we separate the fields into two terms, one representing the field in the absence of the waveguide ('free-space') and a second term that includes scattering from the waveguide.^{[1](#page-5-0)} The *z* components of radiation modes are then of the following form considering the boundary conditions

and avoiding the singularities of Bessel functions: $¹$ $¹$ $¹$ </sup>

$$
e_{z} = \begin{cases} a_{v}J_{v}(UR)f_{v}(\theta) & 0 \leq r < r_{\text{co}} \\ \left[c_{v}^{f}J_{v}(QR) + c_{v}^{s}H_{v}^{(1)}(QR)\right]f_{v}(\theta) & r_{\text{co}} \leq r < \infty \end{cases}
$$
(1)

$$
h_{z} = \begin{cases} b_{\nu}J_{\nu}(UR)g_{\nu}(\theta) & 0 \leq r < r_{\text{co}} \\ \left[d_{\nu}^{f}J_{\nu}(QR) + d_{\nu}^{s}H_{\nu}^{(1)}(QR)\right]g_{\nu}(\theta) & r_{\text{co}} \leq r < \infty \end{cases}
$$
(2)

$$
f_V(\theta) = \begin{cases} \cos(v\theta) & \text{even modes} \\ \sin(v\theta) & \text{odd modes} \end{cases}
$$
 (3)

$$
g_V(\theta) = \begin{cases} -\sin(v\theta) & \text{even modes} \\ \cos(v\theta) & \text{odd modes} \end{cases}
$$
 (4)

where v is an azimuthal mode index, $Q = (D/2)(k^2 n_{cl}^2 - \beta^2)^{1/2}$, the superscripts f and *s* denote the 'free-space' and scattering terms, respectively, and a_v , b_v , c_v^f ν , *c s* \int_{V}^{s} , d_{V}^{f} and d_{V}^{s} $\frac{f}{v}$ are constants that can be determined by applying the continuity conditions at the core-cladding interface (see Table [1,](#page-4-0) which is taken from Ref. [\[1,](#page-5-0) page 525]). The four other components of the electric and magnetic field, (e_r, e_θ, h_r) and h_{θ}), can be expressed in terms of the derivatives of e_z and h_z as:

$$
\begin{pmatrix}\ne_r \\
h_{\theta}\n\end{pmatrix} = \frac{i}{k^2 n^2 - \beta^2} \begin{pmatrix}\n\beta & \left(\frac{\mu_0}{\varepsilon_0}\right)^{\frac{1}{2}} k \\
\left(\frac{\varepsilon_0}{\mu_0}\right)^{\frac{1}{2}} k n^2 & \beta\n\end{pmatrix} \begin{pmatrix}\n\frac{\partial e_z}{\partial r} \\
\frac{1}{r} \frac{\partial h_z}{\partial \theta}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\ne_\theta \\
h_r\n\end{pmatrix} = \frac{i}{k^2 n^2 - \beta^2} \begin{pmatrix}\n\beta & -\left(\frac{\mu_0}{\varepsilon_0}\right)^{\frac{1}{2}} k \\
-\left(\frac{\varepsilon_0}{\mu_0}\right)^{\frac{1}{2}} k n^2 & \beta\n\end{pmatrix} \begin{pmatrix}\n\frac{1}{r} \frac{\partial e_z}{\partial \theta} \\
\frac{\partial h_z}{\partial r}\n\end{pmatrix}
$$

substituting the expressions for e_z and h_z , Eqs. [\(1\)](#page-1-0) and [\(2\)](#page-1-1), into the above equations, [\(5\)](#page-2-0), gives:

For $0 \le r < r_{\text{co}}$:

$$
e_r = \frac{f_v(\theta)}{k^2 n_{\text{core}}^2 - \beta^2} \frac{iU}{2r_{\text{co}}} \left\{ \beta a_v \left[J_{v-1}(UR) - J_{v+1}(UR) \right] - \left(\frac{\mu_0}{\epsilon_0} \right)^{\frac{1}{2}} k b_v \left[J_{v-1}(UR) + J_{v+1}(UR) \right] \right\}
$$
(5)

$$
e_{\theta} = \frac{g_{v}(\phi)}{k^{2}n_{\text{core}}^{2} - \beta^{2}} \frac{iU}{2r_{\text{co}}} \left\{ \beta a_{v} \left[J_{v-1}(UR) + J_{v+1}(UR) \right] - \left(\frac{\mu_{0}}{\epsilon_{0}} \right)^{\frac{1}{2}} k b_{v} \left[J_{v-1}(UR) - J_{v+1}(UR) \right] \right\}
$$
(6)

