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S1. Experimental Procedure 10 

 The perturbation experiments were performed in July-August 2016. A 2m3 Teflon chamber 11 

(cubic shape) (Fig. 1) was placed outdoor on the rooftop of the Environmental Science and 12 

Technology (ES&T) building on the Georgia Institute of Technology (GT) campus, which is 30-13 

40m above the ground and 840m away from interstate I75/85. The eight corners of the chamber 14 

were open (~2”×2” ) to the atmosphere to allow for continuous exchange of air with the atmosphere. 15 

All analytical instruments were placed inside the building, which is about 4-5m away from the 16 

chamber. The instruments were connected to the chamber using 1/4” teflon tubings (for 17 

measurements of gas-phase species) or stainless steel tubings (for measurement of particle-phase 18 

species). The sampling inlets were inserted into the center of the chamber. 19 

 The perturbation procedure is described below and illustrated in Fig. A1. Firstly, we 20 

continuously flushed the chamber with ambient air using two fans, which were placed at two 21 

corners of the chamber. During this flushing period, all instruments sampled ambient air and were 22 

not connected to the chamber. The flushing period lasted at least 3 hours to ensure that the air 23 

composition in the chamber is the same as ambient composition. Secondly, we stopped both fans 24 

and connected all instruments to chamber. Due to particle wall loss in the chamber, the particle 25 

mass concentration in the chamber was lower than that in the atmosphere (Fig. A1), but the particle 26 

composition in the chamber was almost the same as that in the atmosphere (Fig. S10), because the 27 

particle wall loss mainly depends on particle size not particle composition (Keywood et al., 2004). 28 

Due to the continued sampling by the instruments (~20 liter per minute, LPM) and the open corners 29 

of the chamber, ambient air continuously entered the chamber, even the two fans were turned off 30 

during this period. The main reason to turn off the fans is to increase the residence time of species 31 

in the chamber. The main reasons to leave the eight corners of chamber open are (a) to supply the 32 

chamber with atmospheric oxidants and (b) ensure that air composition in the chamber is 33 

representative of ambient composition. Thirdly, after sampling the chamber for about 30min, we 34 

injected certain amount of VOC (liquid) into the chamber with a needle, which vaporized upon 35 

injection. We continuously monitored the chamber composition for ~40 min after VOC injection. 36 

Lastly, we disconnected all instruments from the chamber, sampled ambient air, and turned on two 37 

fans to flush the chamber to prepare for the next perturbation experiment. In brief, one perturbation 38 

experiment can be divided into the following four periods: Amb_Bf (30min ambient measurement 39 

period before sampling chamber), Chamber_Bf (from sampling chamber to VOC injection, a 40 
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period ~30min), Chamber_Af (from VOC injection to stop sampling chamber, a period ~40min), 41 

and Amb_Af (30min ambient measurement period after sampling chamber). 42 

One to three experiments were performed per day. The interval between two experiments 43 

was at least 3 hours, which avoids the interference of chamber content from previous experiments. 44 

The perturbations were performed at different times of day to probe aerosol formation under 45 

different reaction conditions. 0.2 µL α-pinene or β-caryophyllene was injected via a needle into 46 

the chamber. This provides initial concentrations of α-pinene and β-caryophyllene to be 14ppb 47 

and10ppb in the chamber, respectively, assuming they are well mixed in the 2m3 chamber. For 48 

isoprene and m-xylene perturbation experiments, we tried a range of initial VOC concentrations 49 

(i.e., 10-90ppb for isoprene and 10-540ppb for m-xylene). For naphthalene perturbation 50 

experiments, we injected naphthalene by passing pure air over solid naphthalene flakes. We did 51 

not observe OA formation from these three VOCs, regardless of VOC concentration. The possible 52 

reasons of the lack of OA formation will be discussed in section S6. Due to no OA formation, the 53 

details about perturbation experiments with isoprene, m-xylene, and naphthalene are not included 54 

in Table S4. 55 

In this study, we selected α-pinene and β-caryophyllene as representatives of monoterpenes 56 

and sesquiterpenes due to the following reasons. Firstly, both VOCs are widely studied in the 57 

literature. Secondly, they are the most abundant species in monoterpenes and sesquiterpenes, 58 

respectively (Guenther et al., 2012; Helmig et al., 2007). Thirdly, the mass spectra of SOA from 59 

VOCs in the same class generally share similar features. For example, the correlation coefficient 60 

(i.e., R) between the mass spectra of SOA from the β-caryophyllene and α-humulene is 0.97 61 

(Bahreini et al., 2005). Still using the mass spectra reported in Bahreini et al. (2005), the R between 62 

α-pinene SOA and other monoterpenes SOA (β-pinene, α-terpinene, myrcene, and terpinolene) is 63 

larger than 0.9. Fourthly, in addition to the similar mass spectra, the time series of α-pinene in the 64 

southeastern U.S. is similar to that of other monoterpenes, such as β-pinene and camphene (Xu et 65 

al., 2015a). Further studies with other monoterpenes and sesquiterpenes are still required to 66 

confirm the representativeness of α-pinene and β-caryophyllene. 67 

In the perturbation experiments, we aimed to produce small amount of SOA, which would 68 

not substantially perturb the composition of existing organic aerosol. The difference in OA 69 

concentration between “Chamber_Bf” and “Chamber_Af” is within 4 µg m-3 (Fig. S11) and the 70 
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OA mass spectrum in Chamber_Af is almost identical to that in Chamber_Bf (Fig. S12). In the α-71 

pinene and β-caryophyllene experiments, the concentrations of inorganic species, including SO4, 72 

NO3, and NH4, during “Chamber_Bf” and “Chamber_Af” are shown in Fig. S11. 73 

S2. High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) 74 

 The HR-ToF-AMS measures the chemical composition and size distribution of submicron 75 

non-refractory species (NR-PM1) with high temporal resolution. The details about HR-ToF-AMS 76 

principles have been extensively discussed in the literature(Canagaratna et al., 2007; DeCarlo et 77 

al., 2006). In brief, HR-ToF-AMS samples particles through an aerodynamic lens and then impacts 78 

the particles on a ~600°C tungsten surface. Non-refractory species are flash evaporated and the 79 

resultant vapors are ionized by 70eV electron impact ionization. The generated ions are analyzed 80 

using time-of-flight mass spectrometry. In this study, the temporal resolution of HR-ToF-AMS 81 

measurements was set to be 2 minutes and the instrument was only operated in V mode (resolving 82 

power ~2100 at m/z 200). Ambient filter measurements (with a HEPA filter placed at the inlet of 83 

sampling line) were performed periodically to eliminate gas-phase interference on the particle-84 

phase measurements by the HR-ToF-AMS. Ionization efficiency (IE) calibrations were conducted 85 

every week with 300nm ammonium nitrate (AN) particles. A nafion dryer was placed upstream of 86 

the HR-ToF-AMS to dry particles (relative humidity < 20%), which eliminated the potential effect 87 

of relative humidity on particle collection efficiency (CE) at the HR-ToF-AMS vaporizer(Matthew 88 

et al., 2008). The composition-dependent CE (i.e., CDCE) was applied to the data, based on the 89 

algorithm proposed by Middlebrook et al.(Middlebrook et al., 2012) The elemental ratios, such as 90 

atomic O:C and H:C, were calculated based on the method in Canagaratna et al.(Canagaratna et 91 

al., 2015) The data analysis was performed using the standard AMS analysis toolkits SQUIRREL 92 

v1.57H and PIKA v1.16H in Igor Pro 6.36 (WaveMetrics Inc.).  93 

S3. Positive Matrix Factorization (PMF) Analysis 94 

Positive Matrix Factorization (PMF) analysis has been widely used for aerosol source 95 

apportionment in the atmospheric chemistry community(Jimenez et al., 2009; Crippa et al., 2014; 96 

