Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2019

Structure-Activity Relationship of Hetarylpropylguanidines Aiming at the Development of Selective Histamine Receptor Ligands[†]

Steffen Pockes,* David Wifling, Armin Buschauer, and Sigurd Elz© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Supporting Information

Contents		
1.	Experimental description of the synthesis and analytical data of compounds 9 , 10 , 18-2 ; 24-27 , 30-39 , 46-55 , 62-71 , 78-87 , 94-109 , 111-114 , 116-136 , 138 , 139 , 142 and 144	2, S2
2.	RP-HPLC chromatograms 115-136	.S41
3.	¹ H- and ¹³ C-NMR spectra of 121, 123, 136, 143, 144 and 145	.S52
4.	Guinea-pig right atrium experiments in the presence of cimetidine	. S58
5.	References	. S59

 Experimental description of the synthesis and analytical data of compounds 9, 10, 18-22, 24-27, 30-39, 46-55, 62-71, 78-87, 94-109, 111-114, 116-136, 138, 139, 142 and 144

S-Methylisothiourea (9)^[1]

Thiourea (25.0 g, 328.43 mmol) and methyl iodide (22.59 mL, 361.27 mmol) in acetonitrile (MeCN) (250 mL) were refluxed for 1h. After evaporation, the crude product was washed three times with diethyl ether (Et₂O) (3x100 mL) and dried under vacuum. The resulting product was obtained as an orange solid (**9** x HI, 70.45 g, 98%): $R_{\rm f}$ =0.44 (DCM/MeOH 90:10); mp 118.5 °C (HI). ¹H NMR (300 MHz, CD₃OD, hydrogen iodide) δ 2.62 (s, 3H). ¹³C NMR (75 MHz, CD₃OD, hydrogen iodide) δ 171.1, 13.8. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂H₇N₂S⁺: 91.0324, found 91.0325; C₂H₆N₂S x HI (218.06).

N,N'-Di-tert-butoxycarbonyl-S-methylisothiourea (10)^[2]

To a solution of **9** (30.0 g, 137.58 mmol) and NEt₃ (19.07 mL, 137.58 mmol) in DCM (150 mL) a solution of Boc₂O (60.05 g, 275.15 mmol) in DCM (100 mL) was added dropwise at room temperature (rt). After stirring over night at rt the mixture was washed with water and brine (each 100 mL), dried with Na₂SO₄ and evaporated under vacuum. The crude product was purified by column chromatography (EtOAc/petroleum ether (PE) 1/9-1/5 v/v) to obtain a colorless solid (10, 34.98 g, 88%): R_f =0.56 (DCM); mp 127 °C. 1H NMR (300 MHz, CDCl₃) δ 11.61 (bs, 1H), 2.40 (s, 3H), 1.51 (s, 18H). ¹³C NMR (75 MHz, CDCl₃) δ 174.07, 165.69, 162.27, 79.91, 78.96, 28.03, 14.44. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₂H₂₃N₂O₄S⁺: 291.1373, found 291.1377; C₁₂H₂₂N₂O₄S (290.38).

N-(tert-Butoxycarbonyl)-1,4-butanediamine (18)^[3]

The reaction was carried out with butane-1,4-diamine (**12**, 4.04 g, 45.87 mmol), Boc₂O (2.0 g, 9.16 mmol) and DCM. The product was obtained as a colorless oil (1.60 g, 93%): R_{f} =0.45

(DCM/MeOH/NH₃ 80:20:0.1); ¹H NMR (300 MHz, CDCl₃) δ 4.74 (bs, 1H), 3.11 (q, J = 5.9 Hz, 2H), 2.71 (t, J = 6.6 Hz, 2H), 2.23 (bs, 2H), 1.56 – 1.45 (m, 4H), 1.42 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 156.07, 79.11, 41.54, 40.36, 30.33, 28.43, 27.43. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₉H₂₁N₂O₂⁺: 189.1598, found 189.1600; C₉H₂₀N₂O₂ (188.27).

N-(tert-Butoxycarbonyl)-1,6-hexanediamine (19)^[3]

The reaction was carried out with hexane-1,6-diamine (**13**, 5.32 g, 45.87 mmol), Boc₂O (2.0 g, 9.16 mmol) and DCM. The product was obtained as a colorless oil (1.83 g, 92%): $R_{\rm f}$ =0.50 (DCM/MeOH/NH₃ 80:20:0.1); ¹H NMR (300 MHz, CDCl₃) δ 4.61 (bs, 1H), 3.07 (q, J = 6.5 Hz, 2H), 2.67 (t, J = 7.0 Hz, 2H), 2.31 (bs, 2H), 1.54 – 1.42 (m, 4H), 1.41 (s, 9H), 1.36 – 1.23 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 156.03, 79.01, 41.78, 40.45, 33.00, 30.00, 28.42, 26.55, 26.46. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₁H₂₅N₂O₂⁺: 217.1911, found 217.1914; C₁₁H₂₄N₂O₂ (216.33).

N-(tert-Butoxycarbonyl)-1,8-octanediamine (20)^[3]

The reaction was carried out with octane-1,8-diamine (**14**, 6.60 g, 45.87 mmol), Boc₂O (2.0 g, 9.16 mmol) and DCM. The product was obtained as a colorless oil (2.04 g, 91%): $R_{\rm f}$ =0.55 (DCM/MeOH/NH₃ 80:20:0.1); ¹H NMR (300 MHz, CDCl₃) δ 4.53 (bs, 1H), 3.09 (q, J = 6.5 Hz, 2H), 2.66 (t, J = 6.9 Hz, 2H), 1.43 (s, 9H), 1.41 – 1.34 (m, 4H), 1.33 – 1.23 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 156.00, 79.01, 42.22, 40.59, 33.78, 30.06, 29.40, 29.26, 28.43, 26.80, 26.74. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₃H₂₉N₂O₂⁺: 245.2224, found 245.2229; C₁₃H₂₈N₂O₂ (244.38).

N-(tert-Butoxycarbonyl)-1,10-decanediamine (21)^[4]

The reaction was carried out with decane-1,10-diamine (**15**, 7.89 g, 45.87 mmol), Boc_2O (2.0 g, 9.16 mmol) and DCM. The product was obtained as a colorless oil (2.18 g, 87%):

 $R_{\rm f}$ =0.60 (DCM/MeOH/NH₃ 80:20:0.1); ¹H NMR (300 MHz, CDCl₃) δ 4.52 (bs, 1H), 3.09 (q, J = 6.7 Hz, 2H), 2.67 (t, J = 6.9 Hz, 2H), 1.48 (m, 4H), 1.43 (s, 9H), 1.27 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 155.99, 79.00, 42.23, 40.63, 33.76, 30.07, 29.53, 29.50, 29.46, 29.28, 28.44, 26.87, 26.80. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₅H₃₃N₂O₂⁺: 273.2537, found 273.2542; C₁₅H₃₂N₂O₂ (272.43).

N-(tert-Butoxycarbonyl)-1,12-dodecanediamine (22)^[3]

The reaction was carried out with dodecane-1,12-diamine (**16**, 9.18 g, 45.87 mmol), Boc₂O (2.0 g, 9.16 mmol) and DCM. The product was obtained as a colorless oil (2.63 g, 96%): $R_{\rm f}$ =0.66 (DCM/MeOH/NH₃ 80:20:0.1); ¹H NMR (300 MHz, CDCl₃) δ 4.54 (s, 1H), 3.09 (q, J = 6.5 Hz, 2H), 2.85 (t, J = 7.2 Hz, 2H), 1.65 (t, J = 7.5 Hz, 2H), 1.58 – 1.45 (m, 2H), 1.44 (s, 9H), 1.35 – 1.20 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 155.97, 82.56, 42.81, 39.78, 33.55, 30.06, 29.53, 29.51, 29.42, 29.29, 29.10, 29.06, 28.44, 26.82, 26.60. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₇H₃₇N₂O₂⁺: 301.2850, found 301.2853; C₁₇H₃₆N₂O₂ (300.49).

1-(6-Aminohexyl)-2,3-(di-tert-butoxycarbonyl)guanidine (24)^[5]

The synthesis was accomplished with **13** (1.80 g, 15.51 mmol) and **10** (1.50 g, 5.17 mmol) according to the general procedure. Column chromatography gave **24** as a yellow oil (1.70 g, 92%): $R_{\rm f}$ =0.20 (DCM/MeOH/NH₃ 95:5:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.47 (bs, 1H), 8.29 (t, J = 5.2 Hz, 1H), 3.38 (q, J = 7.3 Hz, 2H), 2.67 (t, J = 6.9 Hz, 2H), 1.97 (bs, 2H), 1.64 – 1.51 (m, 4H), 1.48 (s, 9H), 1.47 (s, 9H), 1.41 – 1.28 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 163.60, 156.13, 153.32, 83.08, 79.29, 41.92, 40.84, 33.22, 28.91, 28.29, 28.07, 26.67, 26.48. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₇H₃₅N₄O₄⁺: 359.2653, found 359.2659; C₁₇H₃₄N₄O₄ (358.48).

1-(8-Aminooctyl)-2,3-(di-tert-butoxycarbonyl)guanidine (25)^[5]

The synthesis was accomplished with **14** (2.24 g, 15.51 mmol) and **10** (1.50 g, 5.17 mmol) according to the general procedure. Column chromatography gave **25** as a yellow oil (1.93 g, 97%): R_f =0.22 (DCM/MeOH/NH₃ 95:5:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.46 (bs, 1H), 8.28 (t, J = 5.2 Hz, 1H), 3.36 (q, J = 7.4 Hz, 2H), 2.65 (t, J = 7.0 Hz, 2H), 2.07 (bs, 2H), 1.61 – 1.48 (m, 4H), 1.47 (s, 9H), 1.47 (s, 9H), 1.33 – 1.20 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 163.59, 156.11, 153.31, 83.05, 79.27, 41.98, 40.95, 33.32, 29.25, 29.19, 28.92, 28.29, 26.77, 26.74. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₉H₃₉N₄O₄⁺: 387.2966, found 387.2973; C₁₉H₃₈N₄O₄ (386.54).

1-(10-Aminodecyl)-2,3-(di-tert-butoxycarbonyl)guanidine (26)

The synthesis was accomplished with **15** (2.67 g, 15.51 mmol) and **10** (1.50 g, 5.17 mmol) according to the general procedure. Column chromatography gave **26** as a yellow oil (1.98 g, 92%): $R_{\rm f}$ =0.24 (DCM/MeOH/NH₃ 95:5:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.48 (bs, 1H), 8.28 (t, J = 5.3 Hz, 1H), 3.37 (q, J = 7.3 Hz, 2H), 2.66 (t, J = 7.2 Hz, 2H), 1.72 (bs, 2H), 1.59 – 1.50 (m, 4H), 1.48 (s, 9H), 1.47 (s, 9H), 1.33 – 1.21 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 163.64, 156.10, 153.33, 83.01, 79.24, 42.17, 40.99, 33.69, 29.52, 29.44, 29.40, 29.24, 28.95, 28.31, 28.07, 26.86, 26.84. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₁H₄₃N₄O₄⁺: 415.3279, found 415.3290; C₂₁H₄₂N₄O₄ (414.59).

1-(12-Aminododecyl)-2,3-(di-tert-butoxycarbonyl)guanidine (27)

The synthesis was accomplished with **16** (3.10 g, 15.51 mmol) and **10** (1.50 g, 5.17 mmol) according to the general procedure. Column chromatography gave **27** as a yellow oil (2.22 g, 92%): $R_{\rm f}$ =0.26 (DCM/MeOH/NH₃ 95:5:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.47 (bs, 1H), 8.28 (t, J = 5.2 Hz, 1H), 3.37 (q, J = 7.2 Hz, 2H), 2.66 (t, J = 7.1 Hz, 2H), 2.03 (s, 2H), 1.61 – 1.49 (m, 4H), 1.48 (s, 9H), 1.47 (s, 9H), 1.31 – 1.21 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 163.61,

156.10, 153.31, 83.02, 79.25, 42.04, 41.00, 33.43, 29.63, 29.60, 29.55, 29.45, 29.39, 29.25, 28.95, 28.30 (+, $C(CH_3)_3$), 28.06 (+, $C(CH_3)_3$), 26.93, 26.85. HRMS (ESI-MS): m/z [M+H⁺] calculated for $C_{23}H_{47}N_4O_4^+$: 443.3592, found 443.3604; $C_{23}H_{47}N_4O_4$ (442.65).

tert-Butyl [4-(3-benzoylthioureido)butyl]carbamate (30)^[6]

The product was developed using **18** (1.60 g, 8.50 mmol) and **28** (1.14 mL, 8.50 mmol) in DCM (30 mL) and the desired compound was isolated as a yellow oil (2.96 g, 99%): R_f =0.18 (DCM); ¹H NMR (300 MHz, CDCl₃) δ 10.76 (bs, 1H), 9.16 (bs, 1H), 7.86 – 7.74 (m, 2H), 7.64 – 7.54 (m, 1H), 7.51 – 7.42 (m, 2H), 4.69 (bs, 1H), 3.69 (q, J = 7.1 Hz, 2H), 3.15 (q, J = 6.6 Hz, 2H), 1.71 (p, J = 7.2 Hz, 2H), 1.57 (p, J = 7.1 Hz, 2H), 1.40 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 179.96, 167.06, 156.00, 133.54, 131.77, 129.10, 127.51, 79.20, 45.34, 40.07, 28.41, 27.47, 25.55. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₇H₂₆N₃O₃S⁺: 352.1689, found 352.1691; C₁₇H₂₅N₃O₃S (351.47).

tert-Butyl [6-(3-benzoylthioureido)hexyl]carbamate (31)

The product was developed using **19** (1.83 g, 8.46 mmol) and **28** (1.14 mL, 8.46 mmol) in DCM (30 mL) and the desired compound was isolated as a yellow oil (2.94 g, 92%): R_f =0.20 (DCM); ¹H NMR (300 MHz, CDCl₃) δ 10.74 (bs, 1H), 9.18 (bs, 1H), 7.88 – 7.72 (m, 2H), 7.65 – 7.32 (m, 3H), 4.70 (bs, 1H), 3.38 (q, J = 6.7 Hz, 2H), 3.12 – 2.98 (q, J = 6.4, 2H), 1.74 – 1.50 (m, 2H), 1.49 – 1.17 (m, 15H). ¹³C NMR (75 MHz, CDCl₃) δ 179.80, 167.60, 156.19, 134.71, 131.26, 128.44, 126.98, 79.01, 45.71, 40.09, 30.00, 29.45, 28.41, 26.59, 26.19. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₉H₃₀N₃O₃S⁺: 380.2002, found 380.2006; C₁₉H₂₉N₃O₃S (379.52).

tert-Butyl [8-(3-benzoylthioureido)octyl]carbamate (32)