$$
h_r = \frac{-g_V(\phi)}{k^2 n_{\text{core}}^2 - \beta^2} \frac{iU}{2r_{\text{co}}} \left\{ \left(\frac{\varepsilon_0}{\mu_0} \right)^{\frac{1}{2}} k^2 n_{\text{core}}^2 a_V \left[J_{V-1}(UR) + J_{V+1}(UR) \right] - \beta b_V \left[J_{V-1}(UR) - J_{V+1}(UR) \right] \right\} \tag{7}
$$

$$
h_{\theta} = \frac{f_{V}(\theta)}{k^{2}n_{\text{core}}^{2} - \beta^{2}} \frac{iU}{2r_{\text{co}}} \left\{ \left(\frac{\varepsilon_{0}}{\mu_{0}} \right)^{\frac{1}{2}} kn_{\text{core}}^{2} a_{V} \left[J_{V-1}(UR) - J_{V+1}(UR) \right] - \beta b_{V} \left[J_{V-1}(UR) + J_{V+1}(UR) \right] \right\} \tag{8}
$$

For $r_{\text{co}} \le r < \infty$

$$
e_r = \frac{f_v(\phi)}{k^2 n_{\text{clad}}^2 - \beta^2} \frac{iQ}{2r_{\text{co}}} \left(\beta \left\{ c_v^f [J_{v-1}(QR) - J_{v+1}(QR)] + c_v^s \left[H_{v-1}^{(1)}(QR) - H_{v+1}^{(1)}(QR) \right] \right\} - k \left(\frac{\mu_0}{\epsilon_0} \right)^{\frac{1}{2}} \left\{ d_v^f [J_{v-1}(QR) - J_{v+1}(QR)] + d_v^s \left[H_{v-1}^{(1)}(QR) - H_{v+1}^{(1)}(QR) \right] \right\} \right) \tag{9}
$$

$$
e_{\theta} = \frac{g_{\nu}(\phi)}{k^2 n_{\text{clad}}^2 - \beta^2} \frac{iQ}{2r_{\text{co}}} \left(\beta \left\{ c_{\nu}^f \left[J_{\nu-1}(QR) + J_{\nu+1}(QR) \right] + c_{\nu}^s \left[H_{\nu-1}^{(1)}(QR) + H_{\nu+1}^{(1)}(QR) \right] \right\} - k \left(\frac{\mu_0}{\epsilon_0} \right)^{\frac{1}{2}} \left\{ d_{\nu}^f \left[J_{\nu-1}(QR) + J_{\nu+1}(QR) \right] + d_{\nu}^s \left[H_{\nu-1}^{(1)}(QR) + H_{\nu+1}^{(1)}(QR) \right] \right\} \right) \tag{10}
$$

$$
h_{\theta} = \frac{f_{V}(\phi)}{k^{2}n_{\text{clad}}^{2} - \beta^{2}} \frac{iQ}{2r_{\text{co}}} \left(\left(\frac{\varepsilon_{0}}{\mu_{0}} \right)^{\frac{1}{2}} k n_{\text{clad}}^{2} \left\{ c_{V}^{f} \left[J_{V-1}(QR) - J_{V+1}(QR) \right] + c_{V}^{s} \left[H_{V-1}^{(1)}(QR) - H_{V+1}^{(1)}(QR) \right] \right\} - \beta \left\{ d_{V}^{f} \left[J_{V-1}(QR) - J_{V+1}(QR) \right] + d_{V}^{s} \left[H_{V-1}^{(1)}(QR) - H_{V+1}^{(1)}(QR) \right] \right\} \right) \tag{11}
$$

$$
h_r = \frac{-g_V(\phi)}{k^2 n_{\text{clad}}^2 - \beta^2} \frac{iQ}{2r_{\text{co}}} \left(\left(\frac{\varepsilon_0}{\mu_0} \right)^{\frac{1}{2}} k n_{\text{clad}}^2 \left\{ c_V^f \left[J_{V-1}(QR) + J_{V+1}(QR) \right] + c_V^s \left[H_{V-1}^{(1)}(QR) + H_{V+1}^{(1)}(QR) \right] \right\} - \beta \left\{ d_V^f \left[J_{V-1}(QR) + J_{V+1}(QR) \right] + d_V^s \left[H_{V-1}^{(1)}(QR) + H_{V+1}^{(1)}(QR) \right] \right\} \right) \tag{12}
$$

 v_{19} where $U = r_{\text{co}}(k^2 n_{\text{co}}^2 - \beta^2)^{1/2}$, $V^2 = U^2 - Q^2$, and $R = r/r_{\text{co}}$.

Table 1. Coefficients appearing in Eqs. [\(1\)](#page-1-0) and [\(2\)](#page-1-1) for 'TM-like' (ITM) and 'TE-like' (ITE) radiation modes. These correspond to the pure TM and TE modes in the 'free-space' terms that are subsequently altered by the perturbation of the waveguide^{[1](#page-5-0)}.