Xu et al., 2015a). PMF solves bilinear unmixing factor model(Paatero and Tapper, 1994; Ulbrich 97 

et al., 2009b) 98 

X = TS  MS + E      Eqn 2 99 



5 
 

X is an mn matrix, representing m measurements over time of n species (i.e., m/z in AMS 100 

measurements). TS is an mp matrix, representing the factor strength (i.e., concentration in AMS 101 

measurements) of the p factors. MS is an pn matrix, representing the source profile (i.e., mass 102 

spectra in AMS measurements) of the p factors. E is an mn matrix, representing the unexplained 103 

residual by the p factors. PMF solves the equation by minimizing the summed least squares errors 104 

of the fit weighted with the error estimates of each measurement. In other words, PMF represents 105 

the observed organic mass spectra as a linear combination of a number of factors with constant 106 

mass spectra but varying concentrations over time. PMF groups OA constituents with similar mass 107 

spectra and temporal variation into different factors, which are related to characteristic sources and 108 

atmospheric processes. 109 

In this study, we performed PMF analysis on the high-resolution mass spectra of organic 110 

species (inorganic species are excluded) of combined ambient and perturbation data. Each OA 111 

factor has a constant mass spectrum throughout the study, regardless of ambient or chamber 112 

periods. The organic data matrix and error matrix were generated from PIKA v1.16H and 113 

processed in the PMF Evaluation Toolkit (PET) software or Solution Finder (SoFi) 114 

software(Ulbrich et al., 2009b). m/z’s with signal-to-noise ratio between 0.2 and 2 were 115 

downweighted by a factor of 2 to reduce disproportionate effects on the results (Ulbrich et al., 116 

2009a). We do not observe m/z’s with signal-to-noise ratio smaller than 0.2. The errors of all CO2
+ 117 

related peaks (i.e., O+, HO+, H2O+, CO+, and CO2
+) were downweighted, to avoid excessive 118 

weighting of CO2
+. The error of CHO+ (m/z 29.0027) was downweighted by a factor of 2 as its 119 

error appears to be underestimated, possibly due to interference from its adjacent N2 isotope ion 120 

(m/z 29.0032). We utilized the PMF2 solver, which does not require a priori information and 121 

reduces subjectivity. We performed 100 bootstrapping runs to quantify the uncertainty of PMF 122 

results. 123 

Fig. 2 shows the time series and mass spectra of OA factors resolved in the measurements. 124 

Five OA factors (i.e., HOA, COA, isoprene-OA, LO-OOA, and MO-OOA) are resolved. PMF 125 

solutions with more than five OA factors display splitting behavior of existing factors instead of 126 

providing new factors. Also, we note that PMF solutions with more OA factors cannot resolve one 127 

factor that is capable of representing all perturbation induced SOA. The five identified OA factors 128 
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have been extensively discussed in previous studies (Xu et al., 2015a; Xu et al., 2015b; Xu et al., 129 

2017). Below, we describe the unique features of these OA factors.  130 

The mass spectrum of hydrocarbon-like OA (HOA) is dominated by hydrocarbon-like ions 131 

(CxHy
+ ions), which is similar to that of primary combustion emission species (Zhang et al., 2011). 132 

The time series of HOA correlates well with primary emissions (i.e., black carbon and NOx). Thus, 133 

HOA is a surrogate of primary OA from vehicle emissions (Zhang et al., 2011).  134 

The mass spectrum of cooking OA (COA) is characterized by prominent signal at ions 135 

C3H5
+ (m/z 41) and C4H7

+ (m/z 55), which is similar to the mass spectrum of unsaturated fatty acids 136 

(Huang et al., 2010; Mohr et al., 2009). Cooking is an important source of primary emission in 137 

urban sites(Xu et al., 2015a; Crippa et al., 2014; Huang et al., 2010), the concentration of which is 138 

even higher than HOA concentration sometimes (Huang et al., 2010). We have clear evidence that 139 

the COA factor at the measurement site has contributions from cooking activities. Firstly, the 140 

diurnal variation of COA peaks during meal times (Fig. S6a). Secondly, in another dataset from 141 

the same measurement site, the COA concentration shows clear increases on football days, 142 

consistent with barbecue activities on campus and close to the measurement site. Thirdly, 143 

compared to most of days during 2015 measurement (section S4), the COA concentration is higher 144 

between August 13th and 16th, 2015 (Fig. S6b and S6c). These four days are right before the start 145 

of a new semester and thus there are many fraternity rush events (i.e., barbecue activities) on 146 

campus. However, the COA concentration increases in 5 out of 6 β-caryophyllene perturbation 147 

experiments and its enhancement amount is ~25% of LO-OOA enhancement (Fig. S5b), which 148 

shows that COA factor could have interference from β-caryophyllene SOA. Thus, caution is 149 

required when using COA factor as a surrogate for cooking emissions, especially for urban sites 150 

influenced by air masses from forested areas. 151 

 Ample evidence suggests that the isoprene-derived OA (isoprene-OA) factor is related to 152 

the reactive uptake of isoprene oxidation products, isoprene epoxydiols (IEPOX) (Xu et al., 2015a; 153 

Lin et al., 2012; de Sá et al., 2016). Firstly, the mass spectrum of isoprene-OA is characterized by 154 

prominent signal at ions C4H5
+ (m/z 53) and C5H6O+ (m/z 82), which is similar to the mass spectrum 155 

of laboratory IEPOX SOA (Lin et al., 2012). Secondly, the time series of this factor correlates well 156 

with 2-methyltrols, which are tracers for isoprene SOA tracers and likely formed from the reactive 157 

uptake of IEPOX. This factor is also referred to as “IEPOX-OA” in some studies (Hu et al., 2015; 158 
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Budisulistiorini et al., 2013; Budisulistiorini et al., 2015; de Sá et al., 2017). The isoprene-OA 159 

factor contributes 18-36%, 34%, and 24% of OA in the southeastern U.S. (Xu et al., 2015a), 160 

Amazonia forest (Chen et al., 2015), and boreal forest (Robinson et al., 2011). Our perturbation 161 

experiments point out the possibility that isoprene-OA factor could have interference from α-162 

pinene SOA. From another aspect, the enhancement in isoprene-OA in these experiments suggests 163 

that fresh α-pinene SOA is not exclusively apportioned to LO-OOA, at least for the sites with 164 

isoprene-OA.  165 

Less-oxidized oxygenated organic aerosol (LO-OOA) and more-oxidized oxygenated 166 

organic aerosol (MO-OOA) are named based on their differing carbon oxidation state. MO-OOA 167 

has the highest atomic O:C ratio, indicating that it is highly oxidized. LO-OOA has lower O:C 168 

ratio than MO-OOA. In the southeastern U.S., MO-OOA concentration peaks in the afternoon and 169 

LO-OOA exhibits a daily maximum at night (Xu et al., 2015b).  170 

 We examined the PMF residual (i.e., Q/Qexp) in α-pinene and β-caryophyllene perturbation 171 

experiments. As shown in Fig. S13a, in α-pinene experiments, the difference in Q/Qexp between 172 

“Chamber_Bf” (before α-pinene injection) and “Chamber_Af” (after α-pinene injection) is not 173 

statistically significant. This suggests that PMF analysis has adequately accounted for the newly 174 

formed α-pinene SOA. In contrast, in β-caryophyllene experiments, there is a clear pattern that 175 

Q/Qexp in “Chamber_Af” is larger than that in “Chamber_Bf” (Fig. S13b). This likely arises from 176 

the rapid change in the subtleties of OA composition caused by the newly formed β-caryophyllene 177 

