
Mathematical background
for

Optimal-transport analysis
of single-cell gene expression

identifies developmental trajectories in
reprogramming.



Contents

I. Modeling developmental processes with optimal transport 3
1 Developmental processes in gene expression space . . . . . . . . . . . . . . . . . . . . 3

1.1 A mathematical model of developmental processes . . . . . . . . . . . . . . . . 4
2 The optimal transport principle for developmental processes . . . . . . . . . . . . . . . 5

2.1 The optimal transport principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Inferring temporal couplings from empirical data . . . . . . . . . . . . . . . . . . . . . 7

3.1 Estimating couplings between adjacent time points . . . . . . . . . . . . . . . . 8
3.2 Estimating long-range couplings . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Interpreting transport maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1 Defining ancestors, descendants and trajectories . . . . . . . . . . . . . . . . . . 10
4.2 Interpreting the entropy regularization parameter . . . . . . . . . . . . . . . . . 10
4.3 Gradient flow and Waddington’s landscape . . . . . . . . . . . . . . . . . . . . 11

II. WADDINGTON-OT : Concepts and Implementation 13
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Computing transport maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Regularization parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Estimating relative growth rates . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Ancestors, descendants, and trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Learning gene regulatory models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Local model: TF enrichment analysis of top ancestors . . . . . . . . . . . . . . 16
4.2 Global model: learning a cell-autonomous gradient flow . . . . . . . . . . . . . 16

5 Geodesic interpolation for validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2



I. Modeling developmental processes with optimal transport

We developed a method to model development based on optimal transport. Section 1 reviews the con-
cept of gene expression space and introduces our probabilistic framework for time series of expression
profiles. Section 2 introduces our key modeling assumption to infer temporal couplings over short time
scales. Section 3 shows how we can compute an optimal coupling between adjacent time points by
solving a convex optimization problem, and how we can leverage an assumption of Markovity to com-
pose adjacent time points and estimate temporal couplings over longer intervals. Section 4 describes
how to interpret transport maps. Specifically, Section 4.1 shows how to compute ancestors and de-
scendants of cells, Section 4.2 establishes a connection between entropic OT and Brownian motion of
indistinguishable particles, and Section 4.3 shows how OT generalizes Waddington’s classical metaphor
of development in terms of a potential energy landscape. While Waddington’s picture can only describe
cell autonomous processes, which are akin to gradient flows in gene expression space, OT can describe
gradient flows in the space of probability distributions on gene expression space. These can involve
interactions between particles.

1. Developmental processes in gene expression space

A collection of mRNA levels for a single cell is called an expression profile and is often represented
mathematically by a vector in gene expression space. This is a vector space that has dimension equal to
the number of genes, with the value of the ith coordinate of an expression profile vector representing the
number of copies of mRNA for the ith gene. Note that real cells only occupy an integer lattice in gene
expression space (because the number of copies of mRNA is an integer), but we pretend that cells can
move continuously through a real-valued G dimensional vector space.

As an individual cell changes the genes it expresses over time, it moves in gene expression space and
describes a trajectory. As a population of cells develops and grows, a distribution on gene expression
space evolves over time. When a single cell from such a population is measured with single cell RNA-
seq, we obtain a noisy estimate of the number of molecules of mRNA for each gene. We represent
the measured expression profile of this single cell as a sample from a probability distribution on gene
expression space. This sampling captures both (a) the randomness in the measurement process (due to
subsampling reads, technical issues, etc.) and (b) the random selection of a cell from the population. We
treat this probability distribution as nonparametric in the sense that it is not specified by any finite list
of parameters.

In the remainder of this section we introduce a precise mathematical notion for a developmental
process as a special type of stochastic process (with a modified notion of coupling to accommodate
cellular growth and death). Our primary goal is to infer the ancestors and descendants of subpopulations
evolving according to an unknown developmental process. This information is encoded in the temporal
coupling of the process, which is lost because we kill the cells when we perform scRNA-Seq. We claim
it is possible to recover the temporal coupling over short time scales provided that cells don’t change too
much. We show in the remainder of this appendix how to do this with optimal transport.
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1.1. A mathematical model of developmental processes

We begin by formally defining a precise notion of the developmental trajectory of an individual cell and
its descendants. Intuitively, it is a continuous path in gene expression space that bifurcates with every
cell division. Formally, we define it as follows:

Definition 1 (single-cell developmental trajectory). Consider a cell x(0) ∈ RG. Let k(t) ≥ 0 specify the
number of descendants at time t, where k(0) = 1. A single-cell developmental trajectory is a continuous
function

x : [0, T )→ RG × RG × . . .× RG︸ ︷︷ ︸
k(t) times

.

