
Supplementary Material S1: A review of

phylogenetic concepts

Phylogenetic models

Phylogenetic models have become a common tool in the study of infectious disease

transmission [1–5] and are used to detect transmission chains. Those models use

pathogen genetic sequences, collected from infected individuals, to infer the history of

the epidemic, which is represented by a tree structure known as a phylogeny, e.g. Fig 1.

The phylogeny can be fully represented with two components,

1. The topology: Represented by a list indicating the order in which the the tips of

the tree meet to form internal nodes,

2. The branch lengths: Expressed in expected nucleotide substitutions per base pair

(nt/bp), they indicate genetic distance.

The first component summarizes clades in the tree. In Fig 1, that list would be (with

{x} designating the viral DNA sequence from patient x): [{1}, …, {7}, {3, 4}, {6, 7},

{2, 3, 4}, {5, 6, 7}, {1, …, 4}, {1, …, 7}, {Outgroup, 1, …, 7}]. Any set of genetic

sequences forms a clade if and only if it contains all sequences descended from an

arbitrary node. Trivially, all sets of size 1 and the set comprising the entire sample

form clades. A set including only viral sequences from patients 1 and 2 would not

constitute a clade however, since their most recent common ancestor has four

descendants, namely, the sequences from patients 1 to 4.

Due to the availability of sizeable viral DNA sequence databases collected in the

context of antiretroviral drug resistance testing [6–8], phylogenetics has been used

extensively to study Human Immunodeficiency Virus (HIV) epidemics [9, 10]. The

Quebec HIV genotyping program database for example, as of 2017, contains 27, 487

HIV sequences from 9, 687 HIV-positive individuals, living mostly in Montreal,

Quebec, Canada [11].
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Fig 1. Phylogeny for a sample of seven HIV sequences obtained from
different HIV-positive patients, with an outgroup used to place the root of
the tree. The sampled viral sequences are placed at the tips of the tree, and the root
corresponds to the sample’s most recent common ancestor. Branches link the different
nodes in the tree. Their lengths are expressed in expected nucleotide substitutions per
base pair (nt/bp), a measure of genetic distance, indicating dissimilarity between
sequences.

Transmission clusters and transmission chains

Disagreements persist in the literature regarding the difference between transmission

chains and transmission clusters [12, 13]. When studying viral transmission among

members of a population, we often consider only one viral DNA sequence per infected

individual, and therefore, a given clade contains sequences from all sampled individuals

who became infected following a specific outbreak or introduction of the pathogen into

the population. As a result, those cases must belong to the same transmission chain.

All conventional phylogenetic clustering methods require transmission clusters to be

non-nested clades, and so, individuals that co-cluster must belong to the same
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transmission chain. Clustering algorithms therefore identify, first and foremost,

distinct transmission chains, that are then termed “transmission clusters” if they

satisfy certain criteria, usually a small enough genetic distance between their members

and a minimum confidence level for their estimation. In other words, we can use

standard phylogenetic clustering algorithms to find transmission chains: the only

difference is in the requirements for the clades. In this paper, the terms partitioning

and clustering are synonymous, and we use the term “transmission chain”.

Confidence thresholds for transmission chain inference

Phylogenetic studies for the inference of transmission chains in HIV-1 epidemics have

relied mostly on methods deemed nonparametric, as they tend to depend on a number

of ad hoc rules applied a posteriori to phylogenetic estimates [14]. In particular,

availability of software like MEGA and PAUP* [15,16] has led to widespread adoption

of maximum likelihood phylogenetic reconstruction, coupled with the bootstrap to

evaluate confidence in the inferred clades. The scheme involves repeated resampling of

site indices, and construction of simulated sequences based on the indices obtained. A

phylogeny is then fitted to each simulated sample, and clades are listed. The

proportion of times each clade appears in the obtained phylogenies is computed, which

serves as the previously-mentioned measure of confidence. In that context, chain

estimation depends on an arbitrary cutoff applied to bootstrap support estimates,

usually between 70% and 95% [11,17,18].