SOA. The larger Q/Qexp in β-caryophyllene experiments than α-pinene experiments may be a result 178 

of that ΔOA (i.e., the difference in OA concentration between “Chamber_Af” and “Chamber_Bf”) 179 

is larger in β-caryophyllene experiments (average value 1.95 µg m-3 over 6 experiments) than α-180 

pinene experiments (average value 0.98 µg m-3 over 14 experiments). The behavior of Q/Qexp is 181 

not quite expected because the OA mass spectra after injecting β-caryophyllene are almost 182 

identical to those before perturbation (i.e., R between Chamber_Bf and Chamber_Af is >0.99 as 183 

shown in Fig. S12b). The larger Q/Qexp in Chamber_Af likely results in the unexpected decrease 184 

in MO-OOA and isoprene-OA decrease after injecting β-caryophyllene. It is possible that the 185 

larger Q/Qexp in Chamber_Af and the decrease in MO-OOA and isoprene-OA are a result of the 186 

limitation of PMF analysis, that is, PMF assumes constant mass spectra of OA factors. After β-187 

caryophyllene SOA formation in the chamber, in order to optimize the overall fitting residual, 188 

PMF solver increases the concentrations of LO-OOA and COA, the mass spectra of which are 189 
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more similar to β-caryophyllene SOA, and decreases the concentration of MO-OOA and isoprene-190 

OA, the mass spectra of which are less similar to β-caryophyllene SOA.  191 

 We would like to clarify that our conclusions are not dependent on if PMF has perfectly 192 

accounted for the newly formed SOA, mainly because similar issues could also happen in the 193 

analysis of ambient data. The β-caryophyllene perturbation experiments simulate a scenario when 194 

there is a sudden change in the OA composition caused by an airmass encountering a plume or 195 

change in OA sources due to shift in wind direction. Under these circumstances, PMF analysis 196 

may have difficulty in accurately apportioning the OA sources. The simulated scenarios and the 197 

observed PMF issues have been observed in previous studies. For example, in the Figure 9 of Sun 198 

et al. (2016), an increase of hydrocarbon-like OA (HOA) is usually accompanied by a decrease in 199 

cooking OA (COA) and verse vice. Another example is that figure 5 of Reyes-Villegas et al. (2018) 200 

showed that a biomass burning plume leads to unexpected rapid variations in the concentration of 201 

many OA factors on the time scale of minutes. Last example is that in the figure S10 of Milic et 202 

al. (2017), the PMF residual during a biomass burning plume is orders of magnitude higher than 203 

other sampling periods. 204 

S4. Description of Measurements at GT Site in Different Years 205 

 In addition to the perturbation experiments in 2016, we deployed AMS measurements in 206 

summer of 2012, 2013, and 2015 (Table S5) at the GT site (Xu et al., 2015a; Xu et al., 2017). The 207 

same five OA factors are resolved and the mass fractions of these OA factors do not change 208 

substantially over the past 5 years (Fig. S14), suggesting relatively stable OA sources over the past 209 

5 years near this measurement site.  210 

 The 2012 measurements are used for the pseudo-experiment discussed in Appendix A. It 211 

is because the 2012 data set has the least interruption in ambient measurements. For example, in 212 

2016, the perturbation experiments resulted in many gaps in the ambient measurements. In 2013, 213 

AMS alternated sampling between ambient line and a treated sampling line every 30min (Xu et 214 

al., 2017). Since measurements were performed around similar time of year each year and the mass 215 

fractions of these OA factors remain relatively constant over the past 5 years, this justifies the use 216 

2012 data set for the pseudo-experiment (i.e., this data set can be considered as representative of 217 

other years). 218 



9 
 

S5. Community Multiscale Air Quality (CMAQ) Model 219 

 We use the CMAQ (Community Multiscale Air Quality) atmospheric chemical transport 220 

model to simulate the SOA formation in the southeastern U.S. CMAQ is one of the most widely 221 

used air quality models. CMAQ v5.2gamma (available at: https://github.com/USEPA/CMAQ) is 222 

run over the continental U.S. for time periods between May 2012 to July 2013 with 12km × 12km 223 

horizontal resolution. We focus our analysis on the southeastern U.S., which comprises 11 states 224 

(as Arkansas, Alabama, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South 225 

Carolina, Tennessee, and Virginia). 10 days of model spin-up are discarded before comparisons 226 

are made with measurements. The meteorological inputs are generated with version 3.8 of the 227 

Weather Research and Forecasting model (WRF), Advanced Research WRF (ARW) core. 228 

Compared to previous versions of WRF, WRF v3.8 has major revisions in the vertical mixing 229 

scheme (Appel et al., 2017). We also apply lightning assimilation to improve convective rainfall 230 

(Heath et al., 2016). Anthropogenic emissions are based on the EPA (Environmental Protection 231 

Agency) NEI (National Emission Inventory) 2011 v2. For the CTR_June period, the primary 232 

emissions from stationary source fuel combustion and industry are reduced to half in Alabama, 233 

because previous studies showed that CMAQ overestimates the primary organic carbon in 234 

Alabama during this period (Pye et al., 2015). Biogenic emissions are predicted by the BEIS 235 

(Biogenic Emission Inventory System) v3.6.1. Carlton and Baker (2011) found that the BEIS 236 

predicted isoprene emission is generally lower than that predicted by another widely used model 237 

MEGAN (Model of Emissions of Gases and Aerosols from Nature). Also, Pye et al. (2017) showed 238 

that increasing the BEIS predicted isoprene emission by 50% could result in a better agreement 239 

with measured isoprene and OH at Centreville, AL. Thus, the isoprene emission is increased by 240 

50% in this study.   241 

 The gas-phase chemistry is based on CB6r3 (Carbon Bond v6.3, 242 

http://www.camx.com/files/udaq_snowchem_final_6aug15.pdf). The default organic aerosol 243 

treatment in CMAQ v5.2gamma generally follows the scheme of Carlton et al. (2010) and Appel 244 

et al. (2017) and is the same as that publicly released in CMAQ v5.2 and v5.2.1 245 

(doi:10.5281/zenodo.1212601). A schematic of SOA treatment in CMAQ v5.2 is shown in Fig. 246 

S2a. In brief, CMAQ v5.2 includes SOA formation from anthropogenic and biogenic emissions. 247 

Anthropogenic precursors include benzene, toluene, xylene, long-chain alkanes (such as 248 

heptadecane), and PAHs (such as naphthalene). Biogenic precursors include isoprene, 249 
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monoterpenes, and sesquiterpenes. An Odum 2-product parameterization is used to describe SOA 250 

formation from these precursors. The SOA yields from monoterpene reactions with different 251 

oxidants (OH, ozone) are assumed to be the same and are based on daylight experiments of Griffin 252 

et al. (1999) The SOA yield from sesquiterpenes oxidation is parameterized in an analogous way 253 

as that of monoterpenes (Carlton et al., 2010). Five different species of monoterpenes are lumped 254 

into one species (i.e., TERP) according to U.S. emissions-based weighting factors. SOA formation 255 

from the reactive uptake of IEPOX and methacryloylperoxynitrate (MPAN) (isoprene oxidation 256 

products) onto aqueous aerosol is included. All semi-volatile OA in the model can undergo 257 

particle-phase oligomerization to produce non-volatile OA with a 29hr lifetime. POA is treated as 258 

semi-volatile. A parameterization to consider the SOA from semivolatile and intermediate 259 

volatility organic compounds (SVOC and IVOC, the emissions of which may not be characterized 260 

in current emission inventories) as well as other missing sources of SOA from anthropogenic 261 

combustion (potentially due to underestimated yields) is implemented (Murphy et al., 2017b).  262 