This means that x(t) is a k(t)-tuple of cells, each represented by a vector in RG:

x(t) =
(
x1(t), . . . , xk(t)(t)

)
.

We refer to the cells x1(t), . . . , xk(t)(t) as the descendants of x(0).

Note that we cannot directly measure the temporal dynamics of an individual cell because scRNA-
Seq is a destructive measurement process: scRNA-Seq lyses cells so it is only possible to measure the
expression profile of a cell at a single point in time. As a result, it is not possible to directly measure
the descendants of that cell, and the full trajectory is unobservable. However, one can hope to learn
something about the probable trajectories of individual cells by measuring snapshots from an evolving
population.

Published methods typically represent the aggregate trajectory of a population of cells by means of a
graph structure. While this recapitulates the branching path traveled by the descendants of an individual
cell, it may over-simplify the stochastic nature of developmental processes. Individual cells have the
potential to travel through different paths, but any given cell travels one and only one such path. Our
goal is to assign a likelihood to the set of possible paths, which in general are not finite and therefore
cannot be a represented by a graph.

We define a developmental process to be a time-varying probability distribution on gene expression
space. One simple example of a distribution of cells is that we can represent a set of cells x1, . . . , xn by
the distribution

P =
1

n

n∑
i=1

δxi ,

where δx denote the Dirac delta (a distribution placing unit mass on x). Similarly, we can represent a set
of single-cell trajectories x1(t), . . . , xn(t) with a distribution over trajectories. This is a special case of
a developmental process, which we define as follows:

Definition 2 (developmental process). A developmental process Pt is a time-varying distribution (i.e.
stochastic process) on gene expression space.

Recall that a stochastic process is determined by its temporal dependence structure. This is specified
by the coupling (i.e. joint distribution) between random variables at different time points. Given that a
cell has a particular expression profile y at time t2, where did it come from at time t1? This is precisely
the information lost by not tracking individual cells over time.

Definition 3 (temporal coupling). Let Pt be a developmental process and consider two time points s < t.
Let Xt ∼ Pt denote the expression profile of a random cell at time t and let Xs denote the expression
profile of its cell of origin at time s.
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The temporal coupling γs,t is defined as the law of the joint distribution:

γs,t = L(Xs, Xt).

Equivalently, ∫
x∈A

∫
y∈B

γs,t(x, y)dxdy = Pr{Xs ∈ A,Xt ∈ B}

for any sets A,B ⊂ RG.

The temporal coupling γs,t is not technically a coupling of Ps and Pt in the standard sense because it
does not necessarily have marginals Ps and Pt:∫

γs,t(x, y)dx = Pt(y), but
∫
γs,t(x, y)dy 6= Ps(x).

Biologically, this is the case when cells grow at different rates. Then proliferative cells from the earlier
time point will be over-represented when we look for the origin of cells at the later time point. In the
following definition, we introduce a relative growth rate function to describe the relationship between
the expression profile of a cell and the average number of living descendants it gives rise to after certain
amount of time.

Definition 4. A relative growth rate function associated with a temporal coupling is a function g(x)
satisfying ∫

γs,t(x, y)dy = Ps(x)
g(x)t−s∫

g(x)t−sdPs(x)
.

The integral on the left-hand side represents the amount of mass coming out of x and going to any y.
The term P(x) on the right hand side accounts for the abundance of cells with expression profile x, and
the function g(x) represents the exponential increase in mass per unit time.

Having defined the notion of developmental processes and temporal couplings, we now turn to esti-
mating these from data.

2. The optimal transport principle for developmental processes

ScRNA-Seq allows us to sample cells from a developmental process at various time points, but it does
not give any information about the coupling between successive time points. Without making any as-
sumptions, it is impossible to recover the temporal coupling even given infinite data in the form of the
full distributions Ps and Pt. However, we claim that it is reasonable to assume that cells don’t change
expression by large amounts over short time scales. This assumption allows us to estimate the coupling
and infer which cells go where.

We begin with a simple one-dimensional example to build intuition.

Example 1. Let X0 ∼ N (0, σ2) and X1 ∼ N (µ, σ2) be one dimensional Gaussian variables repre-
senting the location of a particle at time 0 and at time 1. If we believe that the particle cannot move very
far over a short amount of time, then how can we infer the coupling γ specifying the joint distribution
of the pair (X0, X1)? One simple heuristic to estimate γ̂ is to minimize the squared distance that the
particle moves from time 0 to time 1:

γ̂ ← arg min
π

Eπ‖X0 −X1‖2.

We minimize over all couplings π with marginals N (0, σ2) and N (µ, σ2). One can check that the
optimal joint distribution is a two dimensional Gaussian with the following dependence structure:

X1 = X0 + µ.
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This heuristic to couple marginals is called optimal transport (OT) (Villani, 2008). If c(x, y) denotes
the cost of transporting a unit mass from x to y, and the amount we transfer from x to y is π(x, y), then
the total cost of transporting mass according to such a transport plan π is given by∫∫

c(x, y)π(x, y)dxdy.