The product was developed using **20** (2.04 g, 8.35 mmol) and **28** (1.12 mL, 8.35 mmol) in DCM (30 mL) and the desired compound was isolated as a yellow oil (3.36 g, 99%): R_f =0.22 (DCM); ¹H NMR (300 MHz, CDCl₃) δ 10.73 (bs, 1H), 9.14 (bs, 1H), 7.89 – 7.76 (m, 2H), 7.67 – 7.54 (m, 1H), 7.53 – 7.40 (m, 2H), 4.58 (bs, 1H), 3.65 (q, J = 7.3 Hz, 2H), 3.07 (q, J = 6.0 Hz, 2H), 1.67 (p, J = 7.2 Hz, 2H), 1.52 – 1.41 (m, 2H), 1.40 (s, 9H), 1.38 – 1.16 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 179.71, 167.02, 155.99, 133.49, 131.83, 129.08, 127.50, 78.97, 45.85, 40.56, 30.01, 29.09, 28.42, 28.14, 28.08, 26.83, 26.68. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₁H₃₄N₃O₃S⁺: 408.2315, found 408.2321; C₂₁H₃₃N₃O₃S (407.57).

tert-Butyl [10-(3-benzoylthioureido)decyl]carbamate (33)

The product was developed using **21** (2.18 g, 8.00 mmol) and **28** (1.08 mL, 8.00 mmol) in DCM (30 mL) and the desired compound was isolated as a yellow solid (3.22 g, 92%): R_f =0.25 (DCM); mp 105.8 °C. ¹H NMR (300 MHz, CDCl₃) δ 10.73 (bs, 1H), 9.08 (bs, 1H), 7.88 – 7.77 (m, 2H), 7.66 – 7.56 (m, 1H), 7.55 – 7.44 (m, 2H), 4.54 (bs, 1H), 3.67 (q, J = 7.3 Hz, 2H), 3.08 (q, J = 6.5 Hz, 2H), 1.69 (p, J = 7.2 Hz, 2H), 1.52 – 1.42 (m, 2H), 1.41 (s, 9H), 1.38 – 1.19 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 179.68, 166.96, 155.98, 133.52, 131.84, 129.12, 127.46, 78.98, 45.93, 40.62, 30.05, 29.43, 29.36, 29.24, 29.17, 28.43, 28.18, 26.91, 26.78. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₃H₃₈N₃O₃S⁺: 436.2628, found 436.2630; C₂₃H₃₇N₃O₃S (435.62).

tert-Butyl [12-(3-benzoylthioureido)dodecyl]carbamate (34)

The product was developed using **22** (2.63 g, 8.75 mmol) and **28** (1.18 mL, 8.75 mmol) in DCM (30 mL) and the desired compound was isolated as a yellow oil (3.75 g, 92%): $R_{\rm f}$ =0.27 (DCM); ¹H NMR (300 MHz, CDCl₃) δ 10.73 (bs, 1H), 9.18 (bs, 1H), 7.87 – 7.74 (m, 2H), 7.63 – 7.52 (m, 1H), 7.51 – 7.40 (m, 2H), 4.58 (bs, 1H), 3.64 (q, J = 7.1 Hz, 2H), 3.05 (q, J = 6.4 Hz,

2H), 1.67 (p, J = 7.2 Hz, 2H), 1.50 – 1.40 (m, 2H), 1.39 (s, 9H), 1.37 – 1.10 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 179.69, 167.05, 155.99, 133.45, 131.85, 129.05, 127.52, 78.93, 45.90, 40.62, 30.05, 29.52, 29.50, 29.48, 29.42, 29.28, 29.19, 28.42, 28.17, 26.92, 26.79. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₅H₄₂N₃O₃S⁺: 464.2941, found 464.2947; C₂₅H₄₁N₃O₃S (463.68).

1-(N'-Benzoylthioureidobutyl)-2,3-(di-tert-butoxycarbonyl)guanidine (35)

The product was developed using **23** (1.15 g, 3.48 mmol) and **28** (0.47 mL, 3.48 mmol) in DCM (30 mL) and the desired compound was isolated as a yellow solid (1.46 g, 85%): $R_{\rm f}$ =0.18 (DCM); mp 137.6 °C. ¹H NMR (300 MHz, CDCI₃) δ 11.50 (bs, 1H), 10.75 (t, J = 5.5 Hz, 1H), 8.99 (bs, 1H), 8.36 (t, J = 5.6 Hz, 1H), 7.86 – 7.79 (m, 2H), 7.65 – 7.59 (m, 1H), 7.54 – 7.47 (m, 2H), 3.74 (q, J = 6.9 Hz, 2H), 3.48 (q, J = 6.9 Hz, 2H), 1.83 – 1.63 (m, 4H), 1.49 (s, 9H), 1.48 (s, 9H). ¹³C NMR (75 MHz, CDCI₃) δ 179.96, 166.86, 163.53, 156.18, 153.31, 133.59, 131.78, 129.17, 127.43, 83.19, 79.38, 45.39, 40.40, 28.30, 28.09, 26.61, 25.66. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₃H₃₆N₅O₅S⁺: 494.2432, found 494.2439; C₂₃H₃₅N₅O₅S (493.62).

1-(N'-Benzoylthioureidohexyl)-2,3-(di-tert-butoxycarbonyl)guanidine (36)

The product was developed using **24** (2.00 g, 5.58 mmol) and **28** (0.75 mL, 5.58 mmol) in DCM (30 mL) and the desired compound was isolated as a colorless foamlike solid (2.59 g, 89%): $R_{\rm f}$ =0.21 (DCM); ¹H NMR (300 MHz, CDCl₃) δ 11.49 (bs, 1H), 10.73 (t, J = 5.7 Hz, 1H), 9.01 (bs, 1H), 8.32 (t, J = 5.9 Hz, 1H), 7.89 – 7.76 (m, 2H), 7.68 – 7.56 (m, 1H), 7.54 – 7.43 (m, 2H), 3.68 (q, J = 7.3 Hz, 2H), 3.40 (q, J = 7.2 Hz, 2H), 1.81 – 1.52 (m, 4H), 1.48 (s, 9H), 1.47 (s, 9H), 1.46 – 1.37 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 179.74, 166.88, 163.57, 156.11, 153.32, 133.55, 131.81, 129.14, 127.44, 83.07, 79.29, 45.77, 40.84, 28.88, 28.31, 28.16, 28.09, 26.65, 26.54. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₅H₄₀N₅O₅S⁺: 522.2745, found 522.2753; C₂₅H₃₉N₅O₅S (521.68).

1-(N'-Benzoylthioureidooctyl)-2,3-(di-tert-butoxycarbonyl)guanidine (37)

The product was developed using **25** (1.89 g, 4.89 mmol) and **28** (0.66 mL, 4.89 mmol) in DCM (30 mL) and the desired compound was isolated as a yellow solid (2.22 g, 83%): R_f =0.23 (DCM); mp 143.4 °C. ¹H NMR (300 MHz, CDCl₃) δ 11.49 (bs, 1H), 10.72 (t, J = 5.1 Hz, 1H), 8.99 (bs, 1H), 8.29 (t, J = 5.2 Hz, 1H), 7.90 – 7.76 (m, 2H), 7.70 – 7.56 (m, 1H), 7.55 – 7.46 (m, 2H), 3.68 (q, J = 7.2 Hz, 2H), 3.40 (q, J = 7.3 Hz, 2H), 1.70 (p, J = 6.7 Hz, 2H), 1.54 (p, J = 6.8 Hz, 1H), 1.48 (s, 9H), 1.47 (s, 9H), 1.41 – 1.28 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 179.66, 166.86, 163.61, 156.09, 153.32, 133.54, 131.82, 129.14, 127.43, 83.03, 79.26, 45.91, 40.97, 29.13, 29.07, 28.94, 28.32, 28.17, 28.09, 26.87, 26.78. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₇H₄₄N₅O₅S⁺: 550.3058, found 550.3063; C₂₇H₄₃N₅O₅S (549.73).

1-(N'-Benzoylthioureidodecyl)-2,3-(di-tert-butoxycarbonyl)guanidine (38)

The product was developed using **26** (1.94 g, 4.68 mmol) and **28** (0.63 mL, 4.68 mmol) in DCM (30 mL) and the desired compound was isolated as a yellow oil (2.31 g, 85%): $R_{\rm f}$ =0.26 (DCM); ¹H NMR (300 MHz, CDCl₃) δ 11.50 (bs, 1H), 10.72 (bs, 1H), 8.98 (bs, 1H), 8.30 (bs, 1H), 7.89 – 7.77 (m, 2H), 7.67 – 7.57 (m, 1H), 7.55 – 7.48 (m, 2H), 3.69 (q, J = 7.1 Hz, 2H), 3.40 (q, J = 7.4 Hz, 2H), 1.70 (p, J = 7.4 Hz, 2H), 1.60 – 1.51 (m, 2H), 1.49 (s, 9H), 1.48 (s, 9H), 1.35 – 1.25 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 179.64, 166.84, 163.61, 156.09, 153.33, 133.55, 131.83, 129.16, 127.41, 83.02, 79.27, 45.98, 41.03, 29.39, 29.37, 29.24, 29.20, 28.97, 28.32, 28.21, 28.09, 26.95, 26.86. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₉H₄₈N₅O₅S⁺: 578.3371, found 578.3388; C₂₉H₄₇N₅O₅S (577.79).

1-(N'-Benzoylthioureidododecyl)-2,3-(di-tert-butoxycarbonyl)guanidine (39)

The product was developed using **27** (2.19 g, 4.95 mmol) and **28** (0.66 mL, 4.95 mmol) in DCM (30 mL) and the desired compound was isolated as a yellow oil (2.54 g, 85%): $R_{\rm f}$ =0.28 (DCM); ¹H NMR (300 MHz, CDCl₃) δ 11.50 (bs, 1H), 10.72 (bs, 1H), 8.98 (bs, 1H), 8.29 (t, J =

5.2 Hz, 1H), 7.90 – 7.76 (m, 2H), 7.68 – 7.57 (m, 1H), 7.53 – 7.45 (m, 2H), 3.69 (q, J = 7.3 Hz, 2H), 3.40 (q, J = 7.4 Hz, 2H), 1.71 (p, J = 7.3 Hz, 2H), 1.60 – 1.51 (m, 2H), 1.49 (s, 9H), 1.48 (s, 9H), 1.40 – 1.23 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 179.63, 166.84, 163.67, 156.10, 153.34, 133.56, 131.84, 129.17, 127.41, 83.00, 79.23, 46.01, 41.02, 29.53, 29.51, 29.47, 29.45, 29.28, 29.24, 28.98, 28.32, 28.22, 28.09, 26.97, 26.87. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₃₁H₅₂N₅O₅S⁺: 606.3684, found 606.3695; C₃₁H₅₁N₅O₅S (605.84).

tert-Butyl (4-thioureidobutyl)carbamate (46)^[6]

46 was made out of **30** (2.90 g, 8.25 mmol) and K₂CO₃ (2.39 g, 17.33 mmol) in 50 ml MeOH/H₂O (7/3 v/v) yielding a yellow oil (1.90 g, 93%): R_{f} =0.32 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃) δ 7.40 (bs, 1H,), 6.37 (bs, 1H), 4.94 (bs, 1H), 3.52 + 3.20 (2 bs, 1.1H + 0.9H (thione-thiol tautomerism)), 3.10 (q, J = 6.2 Hz, 2H), 1.75 – 1.43 (m, 4H), 1.39 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 183.32, 156.75, 79.68, 44.90, 40.22, 28.45, 27.71, 26.03. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₀H₂₂N₃O₂S⁺: 248.1427, found 248.1429; C₁₀H₂₁N₃O₂S (247.36).

tert-Butyl (6-thioureidohexyl)carbamate (47)^[7]

47 was made out of **31** (2.90 g, 7.64 mmol) and K₂CO₃ (2.22 g, 16.05 mmol) in 50 ml MeOH/H₂O (7/3 v/v) yielding a yellow solid (1.85 g, 88%): $R_{\rm f}$ =0.35 (DCM/MeOH 95:5); mp 99.8 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.28 (bs, 1H), 6.34 (bs, 1H), 4.81 (bs, 1H), 3.49 + 3.17 (2 bs, 1.3H + 0.7H (thione-thiol tautomerism)), 3.05 (q, J = 6.6 Hz, 2H), 1.56 (p, J = 7.2 Hz, 2H), 1.50 – 1.42 (m, 2H), 1.40 (s, 9H), 1.35 – 1.24 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 183.35, 156.64, 79.45, 44.85, 40.16, 29.80, 28.45, 26.34, 26.12, 25.91. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₂H₂₆N₃O₂S⁺: 276.1740, found 276.1741; C₁₂H₂₅N₃O₂S (275.41).

tert-Butyl (8-thioureidooctyl)carbamate (48)

48 was made out of **32** (3.30 g, 8.10 mmol) and K₂CO₃ (2.35 g, 17.00 mmol) in 50 ml MeOH/H₂O (7/3 v/v) yielding a colorless solid (2.30 g, 94%): $R_{\rm f}$ =0.38 (DCM/MeOH 95:5); mp 96.3 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.29 (bs, 1H), 6.43 (bs, 1H), 4.86 (bs, 1H), 3.39 + 3.06 (2 bs, 1.3H + 0.7H (thione-thiol tautomerism)), 2.96 (q, J = 6.6 Hz, 2H), 1.51 – 1.40 (m, 2H), 1.40 – 1.34 (m, 2H), 1.32 (s, 9H), 1.25 – 1.14 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 183.07, 156.31, 79.19, 45.23, 40.49, 29.82, 29.76, 28.98, 28.94, 28.40, 26.66, 26.50. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₄H₃₀N₃O₂S⁺: 304.2053, found 304.2055; C₁₄H₂₉N₃O₂S (303.47).

tert-Butyl (10-thioureidodecyl)carbamate (49)

49 was made out of **33** (3.15 g, 7.23 mmol) and K₂CO₃ (2.10 g, 15.19 mmol) in 50 ml MeOH/H₂O (7/3 v/v) yielding a colorless solid (2.20 g, 92%): R_f =0.41 (DCM/MeOH 95:5); mp 98.2 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.25 (bs, 1H), 6.63 (bs, 1H), 4.69 (bs, 1H), 3.56 + 3.12 (2 bs, 1.5H + 0.5H (thione-thiol tautomerism)), 3.03 (q, J = 6.6 Hz, 2H), 1.64 – 1.45 (m, 2H), 1.46 – 1.40 (m, 2H), 1.39 (s, 9H), 1.31 – 1.13 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 183.46, 156.22, 79.18, 45.35, 40.60, 29.93, 29.39, 29.27, 29.19, 29.08, 28.43, 26.96, 26.77, 26.66. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₆H₃₄N₃O₂S⁺: 332.2366, found 332.2366; C₁₆H₃₃N₃O₂S (331.52).

tert-Butyl (12-thioureidododecyl)carbamate (50)

50 was made out of **34** (3.70 g, 7.98 mmol) and K₂CO₃ (2.32 g, 16.76 mmol) in 50 ml MeOH/H₂O (7/3 v/v) yielding a colorless solid (2.70 g, 94%): $R_{\rm f}$ =0.45 (DCM/MeOH 95:5); mp 121.2 °C. ¹H NMR (300 MHz, CDCl₃) δ 6.75 (bs, 1H), 5.96 (bs, 1H), 4.56 (bs, 1H), 3.53 + 3.20 (2 bs, 1.0H + 1.0H (thione-thiol tautomerism)), 3.08 (q, J = 6.7 Hz, 2H), 1.58 (p, J = 7.5, 7.0 Hz, 2H), 1.52 - 1.44 (m, 2H), 1.43 (s, 9H), 1.36 - 1.20 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 183.34, 156.79, 79.17, 45.06, 40.63, 29.98, 29.49, 29.44, 29.41, 29.29, 29.15, 29.09, 28.45,

26.76, 26.72, 26.64. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₈H₃₈N₃O₂S⁺: 360.2679, found 360.2682; C₁₈H₃₇N₃O₂S (359.57).

