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ABSTRACT15

Here we calculate the radiation modes of a step index fiber, where we derive all the electric and magnetic

components.

16

Radiation modes of a step index fiber17

To calculate the radiation modes, we separate the fields into two terms, one representing the field in the

absence of the waveguide (‘free-space’) and a second term that includes scattering from the waveguide.1

The z components of radiation modes are then of the following form considering the boundary conditions



and avoiding the singularities of Bessel functions:1

ez =

 aνJν(UR) fν(θ) 0≤ r < rco[
c f

νJν(QR)+ cs
νH(1)

ν (QR)
]

fν(θ) rco ≤ r < ∞

(1)

hz =

 bνJν(UR)gν(θ) 0≤ r < rco[
d f

ν Jν(QR)+ds
νH(1)

ν (QR)
]

gν(θ) rco ≤ r < ∞

(2)

fν(θ) =

 cos(νθ) even modes

sin(νθ) odd modes
(3)

gν(θ) =

 −sin(νθ) even modes

cos(νθ) odd modes
(4)

where ν is an azimuthal mode index, Q = (D/2)(k2n2
cl − β 2)1/2, the superscripts f and s denote the

‘free-space’ and scattering terms, respectively, and aν , bν , c f
ν , cs

ν , d f
ν and ds

ν are constants that can be

determined by applying the continuity conditions at the core-cladding interface (see Table 1, which is

taken from Ref. [1, page 525]). The four other components of the electric and magnetic field, (er, eθ , hr

and hθ ), can be expressed in terms of the derivatives of ez and hz as:

 er

hθ

=
i

k2n2−β 2

 β

(
µ0
ε0

) 1
2

k(
ε0
µ0

) 1
2

kn2 β


 ∂ez

∂ r

1
r

∂hz
∂θ


 eθ

hr

=
i

k2n2−β 2

 β −
(

µ0
ε0

) 1
2

k

−
(

ε0
µ0

) 1
2

kn2 β


 1

r
∂ez
∂θ

∂hz
∂ r



Substituting the expressions for ez and hz, Eqs. (1) and (2), into the above equations, (5), gives:18
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For 0≤ r < rco:

er =
fν(θ)

k2n2
core−β 2

iU
2rco

{
βaν [Jν−1(UR)− Jν+1(UR)]

−
(

µ0

ε0

) 1
2

kbν [Jν−1(UR)+ Jν+1(UR)]

}
(5)

eθ =
gν(φ)

k2n2
core−β 2

iU
2rco

{
βaν [Jν−1(UR)+ Jν+1(UR)]

−
(

µ0

ε0

) 1
2

kbν [Jν−1(UR)− Jν+1(UR)]

}
(6)

hr =
−gν(φ)

k2n2
core−β 2

iU
2rco

{(
ε0

µ0

) 1
2

k2n2
coreaν [Jν−1(UR)+ Jν+1(UR)]

−βbν [Jν−1(UR)− Jν+1(UR)]

}
(7)

hθ =
fν(θ)

k2n2
core−β 2

iU
2rco

{(
ε0

µ0

) 1
2

kn2
coreaν [Jν−1(UR)− Jν+1(UR)]

−βbν [Jν−1(UR)+ Jν+1(UR)]

}
(8)

For rco ≤ r < ∞

er =
fν(φ)

k2n2
clad−β 2

iQ
2rco

(
β

{
c f

ν [Jν−1(QR)− Jν+1(QR)]+ cs
ν

[
H(1)

ν−1(QR)−H(1)
ν+1(QR)

]}
−k
(

µ0

ε0

) 1
2 {

d f
ν [Jν−1(QR)− Jν+1(QR)]+ds

ν

[
H(1)

ν−1(QR)−H(1)
ν+1(QR)

]})
(9)
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eθ =
gν(φ)

k2n2
clad−β 2

iQ
2rco

(
β

{
c f

ν [Jν−1(QR)+ Jν+1(QR)]+ cs
ν

[
H(1)