 The “default simulation” applies the default treatment of SOA in CMAQ v5.2 with CB6r3 263 

as discussed above. The “updated simulation” in this work improves the “default simulation” by 264 

implementing the following recent scientific findings (Fig. S2b). Firstly, recent laboratory studies 265 

reveal significant amount of SOA formation from monoterpenes (except α-pinene, denoted as 266 

MTw/o α-pinene) oxidation by NO3 (Boyd et al., 2015; Fry et al., 2014). This SOA formation pathway 267 

is currently missing in CMAQ v5.2 with CB6r3 chemistry. We implement the formation and 268 

partition of organic nitrates from monoterpenes via multiple reaction pathways (i.e., oxidation by 269 

NO3 and oxidation by OH/O3 followed by RO2+NO), which are extensively described in Pye et al. 270 

(2015). In brief, the organic nitrates produced from MTw/o α-pinene oxidation by NO3 and MT 271 

oxidation by OH and O3 in the presence of NOx are lumped into a new species: MTNO3. MTNO3 272 

is semi-volatile and undergoes gas/particle partitioning. The particle-phase MTNO3 hydrolyzes 273 

with a 3hr lifetime and converts to HNO3 and non-volatile SOA (denoted as AMTHYD in model). 274 

We note that the hydrolysis rate of organic nitrates is highly uncertain, which largely depends on 275 

the structure of organic nitrates and particle acidity (Boyd et al., 2015; Jacobs et al., 2014; 276 

Rindelaub et al., 2016). Pye et al. compared model performance using 3hr vs 30hr hydrolysis rate 277 

(Pye et al., 2015). While the 3hr hydrolysis rate leads to better agreements with measured OC and 278 

NOy, it degrades the comparison with measured HNO3. In this study, we perform sensitivity study 279 

by using both 3hr and 30hr hydrolysis rate. 30hr hydrolysis lower the modeled SOAMT+SQT 280 
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concentration by 2-17% for all sites compared to 3hr hydrolysis, but it does not change the 281 

conclusion of this study. Future studies are warranted to constrain the fate of organic nitrates. 282 

 The second modification is to update the SOA yield of the monoterpenes oxidation by O3 283 

and OH. In the default SOA treatment, the SOA yield of lumped monoterpenes oxidation by O3 284 

and OH is parameterized based on daylight experiments of Griffin et al. (1999), which are under 285 

high OA loadings and elevated temperature. Extrapolation of the parameterized yield to 286 

atmospherically relevant low OA loading and lower temperatures (<310K) causes uncertainty 287 

(Pathak et al., 2007). In this study, we update the SOA yield of monoterpenes oxidation by O3 and 288 

OH based on a recent study by Saha and Grieshop (2016).  Saha et al. applied a dual-289 

thermodenuder system to study the α-pinene ozonolysis SOA. The authors extracted SOA yield 290 

parameters by using an evaporation-kinetics model and volatility basis set (VBS). The SOA yields 291 

in Saha et al. (2016) are higher than laboratory chamber studies conducted in batch mode (Griffin 292 

et al., 1999; Pathak et al., 2007), but comparable to laboratory chamber studies conducted in 293 

continuous mode (Shilling et al., 2008) (Fig. S15). The SOA yields in Saha et al. are consistent 294 

with recent findings about the formation of HOMs (Ehn et al., 2014; Zhang et al., 2015) and help 295 

to explain the observed slow evaporation of α-pinene SOA (Vaden et al., 2011). In the updated 296 

simulation, we replace the Odum’s 2-product model used in the default simulation with VBS 297 

framework. The VBS framework lumps species into a number of volatility “bins” that are 298 

separated by one decade in saturation concentration. When laboratory data are available over a 299 

wide range of loadings and/or temperatures, the VBS framework is more robust and better 300 

represents SOA formation at atmospherically relevant OA loadings than Odum’s 2-product model 301 

with limited data (Barsanti et al., 2013). In addition, the new parameterization allows for enthalpies 302 

of vaporization that are more consistent with species of the specified volatility. Specifically, 303 

CMAQ has used enthalpies of vaporization of 40 kJ mol-1 for C* of 15 and 134 µg m-3. Species of 304 

this saturation concentration should have much enthalpies of vaporization on the order of 100 kJ 305 

mol-1 (Epstein et al., 2010). The new parameterization from Saha et al. allows for higher enthalpies 306 

of vaporization that are more realistic. The properties of the lumped MT oxidation products, which 307 

are grouped into 7 volatility “bins”, are listed in Table S3. The simulation using modified SOA 308 

treatment is denoted as “updated simulation”. 309 

 The modeled OA concentrations from both default simulation and updated simulation are 310 

compared to AMS measurements. Considering that CMAQ predicts aerosol in 3 log-normal modes 311 
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and AMS measures PM1, the modeled mass concentration is adjusted to PM1 based on predicted 312 

aerosol size distributions (Nolte et al., 2015). CMAQ predicts that PM1 concentration accounts for 313 

about 60-70% of PM2.5 concentration. This fraction is similar to the finding in Zhang et al. (2017), 314 

who performed simultaneous measurements of non-refractory PM2.5 (using an AMS with a new 315 

PM2.5 inlet) and non-refractory PM1 (using an AMS with a traditional PM1 inlet) in Nanjing, China. 316 

The authors showed that non-refractory PM1 accounts for about half of non-refractory PM2.5. The 317 

PM1/PM2.5 fraction needs to be further verified for sites in the U.S.  318 

 Fig. S16 compares the diurnal trends of AMS OA with CMAQ OA in both default 319 

simulation and updated simulation. The JST and GT sites are in the same grid cell in CMAQ. The 320 

modeled OA in default simulation under-estimates measured OA by 36-54%. The updated 321 

simulation predicts more OA, which reduces model bias and agrees better with measured OA. The 322 

model skill in updated simulation is slightly improved as the correlation between model and 323 

measurement is better (Fig. S17). However, the updated simulation still under-estimates OA, 324 

mainly in the afternoon, suggesting missing OA sources.  325 

 We further evaluate the modeled SOA from the oxidation of monoterpenes and 326 

sesquiterpenes (SOAMT+SQT) against LO-OOA. Based on the ambient perturbation experiments, 327 

84% of fresh α-pinene SOA is apportioned into LO-OOA and the rest 16% is apportioned into 328 

isoprene-OA (Fig. S5a), when the isoprene-OA factor exists. Thus, for the sites with isoprene-OA 329 

factor, we only consider 84% of modeled SOA from the oxidation of monoterpenes by O3 and OH 330 

when comparing to LO-OOA. We note that the fraction of MT SOA apportioned into isoprene-331 

OA factor is uncertain, as this value is obtained at a specific site and in a specific month. This 332 

uncertainty may affect the comparison between modeled SOAMT+SQT and LO-OOA. More studies 333 

are required to evaluate the interference of MT SOA in isoprene-OA factor in different atmospheric 334 

environments and different seasons. The comparison between LO-OOA and SOAMT+SQT is 335 

discussed in the main text and shown in Fig. S18, Fig. S19, Fig. S20, and Fig. 6. The SOAMT+SQT 336 

concentration in the default simulation (i.e., no explicit organic nitrate partitioning, Griffin et al. 337 

(1999) photooxidation parameterization) is significantly lower than LO-OOA by 55-84% (Fig. 338 

S20). In contrast, SOAMT+SQT in the updated simulation (explicit organic nitrates and Saha and 339 

Grieshop (2016) VBS for MT+O3/OH) reasonably reproduces the magnitude and diurnal 340 

variability of LO-OOA for each site (Fig. 6a). The model bias is reduced to within ~20% for most 341 

sites, except for Centreville, Alabama (i.e., 43% for CTR_June dataset). For CTR_June, the 342 