1,2-(Di-tert-butoxycarbonyl)-3-(thioureidobutyl)guanidine (51)

51 was made out of **35** (1.46 g, 2.96 mmol) and K₂CO₃ (859 mg, 6.22 mmol) in 50 ml MeOH/H₂O (7/3 v/v) yielding a colorless foamlike solid (1.10 g, 95%): R_f =0.41 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃) δ 11.45 (bs, 1H), 8.58 (bs, 1H), 8.24 (bs, 1H), 6.17 (bs, 2H), 3.68 (bs, 2H), 3.39 (q, J = 6.6 Hz, 2H), 1.70 – 1.60 (m, 4H), 1.48 (s, 9H), 1.46 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 183.02, 162.70, 157.13, 153.15, 83.73, 80.66, 46.17, 39.97, 28.56, 28.28, 28.05, 23.12. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₆H₃₂N₅O₄S⁺: 390.2170, found 390.2176; C₁₆H₃₁N₅O₄S (389.52).

1,2-(Di-tert-butoxycarbonyl)-3-(thioureidohexyl)guanidine (52)

52 was made out of **36** (2.59 g, 4.96 mmol) and K₂CO₃ (1.44 g, 10.42 mmol) in 50 ml MeOH/H₂O (7/3 v/v) yielding a colorless foamlike solid (930 mg, 45%): R_{f} =0.44 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃) δ 11.34 (bs, 1H), 8.34 (bs, 1H), 7.45 (bs, 1H), 6.31 (bs, 2H), 3.47 + 3.13 (2 bs, 1.5H + 0.5H (thione-thiol tautomerism)), 3.28 (q, J = 7.7 Hz, 2H), 1.57 – 1.48 (m, 4H), 1.44 (s, 9H), 1.42 (s, 9H), 1.36 – 1.27 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 183.19, 163.13, 156.25, 153.17, 83.33, 79.67, 45.15, 40.68, 28.75, 28.65, 28.24, 28.03, 26.36, 26.17. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₈H₃₆N₅O₄S⁺: 418.2483, found 418.2485; C₁₈H₃₅N₅O₄S (417.57).

1,2-(Di-tert-butoxycarbonyl)-3-(thioureidooctyl)guanidine (53)

53 was made out of **37** (2.22 g, 4.04 mmol) and K_2CO_3 (1.17 g, 8.48 mmol) in 50 ml MeOH/H₂O (7/3 v/v) yielding a colorless foamlike solid (1.70 g, 95%): R_f =0.47 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃) $\bar{\delta}$ 11.46 (bs, 1H), 8.33 (bs, 1H), 6.67 (bs, 1H), 6.07 (bs, 2H),

3.53 + 3.13 (2 bs, 1.1H + 0.9H (thione-thiol tautomerism)), 3.35 (q, J = 6.6 Hz, 2H), 1.61 – 1.51 (m, 4H), 1.48 (s, 9H), 1.48 (s, 9H), 1.36 – 1.29 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 184.89, 163.43, 156.24, 153.28, 83.25, 79.56, 44.45, 40.87, 28.94, 28.82, 28.72, 28.59, 28.30, 28.08, 26.66, 26.50, 26.46. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₀H₄₀N₅O₄S⁺: 446.2796, found 446.2804; C₂₀H₃₉N₅O₄S (445.62).

1,2-(Di-tert-butoxycarbonyl)-3-(thioureidodecyl)guanidine (54)

54 was made out of **38** (2.31 g, 4.00 mmol) and K₂CO₃ (1.16 g, 8.40 mmol) in 50 ml MeOH/H₂O (7/3 v/v) yielding a colorless foamlike solid (1.90 g, 100%): $R_{\rm f}$ =0.50 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃) δ 11.48 (bs, 1H), 8.32 (bs, 1H), 6.82 (bs, J = 53.3 Hz, 1H), 5.95 (bs, 2H), 3.53 + 3.11 (2 bs, 0.9H + 1.1H (thione-thiol tautomerism)), 3.37 (q, J = 7.4 Hz, 2H), 1.64 – 1.51 (m, 4H), 1.49 (s, 18H), 1.34 – 1.22 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 183.65, 163.50, 156.20, 153.30, 83.18, 79.47, 44.32, 40.91, 29.18, 29.13, 28.93, 28.82, 28.76, 28.53, 28.31, 28.08, 26.70, 26.68. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₂H₄₄N₅O₄S⁺: 474.3109, found 474.3113; C₂₂H₄₃N₅O₄S (473.68).

1,2-(Di-tert-butoxycarbonyl)-3-(thioureidododecyl)guanidine (55)

55 was made out of **39** (2.54 g, 4.20 mmol) and K₂CO₃ (1.22 g, 8.82 mmol) in 50 ml MeOH/H₂O (7/3 v/v) yielding a colorless foamlike solid (1.92 g, 91%): R_f =0.53 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃) δ 11.46 (bs, 1H), 8.32 (t, J = 5.1 Hz, 1H), 6.71 (bs, J = 150.7 Hz, 1H), 6.06 (bs, 2H), 3.53 + 3.11 (2 bs, 0.8H + 1.2H (thione-thiol tautomerism)), 3.35 (q, J = 7.3 Hz, 2H), 1.62 – 1.50 (m, 4H), 1.47 (s, 18H), 1.33 – 1.22 (m, 16H). ¹³C NMR (75 MHz, CDCl₃ δ 183.68, 163.48, 156.18, 153.28, 83.16, 79.46, 44.50, 41.00, 29.53, 29.48, 29.37, 29.15, 29.08, 29.06, 28.93, 28.82, 28.30, 28.07, 26.82, 26.76. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₄H₄₈N₅O₄S⁺: 502.3422, found 502.3429; C₂₄H₄₇N₅O₄S (501.73).

tert-Butyl {4-[(imino(methylthio)methyl)amino]butyl}carbamate (62)

Compound **46** (1.80 g, 7.28 mmol) was dissolved in MeCN (30 mL) and treated with methyl iodide (0.50 mL, 8.00 mmol) resulting a yellow oil (**62** x HI, 2.80 g, 99%): $R_{\rm f}$ =0.16 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃, hydrogen iodide) δ 3.64 – 3.27 (m, 2H), 3.09 (q, J = 6.4 Hz, 2H), 2.75 (s, 3H), 1.79 – 1.63 (m, 2H), 1.63 – 1.49 (m, 2H), 1.37 (s, 9H). ¹³C NMR (75 MHz, CDCl₃, hydrogen iodide) δ 170.07, 154.13, 77.71, 42.35, 37.65, 26.35, 25.10, 23.49, 13.82. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₁H₂₄N₃O₂S⁺: 262.1584, found 262.1589; C₁₁H₂₃N₃O₂S x HI (389.30).

tert-Butyl {6-[(imino(methylthio)methyl)amino]hexyl}carbamate (63)

Compound **47** (1.80 g, 6.54 mmol) was dissolved in MeCN (30 mL) and treated with methyl iodide (0.45 mL, 7.19 mmol) resulting a yellow oil (**63** x HI, 2.70 g, 99%): $R_{\rm f}$ =0.18 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃, hydrogen iodide) δ 3.63 – 3.20 (m, 2H), 3.05 (t, J = 4.6 Hz, 2H), 2.75 (s, 3H), 1.76 – 1.57 (m, 2H), 1.53 – 1.42 (m, 2H), 1.39 (s, 9H), 1.37 – 1.07 (m, 4H). ¹³C NMR (75 MHz, CDCl₃, hydrogen iodide) δ 170.03, 154.13, 77.13, 42.66, 38.29, 27.67, 26.43, 26.24, 24.24, 24.03, 13.13. [M+H⁺]. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₃H₂₈N₃O₂S⁺: 290.1897, found 290.1901; C₁₃H₂₇N₃O₂S x HI (417.35).

tert-Butyl {8-[(imino(methylthio)methyl)amino]octyl}carbamate (64)

Compound **48** (2.20 g, 7.25 mmol) was dissolved in MeCN (30 mL) and treated with methyl iodide (0.50 mL, 7.97 mmol) resulting a yellow oil (**64** x HI, 3.20 g, 99%): $R_{\rm f}$ =0.20 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃, hydrogen iodide) δ 3.26 (q, J = 6.8 Hz, 2H), 3.03 (q, J = 6.5 Hz, 2H), 2.76 (s, 3H), 1.64 (p, J = 7.2 Hz, 2H), 1.52 – 1.40 (m, 2H), 1.39 (s, 9H), 1.36 – 1.12 (m, 8H). ¹³C NMR (75 MHz, CDCl₃, hydrogen iodide) δ 170.01, 154.03, 77.01, 42.75, 38.50, 27.84, 26.86, 26.73, 26.38, 26.27, 24.53, 24.45, 13.25. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₅H₃₂N₃O₂S⁺: 318.2210, found 318.2218; C₁₅H₃₁N₃O₂S x HI (445.40).

tert-Butyl {10-[(imino(methylthio)methyl)amino]decyl}carbamate (65)

Compound **49** (2.10 g, 6.33 mmol) was dissolved in MeCN (30 mL) and treated with methyl iodide (0.44 mL, 6.97 mmol) resulting a yellow oil (**65** x HI, 2.90 g, 97%): $R_{\rm f}$ =0.22 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃, hydrogen iodide) δ 3.40 – 3.16 (m, 2H), 3.00 (q, J = 6.8 Hz, 2H), 2.72 (s, 3H), 1.61 (p, J = 7.2 Hz, 2H), 1.48 – 1.37 (m, 2H), 1.36 (s, 9H), 1.33 – 1.13 (m, 12H). ¹³C NMR (75 MHz, CDCl₃, hydrogen iodide) δ 169.88, 154.02, 76.96, 42.72, 38.51, 27.86, 27.28, 27.22, 27.10, 26.77, 26.34, 24.86, 24.62, 24.50, 13.15 (+, S-**C**H₃). HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₇H₃₆N₃O₂S⁺: 346.2523, found 346.2526; C₁₇H₃₅N₃O₂S x HI (473.46).

tert-Butyl {12-[(imino(methylthio)methyl)amino]dodecyl}carbamate (66)

Compound **50** (2.60 g, 7.23 mmol) was dissolved in MeCN (30 mL) and treated with methyl iodide (0.50 mL, 7.95 mmol) resulting a yellow oil (**66** x HI, 3.60 g, 99%): $R_{\rm f}$ =0.24 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃, hydrogen iodide) δ 3.24 (q, J = 7.2 Hz, 2H), 3.03 (q, J = 6.6 Hz, 2H), 2.76 (s, 3H), 1.64 (p, J = 7.2 Hz, 2H), 1.50 – 1.39 (m, 2H), 1.38 (s, 9H), 1.21 (m, 16H). ¹³C NMR (75 MHz, CDCl₃, hydrogen iodide) δ 169.95, 154.00, 76.97, 42.79, 38.55, 27.91, 27.39, 27.36, 27.34, 27.22, 27.16, 26.85, 26.36, 25.95, 24.69, 24.55, 13.25. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₉H₄₀N₃O₂S⁺: 374.2836, found 374.2839; C₁₉H₃₉N₃O₂S x HI (501.51).

1,2-(Di-tert-butoxycarbonyl)-3-(S-methylisothioureidobutyl)guanidine (67)

Compound **51** (1.07 g, 2.75 mmol) was dissolved in MeCN (30 mL) and treated with methyl iodide (0.19 mL, 3.03 mmol) resulting a colorless foamlike solid (**67** x HI, 1.39 g, 95%): R_{f} =0.25 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃, hydrogen iodide) δ 11.45 (bs, 1H), 9.53 (bs, 1H), 8.62 (bs, 1H), 8.45 (bs, 1H), 3.58 – 3.21 (m, 4H), 2.82 (s, 3H), 1.73 (s, 4H), 1.48 (s, 18H). ¹³C NMR (75 MHz, CDCl₃, hydrogen iodide) δ 172.06, 163.08, 156.59, 153.20, 83.53, 80.12, 44.66, 39.85, 28.34, 28.08, 26.92, 24.97, 15.65. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₇H₃₄N₅O₄S⁺: 404.2326, found 404.2334; C₁₇H₃₃N₅O₄S x HI (531.45).

1,2-(Di-tert-butoxycarbonyl)-3-(S-methylisothioureidohexyl)guanidine (68)

Compound **52** (930 mg, 2.23 mmol) was dissolved in MeCN (30 mL) and treated with methyl iodide (0.15 mL, 2.45 mmol) resulting a colorless oil (**68** x HI, 1.24 g, 99%): $R_{\rm f}$ =0.27 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃, hydrogen iodide) δ 11.47 (bs, 1H), 9.12 (bs, 1H), 8.51 (bs, 1H), 8.34 (t, J = 5.3 Hz, 1H), 3.40 (q, J = 7.2 Hz, 2H), 3.30 (q, J = 6.6 Hz, 2H), 2.79 (s, 3H), 1.71 (p, J = 7.0 Hz, 2H), 1.57 (q, J = 7.3 Hz, 2H), 1.49 (s, 9H), 1.49 (s, 9H), 1.46 – 1.35 (m, 4H). ¹³C NMR (75 MHz, CDCl₃, hydrogen iodide) δ 172.11, 163.33, 156.09, 153.28, 83.24, 79.54, 44.72, 40.81, 28.75, 28.32, 28.27, 28.09, 26.32, 26.22, 15.21. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₉H₃₈N₅O₄S⁺: 432.2639, found 432.2647; C₁₉H₃₇N₅O₄S x HI (559.51).

1,2-(Di-tert-butoxycarbonyl)-3-(S-methylisothioureidooctyl)guanidine (69)

Compound **53** (1.45 g, 3.25 mmol) was dissolved in MeCN (30 mL) and treated with methyl iodide (0.22 mL, 3.58 mmol) resulting a colorless oil (**69** x HI, 1.85 g, 97%): R_f =0.30 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃, hydrogen iodide) δ 11.43 (bs, 1H), 9.12 (bs, 1H), 8.51 (bs, 1H), 8.25 (t, J = 5.2 Hz, 1H), 3.39 – 3.19 (m, 4H), 2.73 (s, 3H), 1.63 (p, J = 7.4 Hz, 2H), 1.49 (p, J = 7.1 Hz, 1H), 1.43 (s, 18H), 1.34 – 1.20 (m, 8H). ¹³C NMR (75 MHz, CDCl₃, hydrogen iodide) δ 171.76, 163.54, 156.13, 153.30, 83.10, 79.34, 44.92, 40.96, 28.96, 28.90, 28.79, 28.58, 28.32, 28.09, 26.72, 26.56, 15.37. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₁H₄₂N₅O₄S⁺: 460.2952, found 460.2960; C₂₁H₄₁N₅O₄S x HI (587.56).