Alternatively, software like BEAST and MrBayes [19,20] have popularised Bayesian

phylogenetic estimation. Both are based on versions of the Markov Chain Monte Carlo

(MCMC) algorithm, that numerically approximate posterior distributions for a variety

of evolutionary and phylogenetic parameters. They also provide posterior probability

support for clades, a Bayesian alternative to bootstrap support. Most of the times,

studies require posterior probability support of 1 to conclude in a clade forming a

genuine transmission chain [21,22].

A popular alternative to both bootstrap-based and Bayesian estimates of clade

support is the approximate likelihood ratio test (aLRT) for branches [23], more

specifically the aLRT-SH non-parametric branch support estimate. It is available in
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PhyML [24] and IQtree [25]. It consists in a test statistic that indicates to what extent

a given branch contributes to a gain in the phylogenetic likelihood, in comparison to

the case where its length is reduced to zero, thus eliminating it altogether.

Distance requirements for transmission chain inference

In addition to clade confidence requirements, studies often impose a within-chain

genetic distance requirement, usually between 0.01 nt/bp and 0.05 nt/bp [26].

Distance requirements may be applicable to mean [8], median [27], or maximum

patristic distances [11], also called tree or cophenetic distances, that is, distances

calculated by summing branch lengths along the shortest path between any two tips in

the phylogeny. The ClusterPicker algorithm instead formulates that requirement in

terms of maximum within-chain p-distances, e.g. the Hamming distance [26]. Both

p-distances and patristic distances are measures of genetic distance, with the former

being computed separately for each pair of sequences, and the latter being based on

information obtained from the whole sample [22]. As noted previously, sets of

sequences that meet both the confidence and distance requirements are usually termed

“transmission clusters”.

Summarising samples of trees

Both the bootstrap and the MCMC algorithms produce samples of trees that must be

summarised before the application of confidence or genetic distance criteria. One

strategy involves using the maximum likelihood (ML) or maximum posterior

probability (MAP) tree, and applying criteria solely to the clades they contain.

However, it is common for phylogenetic estimation procedure to produce several trees

with likelihood or posterior probability very close to the maximum. The data may

therefore support a wide variety of phylogenies, and this is not properly reflected by

the ML or MAP trees. To address the issue, a majority-rule consensus tree can be

constructed instead: in it, bifurcations support clades found in more than 50% of

sampled trees; otherwise, multifurcations are used [28]. The majority-rule consensus

tree can be shown to always exist, but it lacks branch lengths [22]. In other words, it

provides only a nesting order for clades, which precludes the application of patristic
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distance requirements.

Alternative partitioning approches

Cutoffs are however hard to justify rigorously [12] and so, methods grounded in more

explicit definitions of chains have been published. For example, [29] proposed the

so-called Gap Procedure, a fast pure distance-based approach that requires minimal

tuning. Indeed, it involves a single tuning parameter, whose purpose is to eliminate

the effect of outliers on estimation and whose value rarely need to be changed. In a

similar vein, [30] formulated DM-PhyClus, a Bayesian algorithm that aims to limit

reliance on hard thresholds and to offer a straightforward measure of uncertainty for

estimates of chain membership. Other options are also available [31–33].

Computational challenges

The heavy computational burden of conventional phylogenetic inference is problematic

in light of the fast increase in the size of sequence databases, and can therefore restrict

its applicability [34]. Thankfully, software designed to handle larger datasets is now

available. RAxML [35] and FastTree [36], for example, make use of heuristics in

phylogenetic optimisation to improve scalability of the maximum likelihood

phylogenetic methods. Partitioning of large datasets in a purely Bayesian paradigm is

a computational challenge that has not yet been fully overcome, although vast

progress has been made thanks in part to GPU computing [19,20].
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