13 
 

modeled SOAMT+SQT is higher than LO-OOA by ~43%. The reason for the over-estimation of LO-343 

OOA in CTR_June is unclear. One possible reason is that CMAQ over-predicts the role of primary 344 

organic emissions and subsequent OA formation from these emissions, which serve as gas/particle 345 

partition medium. This suggests that the parameterized potential SOA from combustion sources 346 

(i.e., pcSOA) may need downward adjustment (Murphy et al., 2017b). The sampling site in CTR 347 

is surrounded by forests and is far away from stationary point and area sources of primary 348 

emissions. The marginal influence of primary emissions on the CTR site can be reflected by that 349 

HOA factor is not resolved from PMF analysis. However, the grid cell containing the CTR site has 350 

primary emissions. Pye et al. (2015) showed that the POA concentration is over-estimated by a 351 

factor of 2 in CTR_June when POA is treated as non-volatile. As gas/particle partition medium, a 352 

higher POA concentration would enhance the partition of semi-volatiles to the particle phase and 353 

hence increase the concentration of modeled SOA. The implementation of SOA formation from 354 

SVOC and IVOC, mainly from anthropogenic emissions, further exaggerates the issue. Another 355 

possible reason is that the parameterization of MT SOA formation does not consider photo-356 

chemical aging. The laboratory experiments used to derive SOA yield parameters typically only 357 

last few hours. The aging of SOA is likely to decrease the concentration after long time periods 358 

due to fragmentation. In addition, previous work by Pye et al. (2015), albeit with different 359 

meteorology indicates monoterpenes as well as their organic nitrates are overestimated by CMAQ 360 

in the vicinity of CTR. Errors in nocturnal mixing may contribute to errors in SOA, particularly 361 

from monoterpenes. 362 

S6. Simple Box Model 363 

 While the focus of this study is to qualitatively understand which OA factors the α-pinene 364 

SOA is apportioned into, we also build a simple box model aimed at quantitatively estimating the 365 

fate of α-pinene and the SOA formation in the ambient perturbation experiments. The box model 366 

considers the oxidation of α-pinene by OH and O3, dilution by ambient air, and particle loss to 367 

chamber wall. We solve the following two ordinary differential equations (ODEs) which are 368 

derived from mass balance.  369 

3

3

out
OH O 3

chamber

OH O 3

Fd[α-pinene]
 = - ×[α-pinene]×[OH] - ×[α-pinene]×[O ] - ×[α-pinene]                                        Eq. S1

dt V

Fd[SOA]
 =  × ( ×[α-pinene]×[OH] + ×[α-pinene]×[O ])×5.6 - 

dt

k k

Yield k k out
wall-loss

chamber

×[SOA] - k ×[SOA]    Eq. S2
V

 370 
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Fout is the dilution rate, which is 20 LPM (estimated by sampling flow rates of all instruments). 371 

Vchamber is the chamber volume, which is about 2 m3. kOH and kO3 are the reaction rate constants 372 

for α-pinene + OH and α-pinene + O3,which are 5.25×10-11 and 9.40×10-17 cm3 molecule-1 s-1 at 373 

298K, respectively (Jenkin et al., 1997). The constant 5.6 is to convert the α-pinene concentration 374 

unit from ppb to µg m-3. Yield is defined as the ratio of the amount of SOA formed to the amount 375 

of VOC reacted (Odum et al., 1996), which is assumed to the same for the oxidation of α-pinene 376 

by OH and O3. The ambient perturbation approach is potentially feasible to directly measure the 377 

SOA yield under real atmospheric conditions. However, certain improvements are required, such 378 

as measuring the concentration of precursor VOC and quantifying the dilution ratio. In the current 379 

box model, yield is a tuning parameter. The model only considers the SOA formed from α-pinene 380 

injected into the chamber and neglects the inflow ambient OA and α-pinene. Thus, the model 381 

results can be directly compared to the LO-OOA enhancement amount.  382 

 We use the simple box model to simulate experiment ap_0801_1. The O3 concentration 383 

measured during this experiment is ~55 ppb. The OH concentration is not measured, but assumed 384 

to be 1×106 or 2×106 molecule cm-3 as sensitivity tests. The particle wall loss is difficult to 385 

characterize because the eight corners of the bag are open, so that the change in particle number 386 

concentration can be due to both wall loss and ambient variation. Moreover, the particle wall loss 387 

may vary between experiments because the wind affects the movement of chamber walls and hence 388 

the particle wall loss. Thus, we assume the particle wall loss rate to be 1×10-4 s-1, which is 100 389 

times higher than the loss rate of 200nm particles in the Georgia Tech Environmental Chamber 390 

facility (Nah et al., 2016) and serves as an upper bound of loss rate. We find that the wall loss rate 391 

has negligible effects on particle mass concentration, compared to other factors. 392 

 Fig. S21 shows the results from the simple box model. Although ~14 ppb α-pinene is 393 

injected, most of α-pinene is carried out of the chamber due to dilution with ambient air (Fig. S21a). 394 

Only 2-5 ppb α-pinene reacts with oxidants (i.e., O3 and OH) after 40 min. For the reacted α-pinene, 395 

roughly half reacts with O3 and the other half reacts with OH. Fig. S21a also shows the simulated 396 

time series of SOA by using a range of yields. The box model can predict the measured 397 

enhancement amount in SOA using SOA yields of 20-30%, which is consistent with yields 398 

measured from laboratory studies (Saha and Grieshop, 2016; Shilling et al., 2008). Despite the 399 

agreement in magnitude, the predicted SOA concentration peaks later and decreases slower than 400 

measurements. Possible reasons include non-ideal mixing and/or existence of a dead zone in the 401 



15 
 

chamber. Assuming a 1.75 m3 dead zone in the 2 m3 chamber can reasonably simulate the temporal 402 

profile of measured SOA (Fig. S21b) with a 10-15 % SOA yield. Roughly 10ppb α-pinene (10% 403 

of initial concentration) is consumed by O3. This amount likely serves as an upper bound because 404 

a 10ppb decrease in O3 concentration is not observed any experiments. Another uncertain 405 

parameter in the box model is the dilution rate. Increasing the dilution rate would have the same 406 

effect as increasing the volume of dead zone. The dilution rate is estimated to be 20 LPM as 407 

determined by the pulling rates of all instruments. This dilution rate is better constrained than the 408 

volume of dead zone since the instrument sampling rates are known. The reasons for the 409 

discrepancy in OA decrease rate between model and measurements are unclear, but likely due to 410 

a combination of dead zone volume and dilution rate. To understand this discrepancy, future 411 

studies with adequate measurements of more species, particularly the VOCs, are required. The 412 

improved experiments could provide better estimate of SOA yields under real ambient conditions. 413 

Palm et al. (2017) attempted to quantify the SOA yields from the individual VOC by oxidizing 414 

VOC in an oxidation flow reactor (OFR) with ambient air. Note that the extra oxidation is added 415 

in the OFR in Palm et al. (2017), which is different from this study. The discrepancy between 416 

model and measurements in either the magnitude or the decrease rate does not influence the 417 

conclusions in this study, as our focus is to qualitatively understand which OA factors the α-pinene 418 

SOA is apportioned into.  419 

 The OA formation in perturbation experiments with isoprene or m-xylene is below the 420 

detection limit of the experimental approach. This is mainly due to the low SOA yields or slow 421 

oxidation rates of these VOCs (Ng et al., 2007). We used the simple box model to simulate the 422 

perturbation experiments with isoprene and m-xylene. For m-xylene experiments, about 90 ppb is 423 

injected. However, due to the slow oxidation rate of m-xylene, small SOA yield (i.e., ~5% in Ng 424 

et al. (2007)), and large dilution by ambient air, it is estimated that only about 4 ppb m-xylene 425 

reacts with OH after 40min and produces ~0.15-0.30 μg m-3 SOA (Fig. S21c). For isoprene, 426 

although its oxidation rate is fast, its SOA yield from non-IEPOX route is low (Xu et al., 2014; 427 