1,2-(Di-tert-butoxycarbonyl)-3-(S-methylisothioureidodecyl)guanidine (70)

Compound **54** (1.90 g, 4.01 mmol) was dissolved in MeCN (30 mL) and treated with methyl iodide (0.28 mL, 4.41 mmol) resulting a colorless foamlike solid (**70** x HI, 2.40 g, 97%): R_f =0.32 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃, hydrogen iodide) δ 11.48 (bs, 1H), 9.12 (bs, 1H), 8.51 (bs, 1H), 8.29 (t, J = 5.2 Hz, 1H), 3.37 (q, J = 7.4 Hz, 2H), 3.33 – 3.20 (m, 2H), 2.78 (s, 3H), 1.69 (p, J = 7.1 Hz, 2H), 1.55 (p, J = 7.1 Hz, 2H), 1.49 (s, 9H), 1.48 (s, 9H), 1.38 – 1.25 (m,

12H). ¹³C NMR (75 MHz, CDCl₃, hydrogen iodide) δ 171.98, 163.59, 156.12, 153.32, 83.07, 79.32, 44.88, 41.02, 29.28, 29.24, 29.15, 28.95, 28.87, 28.39, 28.33, 28.09, 26.85, 26.61, 15.29. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₃H₄₆N₅O₄S⁺: 488.3265, found 488.3270; C₂₃H₄₅N₅O₄S x HI (615.62).

1,2-(Di-tert-butoxycarbonyl)-3-(S-methylisothioureidododecyl)guanidine (71)

Compound **55** (1.58 g, 3.15 mmol) was dissolved in MeCN (30 mL) and treated with methyl iodide (0.22 mL, 3.46 mmol) resulting a yellow oil (**71** x HI, 1.95 g, 96%): R_f =0.35 (DCM/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃, hydrogen iodide) δ 11.48 (bs, 1H), 8.88 (bs, 1H), 8.51 (bs, 1H), 8.29 (t, J = 5.2 Hz, 1H), 3.37 (q, J = 7.3 Hz, 2H), 3.28 (t, J = 7.1 Hz, 2H), 2.78 (s, 3H), 1.69 (p, J = 7.2 Hz, 2H), 1.54 (p, J = 7.0 Hz, 2H), 1.49 (s, 9H), 1.48 (s, 9H), 1.36 – 1.23 (m, 16H). ¹³C NMR (75 MHz, CDCl₃, hydrogen iodide) δ 172.05, 163.61, 156.12, 153.32, 83.05, 79.30, 44.90, 41.03, 29.47, 29.41, 29.38, 29.34, 29.25, 29.18, 28.96, 28.44, 28.33, 28.09, 26.87, 26.66, 15.26. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₅H₅₀N₅O₄S⁺: 516.3578, found 516.3582; C₂₅H₄₉N₅O₄S x HI (643.67).

tert-Butyl {4-[(((tert-butoxycarbonyl)imino)(methylthio)methyl)amino]butyl}carbamate (78)

The reaction was realized with **62** (2.70 g, 6.94 mmol), NEt₃ (0.96 mL, 6.94 mmol) and Boc₂O (1.51 g, 6.94 mmol). After column chromatography a colorless oil (2.35 g, 94%) was obtained: R_{f} =0.43 (DCM/MeOH 98:2); ¹H NMR (300 MHz, CDCl₃) δ 9.79 (bs, 1H), 4.64 (t, J = 6.1 Hz, 1H), 3.29 (t, J = 6.8 Hz, 2H), 3.10 (q, J = 7.0 Hz, 2H), 2.42 (s, 3H), 1.69 – 1.47 (m, 4H), 1.46 (s, 9H), 1.40 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 173.44, 162.13, 156.01, 79.36, 79.22, 46.27, 39.98, 28.39, 28.21, 27.36, 26.59, 13.56. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₆H₃₂N₃O₄S⁺: 362.2108, found 362.2115; C₁₆H₃₁N₃O₄S (361.50).

tert-Butyl {6-[(((tert-butoxycarbonyl)imino)(methylthio)methyl)amino]hexyl}carbamate (79)

The reaction was realized with **63** (2.60 g, 6.23 mmol), NEt₃ (0.86 mL, 6.23 mmol) and Boc₂O (1.36 g, 6.23 mmol). After column chromatography a colorless oil (2.30 g, 95%) was obtained: $R_{\rm f}$ =0.46 (DCM/MeOH 98:2); ¹H NMR (300 MHz, CDCl₃) δ 9.77 (bs, 1H), 4.56 (bs, 1H), 3.25 (t, J = 7.2 Hz, 2H), 3.06 (q, J = 6.1 Hz, 2H), 2.41 (s, 3H), 1.73 – 1.49 (m, 4H), 1.46 (s, 9H), 1.39 (s, 9H), 1.36 – 1.26 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 173.32, 162.17, 156.01, 79.20, 79.04, 43.67, 40.37, 30.00, 29.17, 28.41, 28.22, 26.39, 26.27, 13.55. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₈H₃₆N₃O₄S⁺: 390.2421, found 390.2424; C₁₈H₃₅N₃O₄S (389.56).

tert-Butyl {8-[(((tert-butoxycarbonyl)imino)(methylthio)methyl)amino]octyl}carbamate (80)

The reaction was realized with **64** (3.10 g, 6.96 mmol), NEt₃ (0.96 mL, 6.96 mmol) and Boc₂O (1.52 g, 6.96 mmol). After column chromatography a colorless oil (2.80 g, 96%) was obtained: R_{f} =0.49 (DCM/MeOH 98:2); ¹H NMR (300 MHz, CDCl₃) δ 9.68 (t, J = 5.8 Hz, 1H), 4.58 (bs, 1H), 3.24 – 3.11 (m, 2H), 3.03 (q, J = 6.7 Hz, 2H), 2.39 (s, 3H), 1.64 – 1.45 (m, 4H), 1.43 (s, 9H), 1.37 (s, 9H), 1.30 – 1.18 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 173.35, 163.60, 155.98, 79.08, 78.92, 46.25, 41.01, 29.97, 29.59, 29.07, 29.06, 28.39, 28.26, 26.66, 26.64, 13.50. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₀H₄₀N₃O₄S⁺: 418.2734, found 418.2735; C₂₀H₃₉N₃O₄S (417.61).

tert-Butyl {10-[(((tert-butoxycarbonyl)imino)(methylthio)methyl)amino]decyl}carbamate (81)

The reaction was realized with **65** (2.80 g, 5.91 mmol), NEt₃ (0.82 mL, 5.91 mmol) and Boc₂O (1.29 g, 5.91 mmol). After column chromatography a colorless oil (2.50 g, 95%) was obtained: R_{f} =0.52 (DCM/MeOH 98:2); ¹H NMR (300 MHz, CDCl₃) δ 9.88 (bs, 1H), 4.58 (bs, 1H), 3.46 – 3.16 (m, 2H), 3.06 (q, J = 6.7 Hz, 2H), 2.42 (s, 3H), 1.65 – 1.48 (m, 4H), 1.46 (s, 9H), 1.40 (s, 9H), 1.26 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 173.21, 163.56, 156.01, 79.13, 78.97, 43.83, 40.08, 30.01, 29.63, 29.40, 29.31, 29.24, 28.42, 28.22, 26.95, 26.74, 26.72, 13.53. MS (LC-MS, ESI): m/z 446.27 [M+H⁺]. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₂H₄₄N₃O₄S⁺: 446.3047, found 446.3047; C₂₂H₄₃N₃O₄S (445.66).

tert-Butyl {12-[(((tert-butoxycarbonyl)imino)(methylthio)methyl)amino]dodecyl}carbamate (82)

The reaction was realized with **66** (3.50 g, 6.98 mmol), NEt₃ (0.97 mL, 6.98 mmol) and Boc₂O (1.52 g, 6.98 mmol). After column chromatography a colorless oil (3.20 g, 97%) was obtained: R_{f} =0.55 (DCM/MeOH 98:2); ¹H NMR (300 MHz, CDCl₃) δ 9.84 (bs, 1H), 4.64 (bs, 1H), 3.27 – 3.09 (m, 2H), 3.02 (q, J = 6.7 Hz, 2H), 2.38 (s, 3H), 1.63 – 1.46 (m, 4H), 1.44 (s, 9H), 1.36 (s, 9H), 1.27 – 1.13 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 173.37, 163.50, 155.96, 79.01, 78.86, 43.77, 41.03, 30.01, 29.61, 29.46, 29.40, 29.23, 29.13, 29.07, 28.38, 28.24, 26.75, 26.71, 26.61, 13.46. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₄H₄₈N₃O₄S⁺: 474.3360, found 474.3355; C₂₄H₄₇N₃O₄S (473.72).

1,2-(Di-tert-butoxycarbonyl)-3-(N'-tert-butoxycarbonyl-S-

methylisothioureidobutyl)guanidine (83)

The reaction was realized with **67** (1.36 g, 2.56 mmol), NEt₃ (0.35 mL, 2.56 mmol) and Boc₂O (559 mg, 2.56 mmol). After column chromatography a colorless foamlike solid (1.23 g, 95%) was obtained: R_f =0.15 (DCM); ¹H NMR (300 MHz, CDCl₃) δ 11.47 (bs, 1H), 9.80 (bs, 1H), 8.32 (t, J = 5.4 Hz, 1H), 3.42 (q, J = 6.3 Hz, 2H), 3.31 (t, J = 7.2 Hz, 2H), 2.42 (s, 3H), 1.63 (m, 4H), 1.46 (m, 27H). ¹³C NMR (75 MHz, CDCl₃) δ 173.52, 163.55, 162.19, 156.19, 153.29, 83.14, 79.29, 79.23, 43.37, 40.16, 28.27, 28.22, 28.06, 26.67, 26.43, 13.55. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₂H₄₂N₅O₆S⁺: 504.2850, found 504.2856; C₂₂H₄₁N₅O₆S (503.66).

1,2-(Di-tert-butoxycarbonyl)-3-(N'-tert-butoxycarbonyl-S-

methylisothioureidohexyl)guanidine (84)

The reaction was realized with **68** (1.21 g, 2.16 mmol), NEt₃ (0.30 mL, 2.16 mmol) and Boc₂O (472 mg, 2.16 mmol). After column chromatography a colorless foamlike solid (960 mg, 83%) was obtained: $R_{\rm f}$ =0.19 (DCM); ¹H NMR (300 MHz, CDCl₃) δ 11.47 (bs, 1H), 9.78 (bs, 1H), 8.28 (t, J = 5.2 Hz, 1H), 3.37 (q, J = 7.4 Hz, 2H), 3.25 (q, J = 7.3 Hz, 2H), 2.42 (s, 3H), 1.63 – 1.51 (m, 4H), 1.49 – 1.45 (m, 27H), 1.39 – 1.31 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 173.40, 163.62, 162.22, 156.11, 153.31, 83.02, 79.20, 79.13, 43.66, 40.73, 29.19, 28.80, 28.29, 28.23, 28.06, 26.47, 26.40, 13.52. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₄H₄₆N₅O₆S⁺: 532.3163, found 532.3172; C₂₄H₄₅N₅O₆S (531.71).

1,2-(Di-tert-butoxycarbonyl)-3-(N'-tert-butoxycarbonyl-S-

methylisothioureidooctyl)guanidine (85)

The reaction was realized with **69** (1.80 g, 3.06 mmol), NEt₃ (0.42 mL, 3.06 mmol) and Boc₂O (669 mg, 3.06 mmol). After column chromatography a colorless foamlike solid (1.58 g, 92%) was obtained: $R_{\rm f}$ =0.23 (DCM); ¹H NMR (300 MHz, CDCl₃) δ 11.38 (s, 1H), 9.65 (s, 1H), 8.12 (t, J = 5.1 Hz, 1H), 3.22 (q, J = 7.2 Hz, 2H), 3.11 (q, J = 6.6 Hz, 2H), 2.26 (s, 3H), 1.47 – 1.37 (m, 4H), 1.34 – 1.27 (m, 27H), 1.21 – 1.12 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 173.09, 163.44, 162.00, 155.94, 153.10, 82.69, 78.83, 78.72, 43.57, 40.68, 29.11, 28.86, 28.80, 28.75, 28.14, 28.08, 27.90, 26.56, 26.50, 13.33. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₆H₅₀N₅O₆S⁺: 560.3476, found 560.3483; C₂₆H₄₉N₅O₆S (559.77).

1,2-(Di-tert-butoxycarbonyl)-3-(N'-tert-butoxycarbonyl-S-

methylisothioureidodecyl)guanidine (86)

The reaction was realized with **70** (2.38 g, 3.87 mmol), NEt₃ (0.54 mL, 3.87 mmol) and Boc₂O (844 mg, 3.87 mmol). After column chromatography a colorless foamlike solid (2.06 g, 91%)

was obtained: R_f =0.27 (DCM); ¹H NMR (300 MHz, CDCl₃) δ 11.43 (bs, 1H), 9.72 (bs, 1H), 8.21 (t, J = 5.1 Hz, 1H), 3.30 (q, J = 7.2 Hz, 2H), 3.19 (q, J = 7.2 Hz, 2H), 2.35 (s, 3H), 1.55 – 1.44 (m, 4H), 1.40 (s, 27H), 1.26 – 1.15 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 173.33, 163.53, 162.10, 156.03, 153.22, 82.86, 79.07, 78.97, 43.74, 40.87, 29.27, 29.25, 29.21, 29.11, 29.02, 28.87, 28.23, 28.16, 27.99, 26.75, 26.67, 13.45. MS (LC-MS, ESI): m/z 588.38 [M+H⁺]. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₈H₅₄N₅O₆S⁺: 588.3789, found 588.3799; C₂₈H₅₃N₅O₆S (587.82).

1,2-(Di-tert-butoxycarbonyl)-3-(N'-tert-butoxycarbonyl-S-

methylisothioureidododecyl)guanidine (87)

The reaction was realized with **71** (1.91 g, 2.97 mmol), NEt₃ (0.41 mL, 2.97 mmol) and Boc₂O (648 mg, 2.97 mmol). After column chromatography a colorless foamlike solid (1.60 g, 88%) was obtained: $R_{\rm f}$ =0.31 (DCM); ¹H NMR (300 MHz, CDCl₃) δ 11.45 (bs, 1H), 9.75 (bs, 1H), 8.24 (t, J = 5.2 Hz, 1H), 3.33 (q, J = 7.4 Hz, 2H), 3.22 (q, J = 7.2 Hz, 2H), 2.38 (s, 3H), 1.60 – 1.47 (m, 4H), 1.45 – 1.40 (m, 27H), 1.28 – 1.17 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 173.36, 163.56, 162.14, 156.06, 153.25, 82.93, 79.14, 79.05, 43.81, 40.94, 29.45, 29.39, 29.37, 29.25, 29.19, 29.09, 28.91, 28.87, 28.26, 28.19, 28.03, 26.80, 26.71, 13.49. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₃₀H₅₈N₅O₆S⁺: 616.4102, found 616.4111; C₃₀H₅₇N₅O₆S (615.88).