	ITE modes	ITM modes
a_v	$-\frac{4}{\pi}\frac{\beta}{kn_{\text{co}}^2}\frac{v}{kr_{\text{co}}}\frac{V^2}{U^2Q^3}\frac{1}{J_v(U)H_v^{(1)}(Q)M_v}$	$-\frac{4}{\pi}\frac{n_{\rm cl}^2}{n_{\rm co}^2}\frac{1}{\beta r_{\rm co}Q}\frac{F_{V}}{J_{V}(U)H_{V}^{(1)}(Q)M_{V}}$
b_v	$-\frac{4}{\pi}\left(\frac{\varepsilon_{0}}{\mu_{0}}\right)^{\frac{1}{2}}\frac{1}{Qkr_{\text{co}}}\frac{G_{V}}{J_{V}(U)H_{V}^{(1)}(Q)M_{V}}$	$-\frac{4}{\pi}\frac{n_{\rm cl}^2}{n_{\rm co}^2}\left(\frac{\epsilon_0}{\mu_0}\right)^{\frac{1}{2}}\frac{v}{kr_{\rm co}}\frac{V^2}{U^2Q^3}\frac{1}{J_v(U)H_v^{(1)}(Q)M_v}$
c_v^f	Ω	
c_v^s	$-\frac{4}{\pi}\frac{\beta}{kn_{\text{co}}^2}\frac{v}{kr_{\text{co}}}\frac{V^2}{U^2Q^3}\frac{1}{\left\{H_v^{(1)}(Q)\right\}^2M_v}$	$2i\frac{Q}{\beta r_{\rm co}}$ -2 $i\frac{Q}{\beta r_{\rm co}}\frac{J_V(Q)}{H_V^{(1)}(Q)}\frac{A_V}{M_V}$
$d_{\mathbf{v}}^{f}$	$2i\left(\frac{\varepsilon_0}{\mu_0}\right)^{\frac{1}{2}}\frac{Q}{r_{\text{co}}k}$	0
d_{V}^{s}	$-2i\left(\frac{\varepsilon_0}{\mu_0}\right)^{\frac{1}{2}}\frac{Q}{r_{\rm co}k}\frac{J_v(Q)}{H_v^{(1)}(Q)}\frac{B_v}{M_v}$	$-\frac{4}{\pi}\frac{n_{\rm cl}^2}{n_{\rm co}^2}\left(\frac{\varepsilon_0}{\mu_0}\right)^{\frac{1}{2}}\frac{v}{r_{\rm co}k}\frac{V^2}{U^2Q^3}\frac{1}{\left\lbrace H^{(1)}_v(Q)\right\rbrace^2 M_v}$
	N_j $\frac{2\pi r_{\rm co}^2}{Q} \left(\frac{\varepsilon_0}{\mu_0}\right)^{\frac{1}{2}} \frac{\beta}{k} \times \begin{cases} 1 & \text{for } \nu > 0 \\ 2 & \text{for } \nu = 0 \end{cases}$	$\frac{2\pi r_{\rm co}^2}{Q} \left(\frac{\epsilon_0}{\mu_0}\right)^{\frac{1}{2}} \frac{k n_{\rm cl}^2}{\beta} \times \left\{\begin{array}{cc} 1 & \text{for } \nu > 0 \\ 2 & \text{for } \nu = 0 \end{array}\right\}$

$$
F_{\mathbf{v}} = \frac{J_{\mathbf{v}}'(U)}{U J_{\mathbf{v}}(U)} - \frac{{H_{\mathbf{v}}^{(1)}}'(Q)}{Q H_{\mathbf{v}}^{(1)}(Q)}
$$
(13)

$$
G_{\mathbf{v}} = \frac{J_{\mathbf{v}}'(U)}{U J_{\mathbf{v}}(U)} - \frac{n_{\mathrm{cl}}^2}{n_{\mathrm{co}}^2} \frac{{H_{\mathbf{v}}^{(1)}}'(Q)}{Q H_{\mathbf{v}}^{(1)}(Q)}\tag{14}
$$

$$
A_V = M_V - \frac{2i}{\pi} \frac{n_{\rm cl}^2}{n_{\rm co}^2} \frac{F_V}{Q^2 J_V(Q) H_V^{(1)}(Q)}
$$
(15)

$$
B_{\nu} = M_{\nu} - \frac{2i}{\pi} \frac{G_{\nu}}{Q^2 J_{\nu}(Q) H_{\nu}^{(1)}(Q)}
$$
(16)

$$
M_{\rm V} = \left(\frac{v\beta}{kn_{\rm co}}\right)^2 \left(\frac{V}{UQ}\right)^4 - F_{\rm V}G_{\rm V}
$$
\n(17)

References

1. Snyder, A. W. & Love, J. *Optical Waveguide Theory* (Chapman and Hall Ltd, 1983), 1st edition edn.