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Environmental variables 

We used environmental data derived from images from a MODIS satellite v5 time series for 2001-2012. The 

images were processed applying a Temporal Fourier Analysis (TFA) [1], where environmental cycles 

(temperature, vegetation phenology etc.) are described as the sum of a series of sine curves with different 
amplitudes and phases. The MODIS data were composited over 8- or 16-day time intervals, and the TFA 

applied used a spline-based algorithm developed by Scharlemann et al. [1]. We used the TFA processed raster 

images for the middle infra-red index (channel 03), daytime land surface temperature (channel 07), nighttime 

land surface temperature (channel 08), the normalized difference vegetation index (NDVI, channel 14), and 
the enhanced vegetation index (EVI, channel 15). We used the following Fourier processed outputs for each 

of the variables: mean, minimum, maximum, variance in raw data, combined variance in annual, bi-annual, 

and tri-annual cycles as well as amplitude, phase and variance of annual bi-annual and tri-annual cycle [2]. 
For MODIS code of the Fourier outputs, see Supplementary Table S1. This dataset was created and processed 

by the TALA research group of Oxford University and obtained through the EDENext project [2].  

We also used average monthly climate data from Worldclim and Bioclim (1960 to 1990). These datasets 
provided us with global raster files of altitude and of temperature and precipitation. The Bioclim images further 

gave us information on annual trends such as mean annual temperature and annual precipitation as well 
information on seasonality in the form of annual ranges and quarterly temperatures and precipitation (for 

example temperature of the coldest and warmest month, and precipitation of the wettest and driest quarters) 

[3].  

The Corine land cover (CLC) is a raster image of 44 land cover classes created for 12 European countries, and 
comes in resolutions from 100 m2 to 1km2. We obtained this data from the European Environment Agency 

website [4]. 

Lastly, we used data on soil types obtained from the Harmonized World Soil Database v1.2 from 2009 [5]. 

 

Stratification of study region 

We divided each of the three countries into a north and a south region (with equal areas in the north and 
south), and used the Corine land cover data [4] to divide the resulting six regions into forest, meadow and 

others. We defined forest as the Corine land cover types: Broad-leaved forest, Coniferous forest and Mixed 
forest (135,996 km2) and defined meadow as the Corine land cover types: Land principally occupied by 

agriculture with significant areas of natural vegetation, Natural grasslands, Moors and heathland, and 

Transitional woodland-shrub (21,336 km2). All other land cover classes e.g. urban and agricultural areas were 
classified as ‘others’ and not sampled for ticks or predicted by the resulting model. We used the Fourier 

transformed satellite data for maximum NDVI (maximum values for the time series) [2]. We used maximum 
NDVI values for each km2 in the region and calculated the median value for each of the six regions. We then 



defined low maximum NDVI as all values below or equal to the median and everything above as high maximum 

NDVI, resulting in 8 strata for each country (Supplementary Table S2 and S3 and Figure 1 in manuscript). We 

used the NDVI index as it is based on the relationship between red light and near infrared light (NIR). Reflected 
red energy decreases with plant development due to the chlorophyll absorption within actively photosynthetic 

leaves. Reflected NIR energy, on the other hand, will increase with plant development through scattering 
processes in healthy leaves, thus the NDVI index gives us information on the amount of vegetation at a given 

site.  

 

Boosted Regression tree modelling 

We used packages caret [6] and gbm (generalized boosted regression models) [7] in R 3.4.2. to create a 

boosted regression tree model (BRT). The boosting method used in the gbm package follows Friedman’s 
Gradient Boosting Machine [8,9], and iteratively adds basis functions (i.e. small trees) in a greedy fashion to 

reduce the selected loss function using steepest descent. The chosen loss function was deviance, assuming 
our data to be Bernoulli distributed (logistic regression for 0-1 outcome). Within each tree, the split criterion 
was determined using Friedman's mean square error (MSE)[8,10]. 

Performance of a BRT model may be heavily influenced by class imbalance [11]. As our data consisted of 79% 

presences and 21% absences, we investigated different balancing methods (no balancing, down-scaling, up-
scaling, rose (package rose in R), smote [11] and tomek [11]). The CV scheme was carried out for each 

balancing method, and was run 10 times with different random seeds to choose the best-performing balancing 

method according to highest score for the area under the curve (AUC) for the receiver operating characteristic 
(ROC) [12]. With 125 presence and 34 absence points (Table 2 in Manuscript), tomek-balancing, where the 

majority class was removed, consistently gave a higher AUC for the 10 different seeds (1-way ANOVA: 
F6,63 = 36.07, p < 0.001, Supplementary Figure S1), and this balancing method was therefore chosen for the 

final model. We performed stratified fivefold cross-validation with 10 repetitions to validate our models and to 

estimate the prediction error. A tuning grid was used to optimise model parameters, interaction depth, number 
of trees, learning rate and minimum observations per node [12]. Using the tuning grid, the final model had 

the following parameters: 1,500 trees, an interaction depth of 1, a learning rate of 0.01 and a minimum 
number of observations of 3 per node. When evaluating the model over the different folds and repeats, the 

accuracy was 0.85 with a sensitivity of 91%, a specificity of 60% (given a fixed cut-off of 50% PP) and an 
AUC-score of 0.86 (Supplementary Figure S2). 