2-tert-Butoxycarbonyl-1-(N-tert-butoxycarbonylaminobutanyl)-3-[3-(1-trityl-1*H*-imidazol-4yl)propyl]guanidine (94)

Compound **94** was prepared from **5** (500 mg, 1.36 mmol), **78** (492 mg, 1.36 mmol), HgCl₂ (369 mg, 1.36 mmol) and NEt₃ (0.57 mL, 4.08 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow foamlike solid (440 mg, 48%): $R_{\rm f}$ =0.34 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 9.09 (bs, 1H), 7.41 – 7.27 (m, 10H), 7.14 – 7.06 (m, 6H), 6.54 (d, J = 0.7 Hz, 1H), 4.78 (bs, 1H), 3.44 – 3.14 (m, 4H), 3.05 (q, J = 6.1 Hz, 2H), 2.56 (t, J = 6.3 Hz,

2H), 1.86 (p, J = 6.6 Hz, 2H), 1.59 – 1.48 (m, 4H), 1.46 (s, 9H), 1.39 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 164.32, 160.54, 156.06, 142.34, 140.58, 137.98, 129.73, 128.11, 128.09, 118.29, 79.00, 75.23, 75.11, 40.71, 40.59, 39.93, 28.87, 28.54, 28.44, 27.43, 27.32, 26.58. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₄₀H₅₃N₆O₄⁺: 681.4123, found 681.4127; C₄₀H₅₂N₆O₄ (680.89).

2-tert-Butoxycarbonyl-1-(N-tert-butoxycarbonylaminohexanyl)-3-[3-(1-trityl-1*H*-imidazol-4yl)propyl]guanidine (95)

Compound **95** was prepared from **5** (500 mg, 1.36 mmol), **79** (530 mg, 1.36 mmol), HgCl₂ (369 mg, 1.36 mmol) and NEt₃ (0.57 mL, 4.08 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow foamlike solid (600 mg, 62%): $R_{\rm f}$ =0.38 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 9.07 (bs, 1H), 7.37 – 7.27 (m, 10H), 7.15 – 7.05 (m, 6H), 6.54 (s, 1H), 4.57 (bs, 1H), 3.45 – 3.12 (m, 4H), 3.03 (q, J = 6.4 Hz, 2H), 2.57 (t, J = 6.3 Hz, 2H), 1.86 (p, J = 6.6 Hz, 2H), 1.56 – 1.48 (m, 2H), 1.46 (s, 9H), 1.41 (s, 9H), 1.40 – 1.34 (m, 2H), 1.29 – 1.20 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 164.49, 160.67, 156.01, 142.33, 140.59, 137.97, 129.73, 128.11, 128.08, 118.30, 79.01, 75.25, 75.23, 41.21, 40.96, 40.40, 29.87, 29.35, 29.17, 28.74, 28.54, 28.44, 26.55, 26.41. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₄₂H₅₇N₆O₄⁺: 709.4436, found 709.4446; C₄₂H₅₆N₆O₄ (708.95).

2-tert-Butoxycarbonyl-1-(N-tert-butoxycarbonylaminooctanyl)-3-[3-(1-trityl-1*H*-imidazol-4yl)propyl]guanidine (96)

Compound **96** was prepared from **5** (500 mg, 1.36 mmol), **80** (568 mg, 1.36 mmol), HgCl₂ (369 mg, 1.36 mmol) and NEt₃ (0.57 mL, 4.08 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow foamlike solid (480 mg, 48%): R_f =0.42 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 8.57 (bs, 1H), 7.38 – 7.26 (m, 10H), 7.12 – 7.05 (m, 6H), 6.53 (s, 1H), 4.58 (bs, 1H), 3.40 – 3.17 (m, 4H), 3.04 (q, J = 6.5 Hz, 2H), 2.56 (t, J = 6.3 Hz, 2H), 1.86 (p, J = 6.4 Hz, 2H), 1.58 – 1.46 (m, 4H), 1.45 (s, 9H), 1.40 (s, 9H), 1.27 – 1.14 (m, 8H). ¹³C

NMR (75 MHz, CDCl₃) δ 164.36, 160.40, 156.00, 142.33, 140.59, 137.99, 129.72, 128.07, 128.02, 118.28, 78.94, 75.25, 75.21, 41.39, 40.67, 40.56, 29.99, 29.30, 29.20, 29.11, 28.70, 28.54, 28.44, 26.84, 26.68, 26.60. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₄₄H₆₁N₆O₄⁺: 737.4749, found 737.4757; C₄₄H₆₀N₆O₄ (736.99).

2-tert-Butoxycarbonyl-1-(N-tert-butoxycarbonylaminodecanyl)-3-[3-(1-trityl-1*H*-imidazol-4yl)propyl]guanidine (97)

Compound **97** was prepared from **5** (500 mg, 1.36 mmol), **81** (606 mg, 1.36 mmol), HgCl₂ (369 mg, 1.36 mmol) and NEt₃ (0.57 mL, 4.08 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow foamlike solid (590 mg, 57%): R_i =0.46 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 9.50 (bs, 1H), 7.43 – 7.27 (m, 10H), 7.13 – 7.07 (m, 6H), 6.54 (s, 1H), 4.54 (bs, 1H), 3.47 – 3.15 (m, 4H), 3.08 (q, J = 6.6 Hz, 2H), 2.57 (t, J = 6.2 Hz, 2H), 1.87 (p, J = 7.2 Hz, 2H), 1.46 (s, 9H), 1.42 (s, 9H), 1.40 – 1.34 (m, 4H), 1.28 – 1.16 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 164.39, 160.58, 156.00, 142.35, 140.60, 137.99, 129.73, 128.07, 127.99, 118.28, 78.97, 75.27, 75.22, 41.48, 41.19, 40.61, 30.06, 29.44, 29.39, 29.29, 29.27, 29.09, 28.69, 28.53, 28.44, 26.99, 26.92, 26.80. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₄₆H₆₅N₆O₄⁺: 765.5062, found 765.5068; C₄₆H₆₄N₆O₄ (765.06).

2-tert-Butoxycarbonyl-1-(N-tert-butoxycarbonylaminododecanyl)-3-[3-(1-trityl-1H-

imidazol-4-yl)propyl]guanidine (98)

Compound **98** was prepared from **5** (500 mg, 1.36 mmol), **82** (644 mg, 1.36 mmol), HgCl₂ (369 mg, 1.36 mmol) and NEt₃ (0.57 mL, 4.08 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow foamlike solid (700 mg, 65%): R_f =0.50 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 8.98 (bs, 1H), 7.36 – 7.24 (m, 10H), 7.14 – 7.03 (m, 6H), 6.52 (s, 1H), 4.59 (bs, 1H), 3.53 – 3.12 (m, 4H), 3.06 (q, J = 6.6 Hz, 2H), 2.56 (t, J = 6.2 Hz, 2H), 1.85 (p, J = 6.5 Hz, 2H), 1.60 – 1.46 (m, 4H), 1.45 (s, 9H), 1.40 (s, 9H), 1.28 – 1.13 (m, 16H). ¹³C

NMR (75 MHz, Chloroform-*d*) δ 164.34, 160.37, 156.00, 142.34, 140.62, 138.00, 129.71, 128.23, 128.05, 118.27, 78.91, 75.23, 75.20, 41.45, 40.81, 40.61, 30.06, 29.68, 29.52, 29.46, 29.33, 29.30, 29.17, 29.11, 28.68, 28.54, 28.44, 26.95, 26.81, 26.72. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₄₈H₆₉N₆O₄⁺: 793.5375, found 793.5374; C₄₈H₆₈N₆O₄; (793.11).

2-tert-Butoxycarbonyl-1-(N-tert-butoxycarbonylaminododecanyl)-3-[(2-tert-

butoxycarbonylamino-4-methylthiazol-5-yl)propyl]guanidine (99)

Compound **99** was prepared from **6** (315 mg, 1.16 mmol), **82** (550 mg, 1.16 mmol), HgCl₂ (315 mg, 1.16 mmol) and NEt₃ (0.48 mL, 3.48 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow foamlike solid (520 mg, 64%): R_i =0.53 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.05 (bs, 1H), 4.67 (bs, 1H), 3.28 – 3.15 (m, 2H), 3.07 – 2.96 (m, 4H), 2.64 (t, J = 7.2 Hz, 2H), 2.16 (s, 3H), 1.79 (p, J = 7.0 Hz, 2H), 1.44 (s, 9H), 1.40 (s, 9H), 1.38 – 1.36 (m, 4H), 1.35 (s, 9H), 1.19 – 1.15 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 164.17, 159.99, 157.98, 155.98, 152.87, 141.91, 122.84, 82.06, 78.82, 77.85, 41.18, 40.56, 40.07, 30.99, 30.00, 29.61, 29.48, 29.45, 29.38, 29.27, 29.22, 29.20, 28.41, 28.38, 28.22, 26.97, 26.84, 26.74, 14.44. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₃₅H₆₅N₆O₆S⁺: 697.4681, found 697.4688; C₃₅H₆₄N₆O₆S (696.99).

2-tert-Butoxycarbonyl-1-(N-tert-butoxycarbonylaminododecanyl)-3-[(2-tert-

butoxycarbonylaminothiazol-5-yl)propyl]guanidine (100)

Compound **100** was prepared from **7** (299 mg, 1.16 mmol), **82** (550 mg, 1.16 mmol), HgCl₂ (315 mg, 1.16 mmol) and NEt₃ (0.48 mL, 3.48 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow foamlike solid (500 mg, 63%): R_f =0.52 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 12.32 (bs, 1H), 6.92 (s, 1H), 4.69 (bs, 1H), 3.29 – 3.15 (m, 2H), 3.10 – 2.91 (m, 4H), 2.70 (t, J = 7.0 Hz, 2H), 1.81 (p, J = 6.7 Hz, 2H), 1.46 (s, 9H), 1.37 (s, 9H), 1.36 – 1.33 (m, 4H), 1.32 (s, 9H), 1.20 – 1.11 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 164.06,

160.40, 159.95, 155.98, 152.99, 133.09, 130.21, 81.60, 78.76, 77.85, 41.19, 40.53, 40.19, 30.87, 29.97, 29.58, 29.45, 29.43, 29.36, 29.27, 29.23, 29.20, 28.40, 28.36, 28.23, 26.97, 26.82, 26.72. HRMS (ESI-MS): m/z [M+H⁺] calculated for $C_{34}H_{63}N_6O_6S^+$: 683.4524, found 683.4528; $C_{34}H_{62}N_6O_6S$ (682.97).

2-tert-Butoxycarbonyl-1-(N',N''-di-tert-butoxycarbonylguanidinobutyl)-3-[3-(1-trityl-1*H*imidazol-4-yl)propyl]guanidine (101)

Compound **101** was prepared from **5** (500 mg, 1.36 mmol), **83** (684 mg, 1.36 mmol), HgCl₂ (369 mg, 1.36 mmol) and NEt₃ (0.57 mL, 4.08 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (560 mg, 50%): $R_{\rm f}$ =0.28 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.42 (bs, 1H), 9.04 (bs, 1H), 8.17 (t, J = 5.4 Hz, 1H), 7.27 – 7.15 (m, 10H), 7.06 – 6.96 (m, 6H), 6.46 (d, J = 1.3 Hz, 1H), 3.46 – 3.05 (m, 6H), 2.47 (t, J = 6.3 Hz, 2H), 1.78 (p, J = 4.9, 3.8 Hz, 2H), 1.56 – 1.41 (m, 4H), 1.40 – 1.27 (m, 27H). ¹³C NMR (75 MHz, CDCl₃) δ 164.27, 163.49, 159.54, 156.03, 153.12, 142.22, 140.45, 137.81, 129.62, 128.06, 128.04, 118.24, 82.94, 79.00, 77.56, 75.17, 40.80, 40.44, 40.36, 28.73, 28.62, 28.46, 28.24, 28.01, 26.48, 25.03. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₄₆H₆₃N₈O₆⁺: 823.4865, found 823.4872; C₄₆H₆₂N₈O₆ (823.05).

2-tert-Butoxycarbonyl-1-(N',N''-di-tert-butoxycarbonylguanidinohexyl)-3-[3-(1-trityl-1*H*imidazol-4-yl)propyl]guanidine (102)

Compound **102** was prepared from **5** (500 mg, 1.36 mmol), **84** (723 mg, 1.36 mmol), HgCl₂ (369 mg, 1.36 mmol) and NEt₃ (0.57 mL, 4.08 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (690 mg, 60%): R_f =0.32 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.44 (bs, 1H), 8.91 (bs, 1H), 8.21 (t, J = 5.2 Hz, 1H), 7.23 (m, 10H), 7.02 (m, 6H), 6.47 (s, 1H), 3.41 – 3.13 (m, 6H), 2.49 (t, J = 6.3 Hz, 2H), 1.80 (p, J = 6.5 Hz, 2H), 1.59 – 1.41 (m, 4H), 1.37 (m, 27H), 1.27 – 1.16 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 164.18, 163.55,

159.66, 156.03, 153.21, 142.22, 140.45, 137.84, 129.64, 128.08, 128.04, 118.26, 82.94, 79.05, 77.53, 75.19, 41.35, 40.83, 40.73, 29.09, 29.04, 28.82, 28.69, 28.45, 28.25, 28.02, 26.56, 25.02. HRMS (ESI-MS): m/z [M+H⁺] calculated for $C_{48}H_{67}N_8O_6^{+}$: 851.5178, found 851.5188; $C_{48}H_{66}N_8O_6$ (851.11).

2-tert-Butoxycarbonyl-1-(N',N''-di-tert-butoxycarbonylguanidinooctyl)-3-[3-(1-trityl-1*H*imidazol-4-yl)propyl]guanidine (103)

Compound **103** was prepared from **5** (500 mg, 1.36 mmol), **85** (761 mg, 1.36 mmol), HgCl₂ (369 mg, 1.36 mmol) and NEt₃ (0.57 mL, 4.08 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (370 mg, 31%): $R_{\rm f}$ =0.36 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.47 (bs, 1H), 9.05 (bs, 1H), 8.24 (t, J = 5.1 Hz, 1H), 7.33 – 7.18 (m, 10H), 7.11 – 6.99 (m, 6H), 6.49 (d, J = 1.3 Hz, 1H), 3.45 – 3.02 (m, 6H), 2.52 (t, J = 6.2 Hz, 2H), 1.84 (p, J = 7.2 Hz, 2H), 1.54 – 1.43 (m, 4H), 1.43 – 1.33 (m, 27H), 1.27 – 1.13 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 164.45, 163.61, 159.62, 156.06, 153.26, 142.29, 140.55, 137.90, 129.67, 128.08, 128.04, 118.25, 82.94, 79.09, 77.46, 75.18, 41.42, 41.33, 40.88, 29.15, 29.10, 28.90, 28.69, 28.65, 28.63, 28.51, 28.28, 28.04, 26.86, 26.76. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₅₀H₇₁N₈O₆⁺: 879.5491, found 879.5505; C₅₀H₇₀N₈O₆ (879.16).

