

a. Sorting of human memory T_H17 cells from PBMCs based on chemokine receptor expression or cytokine secretion. MACS-enriched CD4⁺ T cells were stained with antibodies to CD45RA, CD25, CCR7, CCR6, CCR4 and CXCR3. CD4⁺ memory T_H17 cells were sorted, after exclusion of CD45RA⁺CCR7⁺ naïve T cells (T_N) and CD8⁺ CD14⁺ CD19⁺ CD56⁺ CD25⁺ cells, as CCR6⁺CCR4⁺CXCR3⁻ or, alternatively, as CCR6⁺CXCR3⁻IL-17A⁺ (a, lower panels). Dot plots from one donor, representative of more than 10 donors analyzed. **b**. Cytokine production as assessed by intracellular staining in Day 0-resting and Day 5-activated T_H17 -IL-10⁺ and T_H17 -IL-10⁻ clone pools after 5 h stimulation with PMA plus lonomycine. Data are represented as mean + 95% c.i., with each dot indicating a T cell clone pool from independent experiments ($n \ge 9$) (note: the number of clone pools is paired and the same in T_H17 -IL-10⁺ and T_H17 -IL-10⁻, but can vary for different cytokines (IL-10 and IFN- γ , n = 15; IL-22, n = 13; IL-4, n = 10; GM-CSF, n = 9). **P* < 0.05; ***P* < 0.01; *****P* < 0.0001, as determined by ratio paired *t* test.

Supplementary Figure 2

Gene ontology (GO) analyses of differentially expressed genes and IncRNAs in T_H17-IL-10⁺ and T_H17-IL-10⁻ cells

Gene ontology (GO) analyses on the biological processes associated to the differentially expressed protein-coding genes (**a**) or IncRNAs (**b**) in Day 0-resting and Day 5-activated $T_H 17$ -IL-10⁺ and $T_H 17$ -IL-10⁻ cells. GO terms are clustered by semantic similarity and a synthetic description is shown. *P*-value as determined by MetaCore based on hypergeometric distribution; *P*-value threshold (vertical line) set at 1 x 10⁻⁵.

Differential surface marker expression in $T_H 17$ -IL-10⁺ and $T_H 17$ -IL-10⁻ cells

a,b. Expression of CTLA4, PD-1, CD25, CD69, CXCR6, CCR7 and FOXP3 as assessed by flow cytometry in Day 5-activated T_H17 -IL-10⁺ and T_H17 -IL-10⁻ clone pools. Shown are representative histogram plots (**a**) and cumulative data of clone pools from independent experiments (mean + 95% c.i.; CTLA-4 and PD-1, n = 10; CD25, CXCR6 and CCR7, n = 9; CD69 and FOXP3, n = 7) (**b**). **P* < 0.05; ***P* < 0.01; ****P* < 0.001; *****P* < 0.0001, as determined by ratio paired *t* test. **c.** Expansion of T_H17 -IL-10⁺ and T_H17 -IL-10⁻ cells in response to stimulation with CD3/CD28 antibodies. T_H17 -IL-10⁺ and T_H17 -IL-10⁻ cells were stimulated with plate-bound CD3/CD28 antibodies for 48 h and their proliferation was measured at the indicated time points. Shown is the average of two independent experiments (mean ± s.e.m.).

SFMC from healthy donors (HD) vs. juvenile rheumatoid arthritis patients (RA) (**b**) are shown. GSEA enrichment results were reported as normalized enrichment score and familywise enrichment (FWER) P value. FWER P values smaller than 0.05 (dashed line) were considered significant. **c**. c-MAF expression in ileal biopsies from healthy donors (HD), ulcerative colitis (UC) and Crohn's disease (CD) patients, with histologically graded disease severity, is shown in a box (interquartiles, with a line indicating the median value) and whiskers (min to max values) plot. *P*-value as determined by Kruskal-Wallis test. Micro. Infl. = microscopic inflammation; Macro. Infl. = macroscopic inflammation.

a. Position weight matrix (PWM) of the top ranked DNA motives identified by the MEME suite software in the Day 5-activated T_H17-IL-10⁺ c-MAF ChIP-seq dataset; *e*-values: MAF (DREME), 5.5 x 10⁻²¹²; MAF (MEME), 6.6 x 10⁻¹⁷⁵; AP-1, 1.7 x 10⁻¹⁴⁶; NFAT, 3.9 x 10⁻¹⁴⁵; RUNX, 2.6 x 10⁻⁸¹; ETS, 1.1 x 10⁻⁵⁷; TCF, 1.1 x 10⁻²⁰. **b.** Gene Ontology (GO) analysis of genes associated to c-MAF-bound regions in Day 5-activated T_H17-IL-10⁺ cells. GO biological processes are ranked according to their binomial *P*-value. **c.** Graphical representation of a previously characterized (MARE_2) and a novel (IL10_MAF) c-MAF binding sites at the *IL10* locus by the Integrative Genome Viewer (IGV). **d.** The 1 kb genomic region centered on the novel putative *IL10* enhancer (IL10_MAF) was aligned to an isometric genomic region centered on a c-MAF peak localized about 9 kb upstream of *II10* in mouse T_H17 cells¹. The core enhancer region shown is highly conserved between human and mouse (83% identities) and includes a canonical c-MAF binding site (highlighted in yellow). **e.** The activation status of the newly identified putative *IL10* enhancer was evaluated by quantifying H3K27ac and H3K27me3 levels in Day 5-activated T_H17 -IL-10⁺ and T_H17 -IL-10⁻ cells by ChIP-qPCR (mean + s.e.m.; n=2).