Kroll et al., 2006). The isoprene oxidation products which form SOA are mostly second or higher 428 

generation products. They are not formed in large amount in the relatively short perturbation 429 

experiments (i.e., 40min). The lack of SOA formation in naphthalene experiments is probably due 430 

to naphthalene was not adequately injected into chamber. We injected naphthalene by passing pure 431 

air (1 liter per min) over the solid naphthalene under ambient temperature for 1 min. Due to the 432 
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relatively low vapor pressure of naphthalene (23.6Pa at 30°C) and rapid dilution in the chamber, 433 

the injected naphthalene concentration could be very low. 434 

S7. Laboratory Study on SOA Formation from α-pinene 435 

 We performed laboratory experiments to study the SOA formation from α-pinene under 436 

different NOx conditions in the Georgia Tech Environmental Chamber (GTEC) facility. The 437 

facility consists of two 12 m3 Teflon chambers, which are suspended inside a temperature-438 

controlled enclosure and surrounded by black lights. The detailed description about chamber 439 

facility can be found in Boyd et al. (2015) The experimental procedures have been discussed in 440 

Tuet et al. (2017) In brief, the chambers are flushed with clean air prior to each experiment. Then, 441 

α-pinene and oxidant sources (i.e., H2O2, NO2, or HONO) are injected into chamber. Once the 442 

concentrations of species stabilize, the black lights are turned on to initiate photooxidation. The 443 

SOA generated by using H2O2 (i.e., NO-free condition), NO2 (i.e., mid-NO condition), and HONO 444 

(i.e., high NO condition) as oxidant sources are denoted as SOAlab,H2O2, SOAlab,NO2, and 445 

SOAlab,HONO, respectively. 446 

 The experimental conditions are summarized in Table S2. We note that more than 100ppb 447 

α-pinene is injected in the experiments using H2O2 and HONO. It is because these two experiments 448 

were designed to produce large amounts of SOA for filter collection and offline analysis (Tuet et 449 

al., 2017). Considering that the OA concentration affects the partitioning of semi-volatile organic 450 

compounds and hence affects the organic mass spectra measured by AMS, we calculate the 451 

average mass spectra in these laboratory studies by only using the data when the OA concentration 452 

is below 10 µg m-3, which is similar to that in our ambient perturbation experiments. 453 

 The mass spectra of each laboratory-generated SOA (denoted as SOAlab) are compared 454 

against the mass spectra of α-pinene SOA generated during perturbation experiments (denoted as 455 

“SOAambient”).  The correlation coefficients (R) between the mass spectra of SOAlab and SOAambient 456 

are plotted against the NO concentration during ambient perturbation experiments. We calculate 457 

the organic mass spectra of SOAambient in the following way. Firstly, we scale the magnitude of the 458 

OA mass spectrum during Chamber_Bf period by the ratio of OA concentration during the 459 

Chamber_Bf period to that during the extrapolated Chamber_Bf period. Secondly, we subtract this 460 

scaled OA mass spectrum from that during the Chamber_Af period. Thirdly, we normalize the 461 

“difference mass spectra” to the difference in organic signal. It is important to note that this 462 
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calculation is only performed for the experiments with significant formation of total OA. The 463 

comparison results are discussed in the main text. 464 

 When comparing the mass spectra of SOAambient with SOAlab, we note that the mass 465 

spectrua of SOAambient (when ambient NO is > 0.3ppb) generally agree better with that of 466 

SOAlab,NO2 than SOAlab,HONO. This suggest that the laboratory experiment using NO2+hν as oxidant 467 

source is more representative of ambient high NO conditions than HONO+hν. This is likely due 468 

to the following reasons. Firstly, from the simple box model, we estimate that about half of α-469 

pinene reacts with OH and the other half reacts with O3 in the perturbation experiments, which is 470 

similar to that in laboratory experiments with NO2+hν (Table S2). In contrast, the fate of α-pinene 471 

is dominated by OH in HONO+hν experiment. Secondly, the NOx level and NO/NO2 ratio in 472 

perturbation experiments are more similar to those in the NO2+hν experiment than the HONO 473 

experiment. For example, the NO/NO2 ratio in α-pinene perturbation experiments ranges between 474 

0.03 and 0.4, which is closer to the range in NO2+hν experiment (0.1-0.4) than in HONO 475 

experiment (0.4-0.9). Thirdly, while both perturbation experiments and NO2+hν experiment have 476 

high RH (>40%), the RH in HONO+hν experiment is <5%. However, we expect the effects of 477 

different RH on the mass spectra comparison are much smaller compared to the first two reasons. 478 

S8. Estimate the Fate of RO2 in the Atmosphere 479 

The plateaus in Fig. 7 indicate that when NO is ~0.3ppb, RO2+NO is the dominant fate of 480 

RO2. This NO level (~0.3ppb) is consistent with the NO level required to dominate the fate of RO2, 481 

as calculated by using previously measured HO2 and kinetic rate constants.  482 

According to Master Chemical Mechanism (MCM v3.3) (Jenkin et al., 1997; Saunders et 483 

al., 2003), the reaction rates of RO2+NO and RO2+HO2 are listed below. 484 

2

2 2

3 1 1
RO +NO

3 1 1
RO +HO

k  = 2.7e-12×exp(360/T) = 9.04e-12 cm  molecule  s  (@298K)

k  = 2.91e-13×exp(1300/T) = 2.28e-11 cm  molecule  s  (@298K)

 

 
 485 

The afternoon HO2 concentration is about 5-20ppt from previous measurements at the same site 486 

during a similar period (Sanchez et al., 2016; Chen et al., 2017). Thus, when the NO concentration 487 

is about 0.1-0.5 ppb, RO2+NO would be 10 times faster than RO2+HO2 and NO dominates the fate 488 

of RO2. This is similar to the estimated 0.2-0.3 ppb based on the comparison in organic mass 489 

spectra between SOAambient and SOAlab. 490 
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S9. More discussions on β-caryophyllene perturbation experiments. 491 

 One interesting finding in β-caryophyllene perturbation experiments is that the LO-OOA 492 

enhancement amount is greatly affected by NO2 level. More LO-OOA is formed in perturbation 493 

experiments with a lower NO2 level (Fig. S22f), when the O3 concentration and injection time are 494 

similar. The reason for this NO2 effect on β-caryophyllene SOA is currently unknown. Considering 495 

that the major fate of β-caryophyllene in the ambient perturbation experiments is reaction with O3 496 

(i.e., lifetimes of β-caryophyllene with respect to 40ppb O3 and 106 molecules cm-3 OH are 1.5min 497 

and 80min, respectively), the NO2 effect may be related to Criegee radical, which is the most 498 

important intermediate radical in ozonolysis of alkenes. In terms of the roles of NOx in SOA 499 

formation from β-caryophyllene, previous laboratory studies have mostly focused on the β-500 

caryophyllene oxidation by OH (Tasoglou and Pandis, 2015) instead of oxidation by O3 (i.e., the 501 

atmospherically dominant fate of β-caryophyllene). Thus, the effects of NO2 on SOA formation 502 

from the ozonolysis of β-caryophyllene warrants future studies. 503 

  504 

  505 
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 897 

 898 

Fig. S1. PMF results from bootstrapping analysis. (a) Average mass spectra (sticks) with 1-σ error 899 

bars (caps). (b) Average time series and 1-σ error bars (red).  900 
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 902 