2-tert-Butoxycarbonyl-1-(N',N''-di-tert-butoxycarbonylguanidinodecyl)-3-[3-(1-trityl-1*H*imidazol-4-yl)propyl]guanidine (104)

Compound **104** was prepared from **5** (500 mg, 1.36 mmol), **86** (799 mg, 1.36 mmol), HgCl₂ (369 mg, 1.36 mmol) and NEt₃ (0.57 mL, 4.08 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (550 mg, 45%): R_f =0.40 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.46 (bs, 1H), 8.80 (bs, 1H), 8.22 (t, J = 5.2 Hz, 1H), 7.29 – 7.14 (m, 10H), 7.07 – 6.95 (m, 6H), 6.47 (d, J = 1.3 Hz, 1H), 3.42 – 3.06 (m, 6H), 2.49 (t, J = 6.3 Hz, 2H), 1.79 (p, J = 6.5 Hz, 2H), 1.60 – 1.41 (m, 4H), 1.41 – 1.29 (m, 27H), 1.24 – 1.06 (m, 12H). ¹³C NMR

(75 MHz, CDCl₃) δ 164.18, 163.57, 159.57, 156.04, 153.22, 142.27, 140.51, 137.87, 129.64, 128.04, 128.02, 118.21, 82.87, 79.02, 77.53, 75.15, 41.44, 41.33, 40.87, 29.31, 29.23, 29.16, 29.03, 28.90, 28.63, 28.59, 28.51, 28.48, 28.26, 28.01, 26.86, 26.79. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₅₂H₇₅N₈O₆⁺: 907.5804, found 907.5805; C₅₂H₇₄N₈O₆ (907.21).

2-tert-Butoxycarbonyl-1-(N',N''-di-tert-butoxycarbonylguanidinododecyl)-3-[3-(1-trityl-1*H*imidazol-4-yl)propyl]guanidine (105)

Compound **105** was prepared from **5** (500 mg, 1.36 mmol), **87** (837 mg, 1.36 mmol), HgCl₂ (369 mg, 1.36 mmol) and NEt₃ (0.57 mL, 4.08 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (660 mg, 52%): $R_{\rm f}$ =0.44 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.44 (bs, 1H), 9.03 (bs, 1H), 8.18 (t, J = 5.2 Hz, 1H), 7.23 – 7.12 (m, 10H), 7.05 – 6.90 (m, 6H), 6.42 (s, 1H), 3.31 – 3.00 (m, 6H), 2.44 (t, J = 6.1 Hz, 2H), 1.71 (p, J = 7.4 Hz, 2H), 1.58 – 1.37 (m, 4H), 1.36 (s, 27H), 1.21 – 1.03 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 164.12, 163.52, 160.37, 156.00, 153.16, 142.24, 140.52, 137.83, 129.59, 128.17, 127.97, 118.15, 82.78, 78.91, 77.63, 75.10, 41.37, 40.90, 40.82, 29.52, 29.41, 29.39, 29.35, 29.23, 29.12, 29.00, 28.98, 28.85, 28.64, 28.46, 28.22, 27.96, 26.84, 26.73. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₅₄H₇₉N₈O₆⁺: 935.6117, found 935.6120; C₅₄H₇₈N₈O₆ (935.27).

2-tert-Butoxycarbonyl-1-(N',N"-di-tert-butoxycarbonylguanidinooctyl)-3-[(2-tert-

butoxycarbonylamino-4-methylthiazol-5-yl)propyl]guanidine (106)

Compound **106** was prepared from **6** (163 mg, 0.60 mmol), **85** (335 mg, 0.60 mmol), HgCl₂ (163 mg, 0.60 mmol) and NEt₃ (0.25 mL, 1.80 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (230 mg, 49%): R_f =0.38 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.48 (bs, 1H), 10.53 (bs, 1H), 8.27 (t, J = 5.1 Hz, 1H), 3.36 (q, J = 4.8 Hz, 4H), 3.27 – 3.11 (m, 2H,), 2.71 (t, J = 7.3 Hz, 2H), 2.20 (s, 3H), 1.86 (p, J = 7.2 Hz, 2H), 1.57 – 1.51 (m, 4H), 1.50 – 1.44 (m, 36H), 1.29 – 1.27 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 163.63,

160.05, 157.61, 156.09, 153.31, 152.73, 142.16, 122.89, 83.01, 82.28, 79.21, 77.96, 41.20, 41.05, 40.91, 29.65, 29.59, 29.23, 29.10, 29.03, 28.93, 28.46, 28.30, 28.27, 28.07, 26.84, 26.77, 14.54. HRMS (ESI-MS): m/z [M+H⁺] calculated for $C_{37}H_{67}N_8O_8S^+$: 783.4797, found 783.4796; $C_{37}H_{66}N_8O_8S$ (783.04).

2-tert-Butoxycarbonyl-1-(N',N''-di-tert-butoxycarbonylguanidinooctyl)-3-[(2-tertbutoxycarbonylaminothiazol-5-yl)propyl]guanidine (107)

Compound **107** was prepared from **7** (154 mg, 0.60 mmol), **85** (335 mg, 0.60 mmol), HgCl₂ (163 mg, 0.60 mmol) and NEt₃ (0.25 mL, 1.80 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (300 mg, 65%): R_f =0.36 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 12.08 (bs, 1H), 11.47 (bs, 1H), 8.26 (t, J = 5.1 Hz, 1H), 7.00 (s, 1H), 3.40 – 3.09 (m, 6H), 2.79 (t, J = 7.3 Hz, 2H), 1.89 (p, J = 7.3 Hz, 2H), 1.53 (s, 9H), 1.52 – 1.48 (m, 4H), 1.47 – 1.43 (m, 27H), 1.30 – 1.24 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 163.61, 160.30, 160.05, 156.09, 153.30, 152.97, 133.34, 122.53, 83.01, 81.82, 79.21, 77.97, 41.20, 41.05, 40.90, 30.90, 30.77, 29.64, 29.19, 29.09, 28.92, 28.46, 28.29, 28.06, 28.02, 26.84, 26.76. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₃₆H₆₅N₈O₈S⁺: 769.4641, found 769.4640; C₃₆H₆₄N₈O₈S (769.02).

2-tert-Butoxycarbonyl-1-(N',N''-di-tert-butoxycarbonylguanidinododecyl)-3-[(2-tertbutoxycarbonylamino-4-methylthiazol-5-yl)propyl]guanidine (108)

Compound **108** was prepared from **6** (157 mg, 0.58 mmol), **87** (355 mg, 0.58 mmol), HgCl₂ (157 mg, 0.58 mmol) and NEt₃ (0.24 mL, 1.74 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (270 mg, 56%): R_f =0.46 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.48 (bs, 1H), 10.39 (bs, 1H), 8.27 (t, J = 5.2 Hz, 1H), 3.43 – 3.06 (m, 6H), 2.71 (t, J = 7.2 Hz, 2H), 2.20 (s, 3H), 1.87 (p, J = 7.1 Hz, 1H), 1.59 – 1.51 (m, 4H), 1.49 (s, 9H), 1.49 – 1.41 (m, 27H), 1.29 – 1.19 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 163.64, 160.05, 157.54, 156.09, 153.31, 152.70, 142.16, 123.01, 82.99, 82.32, 79.21, 77.98, 41.24, 41.09,

40.99, 29.52, 29.47, 29.45, 29.27, 29.25, 29.20, 29.14, 29.03, 28.96, 28.92, 28.46, 28.30, 28.26, 28.07, 26.92, 26.85, 14.54. HRMS (ESI-MS): m/z [M+H⁺] calculated for $C_{41}H_{75}N_8O_8S^+$: 839.5423, found 839.5417; $C_{41}H_{74}N_8O_8S$ (839.15).

2-tert-Butoxycarbonyl-1-(N',N''-di-tert-butoxycarbonylguanidinododecyl)-3-[(2-tert-

butoxycarbonylaminothiazol-5-yl)propyl]guanidine (109)

Compound **109** was prepared from **7** (148 mg, 0.58 mmol), **87** (355 mg, 0.58 mmol), HgCl₂ (157 mg, 0.58 mmol) and NEt₃ (0.24 mL, 1.74 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (240 mg, 51%): $R_{\rm f}$ =0.45 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 11.84 (bs, 1H), 11.49 (bs, 1H), 8.28 (t, J = 5.2 Hz, 1H), 7.02 (s, 1H), 3.42 – 3.04 (m, 6H), 2.80 (t, J = 7.3 Hz, 2H), 1.90 (p, J = 7.2 Hz, 2H), 1.55 (s, 9H), 1.53 – 1.50 (m, 4H), 1.47 (d, J = 2.9 Hz, 27H), 1.28 – 1.18 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ 163.65, 160.22, 160.05, 156.10, 153.32, 152.94, 133.38, 122.20, 82.99, 81.91, 79.22, 78.01, 41.27, 40.99, 40.23, 29.68, 29.53, 29.46, 29.36, 29.26, 29.15, 29.10, 29.03, 28.96, 28.84, 28.47, 28.31, 28.07, 28.03, 26.93, 26.85. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₄₀H₇₃N₈O₈S⁺: 825.5267, found 825.5267; C₄₀H₇₂N₈O₈S (825.12).

2-tert-Butoxycarbonyl-1-(N'-tert-butoxycarbonylcarbodiimidobutyl)-3-[3-(1-trityl-1*H*imidazol-4-yl)propyl]guanidine (111)

Compound **111** was prepared from **5** (1.0 g, 2.72 mmol), **89** (591 mg, 1.36 mmol), HgCl₂ (1.48 g, 5.44 mmol) and NEt₃ (1.13 mL, 8.16 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (480 mg, 50%): R_{f} =0.48 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 9.47 (bs, 1H), 7.31 – 7.21 (m, 10H), 7.10 – 7.04 (m, 6H), 6.49 (s, 1H), 3.43 – 3.01 (m, 6H), 2.65 – 2.43 (m, 2H), 1.88 – 1.71 (m, 2H), 1.67 – 1.47 (m, 4H), 1.49 (s, 9H), 1.45 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 164.36, 160.75, 158.09, 156.01, 142.31, 140.88, 137.87,

129.69, 128.07, 127.99, 118.29, 85.38, 79.67, 75.21, 53.55, 43.91, 40.44, 28.55, 28.20, 27.20, 26.35, 25.67, 25.30. MS (LC-MS, ESI): m/z 706.41 [M+H⁺]; C₄1H₅1N₇O₄ (705.90).

2-tert-Butoxycarbonyl-1-(N'-tert-butoxycarbonylcarbodiimidohexyl)-3-[3-(1-trityl-1*H*-

imidazol-4-yl)propyl]guanidine (112)

Compound **112** was prepared from **5** (1.0 g, 2.72 mmol), **90** (629 mg, 1.36 mmol), HgCl₂ (1.48 g, 5.44 mmol) and NEt₃ (1.13 mL, 8.16 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (430 mg, 43%): R_f =0.51 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 9.06 (bs, 1H), 7.30 (m, 10H), 7.13 – 7.04 (m, 6H), 6.54 (s, 1H), 3.49 – 2.98 (m, 6H), 2.56 (t, J = 6.5 Hz, 2H), 1.85 (p, J = 6.5 Hz, 2H), 1.64 – 1.54 (m, 2H), 1.49 (s, 9H), 1.45 (s, 9H), 1.35 – 1.16 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 164.47, 160.50, 157.51, 150.95, 142.34, 140.64, 137.92, 129.73, 128.11, 128.00, 118.31, 85.39, 78.26, 75.21, 53.50, 47.56, 41.09, 29.30, 29.20, 28.56, 27.82, 27.69, 26.56, 26.39, 25.87. MS (LC-MS, ESI): m/z 734.44 [M+H⁺]; C₄₃H₅₅N₇O₄ (733.96).

2-tert-Butoxycarbonyl-1-(N'-tert-butoxycarbonylcarbodiimidooctyl)-3-[3-(1-trityl-1H-

imidazol-4-yl)propyl]guanidine (113)

Compound **113** was prepared from **5** (1.0 g, 2.72 mmol), **91** (667 mg, 1.36 mmol), HgCl₂ (1.48 g, 5.44 mmol) and NEt₃ (1.13 mL, 8.16 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (380 mg, 37%): R_f =0.54 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 8.93 (bs, 1H), 7.31 – 7.23 (m, 10H), 7.11 – 7.02 (m, 6H), 6.51 (s, 1H), 3.45 – 3.08 (m, 6H), 2.54 (t, J = 6.4 Hz, 2H), 1.89 – 1.77 (m, 2H), 1.59 (p, J = 7.3, 6.2 Hz, 2H), 1.47 (s, 9H), 1.43 (s, 9H), 1.34 – 1.06 (m, 10H). ¹³C NMR (75 MHz, CDCl₃) δ 164.18, 160.57, 157.07, 150.97, 142.33, 140.61, 137.94, 129.70, 128.06, 128.00, 118.27, 85.29, 78.30, 75.19, 53.53, 47.68, 41.37, 29.63, 29.11, 28.88, 28.70, 28.55, 27.81, 27.74, 26.80, 26.02, 25.89. MS (LC-MS, ESI): m/z 762.47 [M+H⁺]; C₄₅H₅₉N₇O₄ (762.01).

2-tert-Butoxycarbonyl-1-(N'-tert-butoxycarbonylcarbodiimidodecyl)-3-[3-(1-trityl-1H-

imidazol-4-yl)propyl]guanidine (114)

Compound **114** was prepared from **5** (1.0 g, 2.72 mmol), **92** (706 mg, 1.36 mmol), HgCl₂ (1.48 g, 5.44 mmol) and NEt₃ (1.13 mL, 8.16 mmol) in DCM (20 mL) conforming to the general procedure yielding a yellow oil (510 mg, 47%): R_f =0.57 (DCM/MeOH/NH₃ 98:2:0.1); ¹H NMR (300 MHz, CDCl₃) δ 8.43 (bs, 1H), 7.28 – 7.18 (m, 10H), 7.06 (m, 6H), 6.48 (s, 1H), 3.50 – 2.89 (m, 6H), 2.50 (t, J = 6.9 Hz, 2H), 1.94 – 1.68 (m, 2H), 1.66 – 1.48 (m, 2H), 1.45 (s, 9H), 1.33 (s, 9H), 1.29 – 1.04 (m, 14H). ¹³C NMR (75 MHz, CDCl₃) δ 164.27, 160.47, 156.02, 150.97, 142.49, 140.90, 137.95, 129.68, 127.98, 127.95, 118.24, 85.21, 78.63, 75.16, 53.54, 47.68, 41.37, 29.59, 29.42, 29.28, 29.24, 29.15, 28.95, 28.66, 27.79, 27.75, 26.89, 26.06, 25.69. MS (LC-MS, ESI): m/z 790.50 [M+H⁺]; C₄₇H₆₃N₇O₄ (790.07).

1-(4-Aminobutyl)-3-[3-(1H-imidazol-4-yl)propyl]guanidine (116)

The title compound was prepared from **94** (440 mg, 0.65 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow oil (280 mg, 75%): RP-HPLC: 100%, ($t_R = 6.35$, k = 1.47). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.81 (d, J = 1.4 Hz, 1H), 7.34 (d, J = 1.0 Hz, 1H), 3.24 (t, J = 7.0 Hz, 4H), 2.96 (t, J = 6.9 Hz, 2H), 2.81 (t, J = 7.4 Hz, 2H), 1.97 (p, J = 7.3 Hz, 2H), 1.78 – 1.60 (m, 4H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 157.62, 134.92, 134.55, 116.99, 41.98, 41.63, 40.26, 28.80, 26.86, 25.79, 22.55. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₁H₂₃N₆⁺: 239.1979, found 239.1979; C₁₁H₂₂N₆ x 3 TFA. (580.41).