ν−1(QR)+H(1)
ν+1(QR)

]}
−k
(

µ0

ε0

) 1
2 {

d f
ν [Jν−1(QR)+ Jν+1(QR)]+ds

ν

[
H(1)

ν−1(QR)+H(1)
ν+1(QR)

]})
(10)

hθ =
fν(φ)

k2n2
clad−β 2

iQ
2rco

((
ε0

µ0

) 1
2

kn2
clad

{
c f

ν [Jν−1(QR)− Jν+1(QR)]+ cs
ν

[
H(1)

ν−1(QR)−H(1)
ν+1(QR)

]}
−β

{
d f

ν [Jν−1(QR)− Jν+1(QR)]+ds
ν

[
H(1)

ν−1(QR)−H(1)
ν+1(QR)

]})
(11)

hr =
−gν(φ)

k2n2
clad−β 2

iQ
2rco

((
ε0

µ0

) 1
2

kn2
clad

{
c f

ν [Jν−1(QR)+ Jν+1(QR)]+ cs
ν

[
H(1)

ν−1(QR)+H(1)
ν+1(QR)

]}
−β

{
d f

ν [Jν−1(QR)+ Jν+1(QR)]+ds
ν

[
H(1)

ν−1(QR)+H(1)
ν+1(QR)

]})
(12)

where U = rco(k2n2
co−β 2)1/2, V 2 =U2−Q2, and R = r/rco.19
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Table 1. Coefficients appearing in Eqs. (1) and (2) for ‘TM-like’ (ITM) and ‘TE-like’ (ITE) radiation
modes. These correspond to the pure TM and TE modes in the ‘free-space’ terms that are subsequently
altered by the perturbation of the waveguide1.

ITE modes ITM modes

aν − 4
π

β

kn2
co

ν

krco
V 2

U2Q3
1

Jν (U)H(1)
ν (Q)Mν

− 4
π

n2
cl

n2
co

1
β rcoQ

Fν

Jν (U)H(1)
ν (Q)Mν

bν − 4
π

(
ε0
µ0

) 1
2 1

Qkrco

Gν

Jν (U)H(1)
ν (Q)Mν

− 4
π

n2
cl

n2
co

(
ε0
µ0

) 1
2 ν

krco
V 2

U2Q3
1

Jν (U)H(1)
ν (Q)Mν

c f
ν 0 2i Q

β rco

cs
ν − 4

π

β

kn2
co

ν

krco
V 2

U2Q3
1{

H(1)
ν (Q)

}2
Mν

−2i Q
β rco

Jν (Q)

H(1)
ν (Q)

Aν

Mν

d f
ν 2i

(
ε0
µ0

) 1
2 Q

rcok 0

ds
ν −2i

(
ε0
µ0

) 1
2 Q

rcok
Jν (Q)

H(1)
ν (Q)

Bν

Mν
− 4

π

n2
cl

n2
co

(
ε0
µ0

) 1
2 ν

rcok
V 2

U2Q3
1{

H(1)
ν (Q)

}2
Mν

N j
2πr2

co
Q

(
ε0
µ0

) 1
2 β

k ×
{

1 for ν > 0
2 for ν = 0

2πr2
co

Q

(
ε0
µ0

) 1
2 kn2

cl
β
×
{

1 for ν > 0
2 for ν = 0

Fν =
J′ν(U)

UJν(U)
− H(1)

ν

′
(Q)

QH(1)
ν (Q)

(13)

Gν =
J′ν(U)

UJν(U)
−

n2
cl

n2
co

H(1)
ν

′
(Q)

QH(1)
ν (Q)

(14)

Aν = Mν −
2i
π

n2
cl

n2
co

Fν

Q2Jν(Q)H(1)
ν (Q)

(15)

Bν = Mν −
2i
π

Gν

Q2Jν(Q)H(1)
ν (Q)

(16)

Mν =

(
νβ

knco

)2( V
UQ

)4

−FνGν (17)
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