¹Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289-303 (2012).

Supplementary Figure 6

Examples of c-MAF binding to immunoregulatory and tissue-residency genes loci

a-g. Graphical representation of c-MAF binding profiles at the locus of the indicated genes using the Integrative Genome Viewer (IGV).

a. c-MAF isoform a (upper panels) and isoform b (lower panels) ectopic expression in Day 5-activated T_H17-IL-10[−] cells as measured by intracellular staining; representative plots (left panels) and combined results (right panels) are displayed. b. IL-10 production secondary to c-MAF ectopic expression in the same cells as determined by intracellular staining. Data are represented as mean + 95% c.i. (isoform a: n = 5, isoform b: n = 7). **c.** Expression of c-MAF and IL-10 in T_H17 -IL10⁻ cells upon ectopic expression of c-MAF isoform b. Control (empty vector) cells and c-MAF-b (c-MAF isoform b) expressing T_H17 -IL10⁻ cells were polyclonally stimulated with or without IL-27 (25 ng/ml) and c-MAF and IL-10 expression was measured in Day 5-activated cells by flow cytometry, after 5 h stimulation with PMA+I (mean + s.e.m.; n = 3). **d.** Expression of c-MAF-dependent genes in T_H17 -IL10⁻ cells upon ectopic expression of MAF isoform a (left panel, n = 4) and b (right panel, n = 6), as measured by qPCR. Black bars indicate T_H17 -IL10⁺-associated genes, grey bars indicate T_H17 -IL10⁻-associated genes. Shown is the average log₂ fold change over empty vector (mean + s.e.m). n.a., not assessed. **e,f.** Representative dot plots (**e**) and cumulative data of expression of IFN- γ and IL-22 (**f**) as assessed by intracellular staining of Day 5-activated T_H17 -IL10⁻ cells following ectopic expression of MAF isoform b or control empty vector (eV). Data are expressed as percentage over empty vector and represent the mean + s.e.m. (n = 7), with each dot indicating a T cell clone pool from independent experiments. ***P* < 0.01; ****P* < 0.001, as determined by ratio paired *t* test (**a-c**) and paired *t* test (**f**).

a. c-MAF peaks from Day 5-activated T_H17 -IL-10⁺ cells were ranked according to the fold enrichment over the input, corrected for *P*-value, and clustered in bins of 1000 peaks (cluster 7 is made of 778 peaks). c-MAF peaks-associated nucleosome-free regions (NFRs) in the same cells were identified from H3K27ac ChIP-seq data and their size was compared to the corresponding NFRs in Day 5-activated T_H17 -IL-10⁻ cells. If a NFR was not detected, the size was reported as 0. Each dot in (a) represents a NFR and the white lines indicate median and interquartile ranges. *P*-values are obtained by Wilcoxon matched-pairs signed rank test. **b.** Number of total H3K27ac peaks (left panel) identified in Day 0 and Day 5 T_H17 -IL-10⁺ and T_H17 -IL-10⁻ cells, as assessed by ChIP-seq (MACS *P*-value)

 \leq 10 x 10⁻¹⁰, FDR \leq 5% and fold enrichment \geq 5). Subset-specific H3K27ac peaks (right panel) were identified, among the total ones, as H3K27ac peaks that were specifically enriched (MACS *P*-value \leq 10 x 10⁻⁶ and fold enrichment \geq 3) in the indicated population. Multiple H3K27ac peaks residing within 1 kb were collapsed into a single domain. **c.** Position weight matrices (PWMs) of DNA enriched motives identified in NFRs associated to recently-activated T_H17-IL-10⁺-specific and T_H17-IL-10⁻-specific H3K27ac domains. **d.** Consensus PWMs of the indicated transcription factors were downloaded from the Hocomoco v.11 database². Overlapping nucleotides in consensus motifs are highlighted by a light grey box in background **e.** Gene expression profile of the indicated transcription factors in Day 5-activated T_H17-IL-10⁺ and T_H17-IL-10⁻ cells was obtained from RNA-seq data (Fig. 4).

²Kulakovskiy, I.V. et al. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res 46, D252-D259 (2018).