1-(6-Aminohexyl)-3-[3-(1H-imidazol-4-yl)propyl]guanidine (117)

The title compound was prepared from **95** (600 mg, 0.85 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow oil (330 mg, 64%): RP-HPLC: 100%, (t_R = 7.00, k = 1.72). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.80 (d, J = 1.4

Hz, 1H), 7.34 (d, J = 1.3 Hz, 1H), 3.26 (t, J = 7.0 Hz, 2H), 3.19 (t, J = 7.2 Hz, 2H), 2.92 (t, J = 7.7 Hz, 2H), 2.80 (t, J = 7.6 Hz, 2H), 1.96 (p, J = 7.3 Hz, 2H), 1.71 – 1.56 (m, 4H), 1.47 – 1.38 (m, 4H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 157.57, 134.89, 134.57, 116.98, 42.50, 41.61, 40.62, 29.73, 28.83, 28.49, 28.41, 27.27, 27.12. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₃H₂₇N₆⁺: 267.2292, found 267.2292; C₁₃H₂₆N₆ x 3 TFA. (608.46).

1-(8-Aminooctyl)-3-[3-(1*H*-imidazol-4-yl)propyl]guanidine (118)

The title compound was prepared from **96** (480 mg, 0.65 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow oil (250 mg, 60%): RP-HPLC: 100%, ($t_R = 8.56$, k = 2.33). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.80 (d, J = 1.4 Hz, 1H), 7.34 (d, J = 1.3 Hz, 1H), 3.26 (t, J = 7.0 Hz, 2H), 3.18 (t, J = 7.2 Hz, 2H), 2.90 (t, J = 7.1 Hz, 2H), 2.80 (t, J = 7.2 Hz, 2H), 1.96 (p, J = 7.4 Hz, 2H), 1.67 – 1.57 (m, 4H), 1.42 – 1.33 (m, 8H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 157.57, 134.92, 134.57, 116.98, 42.65, 41.59, 40.73, 30.17, 29.93, 28.84, 28.60, 27.69, 27.44, 26.86, 22.55. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₅H₃₁N₆⁺: 295.2605, found 295.2606; C₁₅H₃₀N₆ x 3 TFA (636.52).

1-(10-Aminodecyl)-3-[3-(1H-imidazol-4-yl)propyl]guanidine (119)

The title compound was prepared from **97** (590 mg, 0.77 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow oil (340 mg, 66%): RP-HPLC: 100%, ($t_R = 9.89$, k = 2.85). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.80 (d, J = 1.4 Hz, 1H), 7.34 (s, 1H), 3.26 (t, J = 7.0 Hz, 2H), 3.17 (t, J = 7.2 Hz, 2H), 2.90 (t, J = 7.7 Hz, 2H), 2.80 (t, J = 7.8 Hz, 2H), 1.96 (p, J = 7.3 Hz, 2H), 1.65 – 1.57 (m, 4H), 1.38 – 1.32 (m, 12H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 157.56, 134.90, 134.56, 116.98, 42.67, 41.58, 40.75, 30.59, 30.50, 30.39, 30.26, 29.96, 28.83, 28.62, 27.80, 27.49, 22.55. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₇H₃₅N₆⁺: 323.2918, found 323.2917; C₁₇H₃₄N₆ x 3 TFA (664.57).

1-(12-Aminododecyl)-3-[3-(1*H*-imidazol-4-yl)propyl]guanidine (120)

The title compound was prepared from **98** (700 mg, 0.88 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow oil (430 mg, 70%): RP-HPLC: 97%, ($t_R = 11.13$, k = 3.33). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.80 (d, J = 1.4 Hz, 1H), 7.34 (d, J = 1.3 Hz, 1H), 3.26 (t, J = 7.1 Hz, 2H), 3.17 (t, J = 7.2 Hz, 2H), 2.90 (t, J = 7.8 Hz, 2H), 2.80 (t, J = 7.8 Hz, 2H), 1.96 (p, J = 7.3 Hz, 2H), 1.71 – 1.51 (m, 4H), 1.38 – 1.28 (m, 16H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 157.87, 134.90, 134.57, 116.97, 42.68, 41.59, 40.76, 30.76, 30.73, 30.67, 30.59, 30.45, 30.30, 29.98, 28.83, 28.63, 27.83, 27.51, 22.56. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₉H₃₉N₆⁺: 351.3231, found 351.3229; C₁₉H₃₈N₆ x 3 TFA (692.62).

1-(12-Aminododecyl)-3-[3-(2-amino-4-methylthiazol-5-yl)propyl]guanidine (121)

The title compound was prepared from **99** (520 mg, 0.75 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow oil (290 mg, 53%): RP-HPLC: 98%, ($t_R = 11.47$, k = 3.46). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 3.26 – 3.15 (m, 4H), 2.90 (t, J = 7.3 Hz, 2H), 2.69 (t, J = 7.2 Hz, 2H), 2.18 (s, 3H), 1.84 (p, J = 7.5 Hz, 2H), 1.69 – 1.57 (m, 4H), 1.35 – 1.28 (m, 16H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 170.39, 162.92 (q, J = 35.3 Hz), 157.65, 157.59, 132.38, 118.50, 42.65, 41.45, 40.78, 30.68, 30.66, 30.57, 30.52, 30.39, 30.25, 29.97, 28.63, 28.58, 27.78, 27.49, 23.51, 11.47. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₀H₄₁N₆S⁺: 397.3108, found 397.3105; C₂₀H₄₀N₆S x 3 TFA (738.71).

1-(12-Aminododecyl)-3-[3-(2-aminothiazol-5-yl)propyl]guanidine (122)

The title compound was prepared from **100** (500 mg, 0.73 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow oil (380 mg, 72%): RP-HPLC: 100%, ($t_R = 10.74$, k = 3.18). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 6.97 (s, 1H), 3.30 – 3.13 (m, 4H), 2.90 (t, J = 7.2 Hz, 2H), 2.72 (t, J = 7.1 Hz, 2H), 1.89 (p, J = 7.4 Hz, 2H), 1.67 –

1.53 (m, 4H), 1.37 – 1.26 (m, 16H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 171.84, 162.81 (q, J = 35.6 Hz), 157.61, 157.56, 126.49, 123.06, 42.65, 41.44, 40.78, 30.67, 30.65, 30.51, 30.38, 30.25, 29.95, 28.63, 28.58, 28.15, 27.78, 27.49, 24.85. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₉H₃₉N₆S⁺: 383.2951, found 383.2951; C₁₉H₃₈N₆S x 3 TFA (724.68).

1-(4-Guanidinobutyl)-3-[3-(1*H*-imidazol-4-yl)propyl]guanidine (123)

The title compound was prepared from **101** (560 mg, 0.68 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a colorless foamlike solid (290 mg, 68%): RP-HPLC: 99%, ($t_R = 6.50$, k = 1.53). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.79 (d, J = 1.5 Hz, 1H), 7.35 (d, J = 1.4 Hz, 1H), 3.33 – 3.19 (m, 6H), 2.81 (t, J = 7.7 Hz, 2H), 1.97 (p, J = 7.2 Hz, 2H), 1.65 (p, J = 3.3 Hz, 4H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 158.75, 157.56, 134.82, 134.57, 117.05, 42.19, 42.05, 41.62, 28.86, 27.10, 22.56. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₂H₂₅N₈⁺: 281.2197, found 281.2201; C₁₂H₂₅N₈ x 3 TFA (622.45).

1-(6-Guanidinohexyl)-3-[3-(1*H*-imidazol-4-yl)propyl]guanidine (124)

The title compound was prepared from **102** (690 mg, 0.81 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a colorless foamlike solid (410 mg, 78%): RP-HPLC: 97%, ($t_R = 7.47$, k = 1.91). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.77 (s, 1H), 7.32 (s, 1H), 3.28 – 3.13 (m, 6H), 2.80 (t, J = 7.8 Hz, 2H), 1.95 (p, J = 7.2 Hz, 2H), 1.67 – 1.56 (m, 4H), 1.39 (p, J = 3.5 Hz, 4H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 158.73, 157.55, 134.82, 134.57, 117.01, 42.52, 42.35, 41.57, 29.78, 29.75, 28.86, 27.33, 27.31, 22.54. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₄H₂₉N₈⁺: 309.2510, found 309.2507; C₁₄H₂₈N₈ x 3 TFA (650.50).

1-(8-Guanidinooctyl)-3-[3-(1H-imidazol-4-yl)propyl]guanidine (125)

The title compound was prepared from **103** (370 mg, 0.42 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a colorless foamlike solid (260 mg, 91%): RP-HPLC: 100%, ($t_R = 8.93$, k = 2.47). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.77 (s, 1H), 7.32 (s, 1H), 3.25 (t, J = 7.0 Hz, 2H), 3.15 (q, J = 6.8 Hz, 4H), 2.79 (t, J = 7.7 Hz, 2H), 1.95 (p, J = 7.3 Hz, 2H), 1.63 – 1.53 (m, 4H), 1.42 – 1.31 (m, 8H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 158.73, 157.56, 134.82, 134.58, 116.99, 42.62, 42.44, 41.56, 30.22, 30.20, 29.89, 29.85, 28.86, 27.66, 27.63, 22.. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₆H₃₃N₈⁺: 337.2823, found 337.2822; C₁₆H₃₂N₈ x 3 TFA (678.56).

1-(10-Guanidinodecyl)-3-[3-(1*H*-imidazol-4-yl)propyl]guanidine (126)

The title compound was prepared from **104** (550 mg, 0.61 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a colorless foamlike solid (380 mg, 89%): RP-HPLC: 96%, ($t_R = 10.23$, k = 2.98). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.76 (s, 1H), 7.31 (s, 1H), 3.26 (t, J = 7.0 Hz, 2H), 3.16 (q, J = 6.9 Hz, 4H), 2.80 (t, J = 7.8 Hz, 2H), 1.96 (p, J = 7.2 Hz, 2H), 1.66 – 1.50 (m, 4H), 1.34 – 1.27 (m, 12H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 158.80, 157.56, 134.80, 134.60, 117.02, 42.66, 42.48, 41.57, 30.56, 30.54, 30.31, 30.25, 29.92, 29.89, 28.89, 27.75, 27.71, 22.55. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₈H₃₇N₈⁺: 365.3136, found 365.3130; C₁₈H₃₆N₈ (706.61).

1-(12-Guanidinododecyl)-3-[3-(1*H*-imidazol-4-yl)propyl]guanidine (127)

The title compound was prepared from **105** (660 mg, 0.71 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a colorless foamlike solid (490 mg, 95%): RP-HPLC: 99%, (t_R = 11.50, k = 3.47). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.76 (s, 1H), 7.31 (s, 1H), 3.26 (t, J = 6.9 Hz, 2H), 3.16 (q, J = 6.8 Hz, 4H), 2.79 (t, J = 7.7 Hz, 2H), 1.96 (p, J = 7.3 Hz, 2H), 1.56 (t, J = 7.1 Hz, 4H), 1.36 – 1.26 (m, 16H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 158.75, 157.56, 134.79, 134.60, 117.01, 42.67, 42.49, 41.57, 30.69, 30.67, 30.65, 30.62, 30.36, 30.30, 29.93, 29.91, 28.89, 27.78, 27.74, 22.55. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₀H₄₁N₈⁺: 393.3449, found 393.3451; C₂₀H₄₀N₈ x 3 TFA (734.67).

1-(8-Guanidinooctyl)-3-[3-(2-amino-4-methylthiazol-5-yl)propyl]guanidine (128)

The title compound was prepared from **106** (230 mg, 0.29 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow foamlike solid (160 mg, 75%): RP-HPLC: 98%, ($t_R = 9.54$, k = 2.71). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 3.26 – 3.13 (m, 6H), 2.67 (t, J = 7.6 Hz, 2H), 2.16 (s, 3H), 1.83 (p, J = 7.3 Hz, 2H), 1.61 – 1.55 (m, 4H), 1.39 – 1.34 (m, 8H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 170.36, 158.71, 157.58, 132.41, 118.54, 42.64, 42.47, 41.46, 30.71, 30.57, 30.25, 29.93, 29.87, 27.70, 27.67, 23.50, 11.45. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₇H₃₅N₈S⁺: 383.2700, found 383.2700; C₁₇H₃₄N₈S x 3 TFA (724.64).

1-(8-Guanidinooctyl)-3-[3-(2-aminothiazol-5-yl)propyl]guanidine (129)

The title compound was prepared from **107** (300 mg, 0.39 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow foamlike solid (220 mg, 79%): RP-HPLC: 98%, (t_R = 9.64, *k* = 2.75). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 6.97 (s, 1H), 3.28 – 3.12 (m, 6H), 2.73 (t, J = 7.6 Hz, 2H), 1.88 (p, J = 7.3 Hz, 2H), 1.61 – 1.55 (m, 4H), 1.38 – 1.34 (m, 8H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 171.82, 158.73, 157.55, 126.52, 123.09, 42.64, 42.46, 41.45, 30.31, 30.23, 30.18, 29.91, 29.87, 27.69, 27.65, 24.84. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₆H₃₃N₈S⁺: 369.2543, found 369.2541; C₁₆H₃₂N₈S x 3 TFA (710.62).

1-(12-Guanidinododecyl)-3-[3-(2-amino-4-methylthiazol-5-yl)propyl]guanidine (130)

The title compound was prepared from **108** (270 mg, 0.32 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow foamlike solid (180 mg, 72%): RP-HPLC: 98%, ($t_R = 11.41, k = 3.44$). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 3.27 – 3.11 (m, 6H), 2.67 (t, J = 7.7 Hz, 2H), 2.17 (s, 3H), 1.83 (p, J = 7.3 Hz, 2H), 1.61 – 1.54 (m, 4H), 1.37 – 1.30 (m, 16H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 170.33, 158.70, 157.55, 132.38, 118.55, 42.66, 42.49, 41.46, 30.71, 30.69, 30.59, 30.39, 30.38, 30.23, 29.98, 29.92, 29.86, 27.79, 27.75, 23.51, 11.49. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₁H₄₃N₈S⁺: 439.3326, found 439.3325; C₂₁H₄₂N₈S x 3 TFA (780.75).

1-(12-Guanidinododecyl)-3-[3-(2-aminothiazol-5-yl)propyl]guanidine (131)

The title compound was prepared from **109** (240 mg, 0.29 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow foamlike solid (210 mg, 94%): RP-HPLC: 96%, ($t_R = 11.55$, k = 3.49). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 6.98 (s, 1H), 3.27 – 3.12 (m, 6H), 2.73 (t, J = 7.1 Hz, 2H), 1.88 (p, J = 7.3 Hz, 2H), 1.60 – 1.54 (m, 4H), 1.36 – 1.29 (m, 16H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 171.81, 158.77, 157.53, 126.50, 123.06, 42.66, 42.49, 41.45, 30.70, 30.68, 30.66, 30.57, 30.51, 30.37, 30.35, 29.96, 29.92, 27.79, 27.75, 24.85. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₂₀H₄₁N₈S⁺: 425.3169, found 425.3169; C₂₀H₄₀N₈S x 3 TFA (766.73).