 903 

Fig. S2. Schematic of SOA treatment in (a) default simulation (v5.2) and (b) updated simulation 904 

in CMAQ. See Pye et al. (2017) for a description of the traditional and aqueous aerosol SOA 905 

systems. See Murphy et al. (2017) for a description of the semivolatile POA (POA, POG), oxidized 906 

POA vapors (OOA, OOG) and potential SOA from combustion sources (pcSOA) system. See Pye 907 

et al. (2015) for MTNO3 formation and hydrolysis. In the default simulation, species in blue were 908 

not formed in the updated simulation. In the updated simulation, species in red are different from 909 

the default simulation.  910 
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 911 

 912 

Fig. S3. Time series of gas-phase species detected by HR-ToF-CIMS using I- as reagent ion in 913 

experiment ap_0718_1. Panel (a) includes four major known α-pinene oxidation products. Panel 914 

(b) includes two major known isoprene oxidation products. The signal is normalized to I- and then 915 

normalized to the maximum signal in the time window shown in the figure.  916 
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 917 

Fig. S4. (a) The correlation between isoprene-OA and LO-OOA in the “Chamber_Af” period of 918 

one α-pinene perturbation experiment (i.e., ap_0720_2). (b) The correlation between COA and 919 

LO-OOA in the “Chamber_Af” period of one β-caryophyllene experiment (i.e., ca_0726). 920 
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 922 

Fig. S5. (a) The relationship between isoprene-OA enhancement and LO-OOA enhancement in α-923 

pinene perturbation experiments. (b) The relationship between COA enhancement and LO-OOA 924 

enhancement in β-caryophyllene perturbation experiments. The slopes are from orthogonal fit. The 925 

R is from least square fit. The intercepts are forced to be zero. In α-pinene experiments, isoprene-926 

OA enhancement is 19% of LO-OOA enhancement. Thus, every 1 µg m-3 SOA is formed from α-927 

pinene oxidation, 0.16 µg m-3 [i.e., 0.19/(1+0.19)] is apportioned into isoprene-OA factor and the 928 

rest to LO-OOA factor. 929 
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 931 

 932 

Fig. S6. (a) The diurnal trends of COA in ambient measurements conducted in different years 933 

(2012 to 2016). (b) Time series of COA in 2015 measurements. (c) Diurnal trends of COA during 934 

two periods of measurements in 2015 (08/01-08/21 and 08/13-08/16). 935 
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 937 

Fig. S7. The correlation plot between the mass spectrum of LO-OOA for 2016 rooflab perturbation 938 

study and the LO-OOA obtained in other six ambient datasets in the southeastern U.S. 939 
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 941 

Fig. S8. The diurnal trends of LO-OOA and all fresh SOA (including isoprene (Odum two-product 942 

representation), monoterpenes, sesquiterpenes, and anthropogenic VOCs) at different sampling 943 

sites in the southeastern U.S. in the default CMAQv5.2 simulation. The error bars indicate the 944 

standard error.   945 
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Fig. S9(a). Time series of OA factors in each α-pinene experiment. 948 
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Fig. S9(b). Time series of OA factors in each β-caryophyllene experiment. 968 
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 970 

 971 

 972 

Fig. S10. The average mass fraction of OA factors in Amb_Bf and Chamber_Bf periods in α-973 

pinene experiments. The error bars represent the standard deviation. For most experiments, the 974 

average mass fractions in these two periods are not statistically significantly different, suggesting 975 

that the overall OA compositions are not statistically significantly different between two periods. 976 
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α-pinene experiments 984 

 985 

β-caryophyllene experiments 986 

 987 

Fig. S11. The comparison of (a) Org, (b) SO4, (c) NO3, and (d) NH4 concentrations between 988 

“Chamber_Bf” and “Chamber_Af” for α-pinene and β-caryophyllene perturbation experiments. 989 

Note that the concentrations reported in these figures are simply from average over each period, 990 

without any statistical analysis discussed in Appendix A. Thus, the differences between two 991 

periods are highly affected by ambient variation.  992 
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 993 

 994 

Fig. S12. The correlation coefficient by comparing the OA mass spectra between “Chamber_Bf” 995 

and “Chamber_Af” in (a) α-pinene and (b) β-caryophyllene perturbation experiments. 996 
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 997 

 998 

Fig. S13. The PMF residual (Q/Qexp) during “Chamber_Bf” and “Chamber_Af” periods for (a) α-999 

pinene and (b) β-caryophyllene perturbation experiments. 1000 
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 1002 

1003 
Fig. S14. The mass fraction of OA factors in ambient measurements conducted in different years 1004 
(2012 to 2016). 1005 

  1006 
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 1007 

Fig. S15. Comparison of the SOA mass yields of -pinene ozonolysis in the literature. SOA 1008 

density of 1 g cm-3 is used in all studies to facilitate comparison. Note that in Saha et al. (2016), 1009 

the SOA concentration is required to calculate the SOA yield parameterizations. The yields with 1010 

445 µg m-3 aerosol loading (column i of Table 1 in Saha et al.) are reported in this study.  1011 
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 1013 

Fig. S16. The diurnal trends of AMS measured OA and CMAQ predicted OA mass concentration 1014 

(PM1) in both default and updated simulations. Mean bias (MB), mean error (ME), normalized 1015 

mean bias (NMB) are shown in each panel. 1016 
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 1018 

Fig. S17. The scatter plots of AMS measured OA and CMAQ predicted OA mass concentration in 1019 

both default and updated simulations. The slopes and R are obtained by least square fit. 1020 
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 1022 

Fig. S18. The scatter plots of LO-OOA and CMAQ predicted SOA mass concentration from 1023 

monoterpenes and sesquiterpenes in the default simulation at different sampling sites in the 1024 

southeastern U.S. The slopes and R are obtained by least square fit. The intercepts are forced to be 1025 

zero. 1026 
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 1028 

Fig. S19. The scatter plot between LO-OOA and modeled SOA mass concentration from 1029 

monoterpenes and sesquiterpenes in updated simulation at different sampling sites in the 1030 

southeastern U.S. The slope sand R are obtained from the least square fit. The intercepts are forced 1031 

to be zero. 1032 
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 1034 

Fig. S20. The diurnal trends of LO-OOA and modeled SOA from monoterpenes and 1035 

sesquiterpenes at different sampling sites in the southeastern U.S. in the default simulation. The 1036 

mean bias (MB), mean error (ME), and normalized mean bias (NMB) are shown for each site. The 1037 

slopes and R are obtained by least square fit. 1038 
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 1040 

 1041 

 1042 

Fig. S21. Simulated time series of VOCs and SOA based on a simple box model. (a) α-pinene 1043 

experiments assuming a range of SOA yields and no dead volume. (b) α-pinene experiments 1044 

assuming a range of SOA yields and 1.75 m3 dead volume. (c) m-xylene experiments assuming 5% 1045 

SOA yield and 1.75 m3 dead volume. 1046 
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  1047 

  1048 

 1049 
 1050 

Fig. S22. The influence of NOx on β-caryophyllene SOA formation. (a) ΔLO-OOA as a function 1051 

of O3, colored by injection time. (b) ΔLO-OOA as a function of O3, colored by NOx. (c) ΔOA as 1052 

a function of O3, colored by injection time. (d) ΔLO-OOA as a function of O3/NOx ratio, colored 1053 

by O3. The slopes and intercepts are obtained by least square fit. (e) ΔLO-OOA as a function of 1054 

O3, colored by NO. (f) ΔLO-OOA as a function of O3, colored by NO2. 1055 
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Table S1. Sampling sites and periods for the Southeastern Center for Air Pollution and 1056 