 

Population density maps 

Using the Gridded Population of the World dataset [13], we first created nine new rasters from the final 
prediction map, that only included forest and meadow pixels where the probability of presence (PP) was higher 

or equal to 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% respectively. For each of the nine rasters, 
we calculated the Euclidian Distance with Spatial Analyst Tools in ArcMap [14] to create five additional rasters, 

depicting pixels within a distance of 1, 2, 3, 4, and 5 km respectively to forest/meadow pixels (5 rasters for 

each PP cut-off). We finally cropped the human population density raster, to only encompass raster pixels 
within those distances of 1-5 km from forest and meadow (5x9 rasters, these could include people living above 

450 meters of altitude, if they lived within 5 km of forest/meadows at altitudes below 450 m). For each of the 
45 rasters we calculated the percentage of people living within the pixels out of the total number of people in 

the modelled region.  
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Tables 

 

Supplementary Table S1. MODIS codes for the outputs, resulting from Fourier processing of 

different environmental variables derived from MODIS satellite images. 

Fourier output  Modis code for Fourier output 

mean 
minimum 
maximum 
amplitude of annual cycle 
amplitude of bi-annual cycle 
amplitude of tri-annual cycle 
phase of annual cycle 
phase of bi-annual cycle 

phase of tri-annual cycle 
variance in annual cycle 
variance in bi-annual cycle 
variance in tri-annual cycle 
combined variance in annual, bi-annual, and tri-annual cycles 
variance in raw data 

a0 
mn 
mx 
a1 
a2 
a3 
p1 
p2 

p3 
d1 
d2 
d3 
da 

vr 

 

 

Supplementary Table S2. All first priority sample sites in each of Denmark, Norway and 

Sweden, 2016 

Region Strata No. of 1st Priority sample sites in each country 

North Forest, low NDVI 6 
 Forest, high NDVI 6 

 Non-forest, low NDVI 2 
 Non-forest, high NDVI 1 
South Forest, low NDVI 6 
 Forest, high NDVI 6 
 Non-forest, low NDVI 1 
 Non-forest, high NDVI 2 

 

 

Supplementary Table S3. All first priority sample sites around the Oslo Fjord in Norway, 2016 

Region Strata No. of 1st Priority sample sites 
 

North Forest, low NDVI 4 
 Forest, high NDVI 4 
 Non-forest, low NDVI 1 

 Non-forest, high NDVI 1 
South Forest, low NDVI 4 
 Forest, high NDVI 4 
 Non-forest, low NDVI 1 
 Non-forest, high NDVI 1 

 

 



Figures 

Supplementary Figure S1. Area Under the Curve (AUC) of the original data and the different 

balancing methods down, up, rose, smote and tomek with majority class removed 

(tomek_maj), and tomek with both classes removed (tomek_both). The AUC-scores were 
obtained by re-running the cross-validation for each balancing methods with 10 different 

random seeds (chosen seeds were similar for all balancing methods).  

 

 

Supplementary Figure S2. Receiver Operating Curve curve and Area Under the Curve for the 
final boosted regression tree model (using the balancing method tomek with the majority class 

removed), used to create prediction maps of nymphal I. ricinus distribution in southern 

Scandinavia. 

 



Supplementary Figure S3. Prediction errors for the predicted values (probability of presence, 

PP) – observed values (0 or 1 for absence/presence), based on the final boosted regression 

tree model to predict nymphal I. ricinus distribution in southern Scandinavia. High negative 
values show sites with high PP, but with measured absence of tick nymphs, whereas high 

positive values indicate sites with low PP, but with measured presence of tick nymphs. White 
areas within Denmark, Norway and Sweden are altitudes above 450 m or lakes, rivers and 

streams. 

 

 

 



Supplementary Figure S4. Plots of the 5 most important predictors in the final boosted 

regression tree model predicting nymphal I. ricinus distribution in southern Scandinavia. All are 

partial dependence plots, except the land cover plot, and illustrates the marginal effect of the 
selected variables on the response after integrating out the other variables. As the boosted 

regression tree model produces dummy variables for factorial predictors, we cannot show 
partial dependence plots for Corine land cover (in our model, only land cover type 29, 

“Transitional woodland-shrub”, was one of the top 5 predictors). Instead, the plot shows 

probability of presence plotted against the different land cover types in our model.  

 

 

 

 



Supplementary Figure S5. Map of mean annual temperature in Scandinavia (BIO1 from BioClim, 

see Table 1 in the manuscript). Temperature is in the format °Cx10. 

 

 

 

 