1-{3-[3-(3-(1H-Imidazol-4-yl)propyl)guanidino]propyl}urea (132)

The title compound was prepared from **110** (420 mg, 0.61 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow oil (140 mg, 38%): RP-HPLC: 99%, (t_R = 5.09, *k* = 0.98). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.79 (s, 1H), 7.35 (s, 1H), 3.50 – 3.38 (m, 4H), 3.36 – 3.12 (m, 2H), 2.86 (t, J = 6.5 Hz, 2H), 2.23 – 2.00 (m, 4H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 162.92, 157.03, 134.96, 134.22, 117.12, 43.89,

41.53, 39.81, 27.34, 22.73, 21.66. HRMS (ESI-MS): m/z [M+H⁺] calculated for $C_{11}H_{22}N_7O^+$: 268.1880, found 268.1877; $C_{11}H_{21}N_7O \times 3$ TFA (609.41).

1-{4-[3-(3-(1H-Imidazol-4-yl)propyl)guanidino]butyl}urea (133)

The title compound was prepared from **111** (390 mg, 0.55 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow oil (180 mg, 52%): RP-HPLC: 99%, ($t_R = 6.45$, k = 1.51). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.77 (s, 1H), 7.32 (s, 1H), 3.33 – 3.07 (m, 6H), 2.84 – 2.75 (t, J = 6.9 Hz, 2H), 1.96 (p, J = 7.6 Hz, 2H), 1.67 – 1.40 (m, 4H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 162.58, 157.53, 134.83, 134.58, 116.98, 42.23, 41.55, 39.73, 28.81, 27.04, 22.54, 22.37. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₂H₂₄N₇O⁺: 282.2037, found 282.2037; C₁₂H₂₃N₇O x 3 TFA (623.43).

1-{6-[3-(3-(1*H*-lmidazol-4-yl)propyl)guanidino]hexyl}urea (134)

The title compound was prepared from **112** (420 mg, 0.57 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow oil (160 mg, 43%): RP-HPLC: 99%, ($t_R = 7.46$, k = 1.90). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.77 (s, 1H), 7.32 (s, 1H), 3.26 – 3.09 (m, 6H), 2.80 (t, J = 7.7 Hz, 2H), 1.96 (p, J = 7.3 Hz, 2H), 1.57 (p, J = 6.7 Hz, 2H), 1.49 (p, J = 6.6 Hz, 2H), 1.43 – 1.32 (m, 4H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 162.40, 157.56, 134.83, 134.57, 116.98, 42.52, 41.56, 40.99, 30.89, 29.82, 28.82, 27.39, 27.33, 22.53. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₄H₂₈N₇O⁺: 310.2350, found 310.2348; C₁₄H₂₇N₇O x 3 TFA (651.49).

1-{8-[3-(3-(1H-Imidazol-4-yl)propyl)guanidino]octyl}urea (135)

The title compound was prepared from **113** (380 mg, 0.50 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow oil (210 mg, 62%): RP-HPLC: 98%, (t_R = 9.23, *k* = 2.59). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.78 (s, 1H), 7.33

(s, 1H), 3.26 (t, J = 7.1 Hz, 2H), 3.22 – 3.16 (m, 2H), 3.08 (t, J = 6.9 Hz, 2H), 2.80 (t, J = 7.7 Hz, 2H), 1.96 (p, J = 7.3 Hz, 2H), 1.58 (p, J = 6.9 Hz, 2H), 1.47 (p, J = 6.8 Hz, 2H), 1.37 – 1.32 (m, 8H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 162.42, 157.56, 134.86, 134.57, 116.98, 42.62, 41.57, 41.04, 31.10, 30.28, 30.23, 29.88, 28.84, 27.78, 27.65, 22.54. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₆H₃₂N₇O⁺: 338.2663, found 338.2662; C₁₆H₃₁N₇O x 3 TFA (679.54).

1-{10-[3-(3-(1*H*-lmidazol-4-yl)propyl)guanidino]decyl}urea (136)

The title compound was prepared from **114** (410 mg, 0.52 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure, yielding a yellow oil (230 mg, 63%): RP-HPLC: 99%, ($t_R = 9.55$, k = 2.72). ¹H NMR (300 MHz, CD₃OD, tri-trifluoroacetate) δ 8.75 (s, 1H), 7.30 (s, 1H), 3.26 (t, J = 6.9 Hz, 2H), 3.16 (t, J = 7.1 Hz, 2H), 3.09 (t, J = 7.0 Hz, 2H), 2.79 (t, J = 7.7 Hz, 2H), 1.94 (p, J = 7.4 Hz, 2H), 1.56 (p, J = 7.0 Hz, 2H), 1.48 (p, J = 6.1 Hz, 2H), 1.39 – 1.22 (m, 12H). ¹³C NMR (75 MHz, CD₃OD, tri-trifluoroacetate) δ 162.34, 157.56, 134.79, 134.58, 116.98, 42.65, 41.57, 41.41, 30.86, 30.66, 30.56, 30.54, 30.37, 29.91, 28.86, 27.85, 27.72, 22.54. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₈H₃₆N₇O⁺: 366.2976, found 366.2973; C₁₈H₃₅N₇O x 3 TFA (707.60).

N-{[3-(1-Trityl-1*H*-imidazol-4-yl)propyl]carbamoyl}benzamide (139)

Compound **139** was prepared according to the general procedure described in 4.2.5. using **5** (1.20 g, 3.27 mmol) and **138** (0.40 mL, 3.27 mmol) in 50 mL DCM. After column chromatography (DCM/MeOH 98/2 - 95/5 v/v) the product was obtained as a yellow oil (1.06 g, 63%): $R_{\rm f}$ =0.14 (DCM/MeOH 98:2); ¹H NMR (300 MHz, CDCl₃) δ 10.14 (bs, 1H), 8.88 (bs, 1H), 8.07 - 7.90 (m, 2H), 7.55 - 7.46 (m, 1H), 7.46 - 7.39 (m, 2H), 7.37 (s, 1H), 7.32 - 7.27 (m, 9H), 7.13 (m, 6H), 6.57 (s, 1H), 3.40 (q, J = 6.7 Hz, 2H), 2.64 (t, J = 7.6 Hz, 2H), 1.96 (p, J = 7.2 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 168.39, 154.83, 142.55, 140.74, 138.50, 132.91, 132.52,

129.79, 129.74, 128.62, 128.03, 127.99, 118.00, 75.12, 39.53, 29.20, 25.89. HRMS (ESI-MS): m/z [M+H⁺] calculated for $C_{33}H_{31}N_4O_2^+$: 515.2442, found 515.2451; $C_{33}H_{30}N_4O_2$ (514.63).

1-[3-(1*H*-Imidazol-4-yl)propyl]thiourea (142)

Compound **142** was prepared according to the general procedure described in 4.2.6. using **141** (160 mg, 0.55 mmol) and K₂CO₃ (153 mg, 1.11 mmol) in 20 mL MeOH/H₂O (7/3 v/v). The crude product was purified by column chromatography (DCM/MeOH/7M NH₃ in MeOH 90/8/2 v/v/v) yielding a colorless solid (80 mg, 78%): $R_{\rm f}$ =0.16 (DCM/MeOH/NH₃ 90:10:0.1); mp 142.2 °C. ¹H NMR (300 MHz, CD₃OD) δ 7.63 (s, 1H), 6.84 (s, 1H), 3.50 + 3.16 (2 bs, 1.25H + 0.75H, (thione-thiol tautomerism)), 2.62 (t, J = 7.5 Hz, 2H), 1.87 (p, J = 7.4 Hz, 2H). ¹³C NMR (75 MHz, CD₃OD) δ 184.79, 137.62, 135.85, 117.85, 45.36, 30.20, 24.82. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₇H₁₃N₄S⁺: 185.0855, found 185.0855; C₇H₁₂N₄S (184.26); Anal. calculated for C₇H₁₂N₄S x 0.26 H₂O: C 44.50, H 6.68, N 29.64, found: C 44.91, H 6.58, N 29.24.

N-{[3-(1*H*-Imidazol-4-yl)propyl]carbamoyl}benzamide (144)

The title compound was prepared from **139** (0.98 g, 1.90 mmol), TFA (4 mL) and DCM (16 mL) according to the general procedure (*cf.* 4.2.11). The crude product was purified by column chromatography (DCM/MeOH/7M NH₃ in MeOH 95/3/2 v/v/v) yielding **144** as free base and yellow solid (300 mg, 58%): R_i =0.10 (DCM/MeOH 95:5); mp 170.2 °C. ¹H NMR (300 MHz, CD₃OD) δ 7.97 – 7.86 (m, 2H), 7.66 – 7.60 (m, 1H), 7.58 (s, 1H), 7.53 – 7.44 (m, 2H), 6.84 (s, 1H), 3.36 (t, J = 6.9 Hz, 2H), 2.67 (t, J = 7.4 Hz, 2H), 1.92 (p, J = 7.1 Hz, 2H). ¹³C NMR (75 MHz, CD₃OD) δ 170.45, 156.15, 137.47, 135.93, 134.30, 134.00, 129.79, 129.04, 118.02, 40.11, 30.51, 24.90. HRMS (ESI-MS): m/z [M+H⁺] calculated for C₁₄H₁₇N₄O₂⁺: 273.1346, found 273.1352; C₁₄H₁₆N₄O (272.31); Anal. calculated for C₁₄H₁₆N₄O₂ x 0.1 H₂O: C 61.35, H 5.96, N 20.44, found: C 61.61, H 6.12, N 20.17.

2. RP-HPLC chromatograms 115-136

Figure S1. RP-HPLC analysis of compound 115.

Figure S2. RP-HPLC analysis of compound 116.

Figure S3. RP-HPLC analysis of compound 117.

Figure S4. RP-HPLC analysis of compound 118.

Figure S5. RP-HPLC analysis of compound 119.

Figure S6. RP-HPLC analysis of compound 120.

Figure S7. RP-HPLC analysis of compound 121.

Figure S8. RP-HPLC analysis of compound 122.

Figure S9. RP-HPLC analysis of compound 123.

Figure S10. RP-HPLC analysis of compound 124.

Figure S11. RP-HPLC analysis of compound 125.

Figure S12. RP-HPLC analysis of compound 126.

Figure S13. RP-HPLC analysis of compound 127.

Figure S14. RP-HPLC analysis of compound 128.

Figure S15. RP-HPLC analysis of compound 129.

Figure S16. RP-HPLC analysis of compound 130.

Figure S17. RP-HPLC analysis of compound 131

Figure S18. RP-HPLC analysis of compound 132.

Figure S19. RP-HPLC analysis of compound 133.

Figure S20. RP-HPLC analysis of compound 134.

Figure S21. RP-HPLC analysis of compound 135.

Figure S22. RP-HPLC analysis of compound 136.

•

3. ¹H- and ¹³C-NMR spectra of 121, 123, 136, 143, 144 and 145

Figure S23. ¹H-NMR spectrum (300 MHz, CD₃OD) of compound **121**.

Figure S24. 13 C-NMR spectrum (75 MHz, CD₃OD) of compound 121.

Figure S25. ¹H-NMR spectrum (300 MHz, CD₃OD) of compound **123**.

Figure S26. ¹³C-NMR spectrum (75 MHz, CD_3OD) of compound 123.

Figure S27. ¹H-NMR spectrum (300 MHz, CD₃OD) of compound **136**.

Figure S28. 13 C-NMR spectrum (75 MHz, CD₃OD) of compound 136.

Figure S29. ¹H-NMR spectrum (300 MHz, CD₃OD) of compound 143.

Figure S30. ¹³C-NMR spectrum (75 MHz, CD₃OD) of compound 143.

Figure S31. ¹H-NMR spectrum (300 MHz, CD₃OD) of compound 144.

Figure S32. ¹³C-NMR spectrum (75 MHz, CD_3OD) of compound 144.

Figure S33. ¹H-NMR spectrum (400 MHz, DMSO-*d*₆) of compound **145**.

Figure S34. ¹³C-NMR spectrum (101 MHz, DMSO- d_6) of compound **145**.

4. Guinea-pig right atrium experiments in the presence of cimetidine

Table S2. Experiments for compounds **120, 125** and **135** at the *guinea-pig* right atrium (gpH_2R) in the absence (pEC_{50}) and presence ($pEC_{50}(Cim_{pr.})$) of cimetidine (30 µM). The calculated pA_2 values ($pA_2(Cim)$, obtained via *Schild* analysis) for cimetidine are in accordance with literature data ($pA_2 = 6.10$).^[8,9] Data represent mean values ± SEM of three independent experiments.

compound	pEC ₅₀	Ν	pEC ₅₀ (Cim _{pr.})	N	pA ₂ (Cim)	N
120	6.86 ± 0.06	3	5.34 ± 0.02	3	6.00 ± 0.02	3
125	7.69 ± 0.02	3	6.11 ± 0.06	3	6.07 ± 0.07	3
135	6.74 ± 0.09	3	5.20 ± 0.06	3	6.03 ± 0.06	3

Figure S35. Concentration-response curves of histamine (1, reference) and **125** in absence (A) and presence of 30 μ M cimetidine (B) at the *gp*H₂R (atrium). Displayed curves are calculated by endpoint determination (*N* = 1).

5. References

- [1] A. Kraus, P. Ghorai, T. Birnkammer, D. Schnell, S. Elz, R. Seifert, S. Dove, G. Bernhardt, A. Buschauer, *ChemMedChem* **2009**, *4*, 232–240.
- [2] N. Pluym, A. Brennauer, M. Keller, R. Ziemek, N. Pop, G. Bernhardt, A. Buschauer, *ChemMedChem* **2011**, *6*, 1727–1738.
- [3] C. Dardonville, C. Fernandez-Fernandez, S.-L. Gibbons, G. J. Ryan, N. Jagerovic, A. M. Gabilondo, J. J. Meana, L. F. Callado, *Bioorg. Med. Chem.* **2006**, *14*, 6570–6580.
- [4] M. L. Bolognesi, N. Calonghi, C. Mangano, L. Masotti, C. Melchiorre, J. Med. Chem. 2008, 51, 5463–5467.
- [5] D. Castagnolo, F. Raffi, G. Giorgi, M. Botta, Eur. J. Org. Chem. 2009, 2009, 334–337.
- [6] M. R. Marzabadi, W. C. Wong, T. H. Noble, Preparation of benzo[2,3]thiepino[4,5-d]thiazol-2-ylaminoalkylsulfonamides and Related Compounds as Selective Neuropeptide Y (Y5) Antagonists, 2000, US 6124331 A.
- [7] M. R. Marzabadi, W. C. Wong, T. H. Noble, M. N. Desai, Preparation of Aminothiazoles, Aminotriazines, and Aminobenzothiepinothiazoles as Selective Neuropeptide Y (NPY5) Antagonists., 2006, US 6989379 B1.
- [8] R. W. Brimblecombe, W. A. M. Duncan, G. J. Durant, J. C. Emmett, C. R. Ganellin, M. E. Parsons, *J. Int. Med. Res.* **1975**, *3*, 86–92.
- [9] R. W. Brimblecombe, W. A. Duncan, G. J. Durant, C. R. Ganellin, M. E. Parsons, J. W. Black, *Br. J. Pharmacol.* **1975**, *53*, 435–436.