Epidemiology (SCAPE) study and the Southern Oxidant and Aerosol Study (SOAS). 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

 1065 

  1066 

Site (Abbreviation) Sampling Period 

Jefferson Street (JST_May) 5/10/2012 - 6/2/2012 

Yorkville (YRK_July) 6/26/2012 - 7/20/2012 

Georgia Tech (GT_Aug) 7/20/2012 - 9/4/2012 

Jefferson Street (JST_Nov) 11/6/2012 - 12/4/2012 

Yorkville (YRK_Dec) 12/5/2012 - 1/10/2013 

Centreville (CTR_June) 6/1/2013 – 7/15/2013 
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Table S2. The experimental conditions of laboratory α-pinene experiments. 1067 

Expt. 
[HC]0 
(ppb) 

Oxidant 
precursor 

RH 
NO 

(ppb)b 
NO2 

(ppb)b 
O3 

(ppb)b 
OH 

(106 molec cm-3)e 
1 334a H2O2 40% <DL, <DLc <1, <1c N.A. 1.0 
2 174a HONO <5% 269, 167 310, 440 5, 32 10.9 
3 15 NO2 50% 23, 7d 60, 60 20, 71 3.6 

aMore than 100ppb α-pinene is injected in the first two experiments. It is because these two 1068 

experiments were designed to produce large amounts of SOA for filter collection and offline 1069 

analysis. 1070 

bThere are two values in these columns. The first value represents the initial concentration when 1071 

turning on the lights. The second value represents the concentration when the OA concentration 1072 

reaches about 10 µg m-3. 1073 

cBackground NOx level in the chamber.  1074 

dThe initial concentrations of NO, NO2, and O3 in NO2+hν experiments are reported at 3 min after 1075 

turning on lights. 1076 

eThe OH concentration is estimated based on the decay of α-pinene, after considering the 1077 

consumption of α-pinene by O3. 1078 

  1079 
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Table S3. The properties of the lumped oxidation products from monoterpenes + O3/OH.  1080 

Species α1 C*1 enthalpy1 Potential surrogate structure nC2 nO2 nH2 MW OM/OC H3 V lebas Dg density

 g g-1 µg m-3 kJ mol-1     g mol-1 g g-1 M atm-1 cm3 mol-1 cm2 s-1 g cm-3 

MT1 0.040 0.01 102.0 C15H24O6 (Zhang et al., 2015) 15 6 24 300 1.67 7.1E+11 355.2 0.0424 1.4 

MT2 0.032 0.1 91.0 C10H16O4 (Chan et al., 2009; Zhang et al., 2015) 10 4 16 200 1.67 8.9E+10 236.8 0.0556 1.4 

MT3 0.032 1 80.0 pinic acid (Yu et al., 1999) 9 4 14 186 1.72 1.1E+10 214.6 0.0583 1.4 

MT4 0.103 10 69.0 hydroxypinonaldehyde (Yu et al., 1999) 10 3 16 184 1.53 1.4E+09 229.4 0.0587 1.4 

MT5 0.143 100 58.0 norpinonic acid (Yu et al., 1999) 9 3 14 170 1.57 1.8E+08 207.2 0.0619 1.4 

MT6 0.285 1000 47.0 pinonaldehyde (Yu et al., 1999) 10 2 16 168 1.40 2.2E+07 222.0 0.0624 1.4 

MT7 0.160 10000 36.0 norpinonaldehyde (Yu et al., 1999) 9 2 14 154 1.43 2.8E+06 199.8 0.0661 1.4 

1α, C* (@298K), and enthalpies are based on TD fit in Table 1 Saha and Grieshop (2016) assuming 1081 

an OA concentration of 445 µg m-3. 1082 

2Number of oxygen per surrogate is based on Donahue et al. (2011) relationship as used in Pye et 1083 

al. (2017). Number of carbon and oxygen used to find potential surrogate structure. 1084 

3Henry's Law Coefficients (H) is based on Hodzic et al. (2014) and relationship with C*. An 1085 

enthalpy of solvation of 50 kJ mol-1 is used. 1086 

  1087 
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Table S4. Experimental conditions for ambient perturbation experiments. 1088 

Perturbation Expt IDa Date 
Injection 

Time 
Perturbation 

Amountb 
NOc 
(ppb) 

NO2
c 

(ppb) 
O3

c 
(ppb)

α-pinene 

ap_0718_1 7/18/2016 11:18 14 0.69 3.57 48.3 
ap_0718_2 7/18/2016 21:44 14 0.29 10.12 40.2 
ap_0719_1 7/19/2016 9:48 14 7.98 19.96 31.9 
ap_0719_2 7/19/2016 13:44 14 0.46 4.14 71.6 
ap_0719_3 7/19/2016 17:18 14 0.19 4.29 81.9 
ap_0720_1 7/20/2016 10:52 14 1.96 9.09 56.5 
ap_0720_2 7/20/2016 19:36 14 0.10 3.54 75.0 
ap_0728_1 7/28/2016 10:04 14 1.53 3.97 25.3 
ap_0728_2 7/28/2016 15:40 14 0.75 3.12 32.7 
ap_0729_1 7/29/2016 11:04 14 1.55 5.69 36.8 
ap_0729_2 7/29/2016 16:22 14 0.63 3.61 43.6 
ap_0731 7/31/2016 12:18 14 0.19 2.73 48.5 

ap_0801_1 8/1/2016 12:42 14 0.24 5.28 53.1 
ap_0801_2 8/1/2016 17:06 14 0.25 3.23 44.9 
ap_0802 8/2/2016 13:08 14 0.23 3.41 48.5 
ap_0803 8/3/2016 17:22 14 0.14 2.65 53.2 
ap_0804 8/4/2016 15:18 14 0.27 6.04 53.2 

ap_0805_1 8/5/2016 13:14 14 0.27 6.02 60.5 
ap_0805_2 8/5/2016 17:42 28 0.13 3.13 52.4 

β-caryophyllene 

ca_0721 7/21/2016 11:32 10 2.02 9.73 62.3 
ca_0724 7/24/2016 20:58 10 0.32 10.12 27.6 
ca_0726 7/26/2016 9:58 10 2.48 8.19 39.9 
ca_0801 8/1/2016 21:20 10 0.24 5.19 24.7 
ca_0804 8/4/2016 11:02 10 0.48 5.60 38.1 
ca_0806 8/6/2016 17:54 10 0.23 3.77 45.6 

aExpt ID is named as “perturbation species + date + experiment number”. For example, ap_0801_1 1089 
represents the first α-pinene perturbation experiment on 08/01. 1090 
bThe unit for the perturbation in α-pinene and β-caryophyllene experiments is ppb. The 1091 
perturbation amounts of α-pinene and β-caryophyllene are estimated based on the VOC injection 1092 
volume and chamber volume. The amount of VOC injected is not the same as the amounts 1093 
consumed by oxidants (section S6).  1094 
cAverage concentration during the Chamber_Af period. 1095 

 1096 

 1097 

 1098 

 1099 



59 
 

Table S5. Sampling periods for the measurements at the GT site from 2012 to 2016. 1100 

Year Sampling Period Note Reference 
2012 7/21 - 9/3 Continuously ambient measurements Xu et al. 2015 ACP 

2013 8/1/- 8/25 
AMS alternates between ambient line 

and PILS line 
Xu et al. 2017 ES&T 

2015 8/1 - 8/16 
Ambient perturbation experiments and 

experiments for other purposes 
This study 

2016 7/1 - 8/6 Ambient perturbation experiments This study 

 1101 

 1102 

 1103 

 1104 

 1105 

 1106 

 1107 

 1108 

 1109 

 1110 

 1111 

 1112 

 1113 

 1114 

 1115 
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