In this paper we focus exclusively on the cost defined by the squared-Euclidean distance

c(x, y) = ‖x− y‖2,

on an appropriate input space (see Chapter II for details). We make this choice to focus on this cost
function because of the many well-known attractive theoretical properties it enjoys over other cost func-
tions (Villani, 2008).

The optimal transport plan minimizes the expected cost subject to marginal constraints:

π(P,Q) = minimize
π

∫∫
c(x, y)π(x, y)dxdy

subject to
∫
π(x, ·)dx = Q∫
π(·, y)dy = P.

(1)

Note that this is a linear program in the variable π because the objective and constraints are both linear
in π. The optimal objective value defines the transport distance between P and Q (it is also called the
Earthmover’s distance or Wasserstein distance). Unlike many other ways to compare distributions (such
as KL-divergence or total variation), optimal transport takes the geometry of the underlying space into
account. For example, the KL-Divergence is infinite for any two distributions with disjoint support, but
the transport distance depends on the separation of the support. For a comprehensive treatment of the
rich mathematical theory of optimal transport, we refer the reader to (Villani, 2008).

2.1. The optimal transport principle

We propose to use optimal transport to estimate the temporal coupling of a developmental process. We
make two modifications to classical optimal transport to adapt it to our biological setting.

1. Classical optimal transport has conservation of mass built into the constraints (1). We account for
growth by rescaling the distribution Pt before applying OT.

2. The coupling identified by classical optimal transport is purely deterministic in the sense that
each point is transported to a single point1. However, for cells whose fates are not completely
determined, the true coupling should have a degree of entropy to it. We therefore add a term to
the objective to promote entropy in the transport coupling.

Injecting a small amount of entropy also makes sense even for a population of cells with truly
deterministic descendant distribution. When we sample finitely many cells at time t2, the true
descendants of any given t1 cell are not captured. Therefore entropy in the transport map can be
used to represent our statistical uncertainty in the inferred descendant distribution.

1There may be non-deterministic plans achieving the same cost (e.g. if all points are equidistant), but there is always an
optimal plan that is deterministic.
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In order to state the optimal transport principle, we first introduce some notation. Let Pt denote
a developmental process with temporal coupling γs,t and with relative growth function g(x). Let Qs

denote the distribution obtained by rescaling Ps by the relative growth rate:

Qs(x) = Ps(x)
gt−s(x)∫

gt−s(z)dPs(z)
.

Finally, let πs,t(ε) denote the entropy-regularized optimal transport coupling of Qs and Pt, defined as
the solution to the following optimization problem:

πs,t(ε) = minimize
π

∫∫
c(x, y)π(x, y)dxdy − ε

∫∫
π(x, y) log π(x, y)dxdy

subject to
∫
π(x, ·)dx = Qs∫
π(·, y)dy = Pt.

(2)

We now state the optimal transport principle for developmental processes:

s ≈ t =⇒ πs,t(ε) ≈ γs,t.

In words, over short time scales, the true coupling is well approximated by the OT coupling. In section 3,
we show how to estimate πs,t(ε) from data (we occasionally omit the dependence on ε and write πs,t).
This in turn gives us an estimate of γs,t.

3. Inferring temporal couplings from empirical data

In this section we show how to estimate the temporal couplings of a developmental process from data.

Definition 5 (developmental time series). A developmental time series is a sequence of samples from
a developmental process Pt on RG. This is a sequence of sets S1, . . . , ST ⊂ RG collected at times
t1, . . . , tT ∈ R. Each Si is a set of expression profiles in RG drawn independently from Pti .

From this input data, we form an empirical version of the developmental process. Specifically, at each
time point ti we form the empirical probability distribution supported on the data x ∈ Si. We summarize
this in the following definition:

Definition 6 (Empirical developmental process). An empirical developmental process P̂t is a time vary-
ing distribution constructed from a developmental time course S1, . . . , ST :

P̂ti =
1

|Si|
∑
x∈Si

δx. (3)

The empirical developmental process is undefined for t /∈ {t1, . . . , tT }.

In order to estimate the coupling from time t1 to time t2, we first construct an initial estimate of the
growth rate function g(x). In practice, we form an initial estimate ĝ(x) as the expectation of a birth-death
process on gene expression space with birth-rate β(x) and death rate δ(x) defined in terms of expres-
sion levels of genes involved in cell proliferation and apoptosis (see Estimating birth and death rates
and computing transport maps in STAR Methods). We ultimately leverage techniques from unbal-
anced transport (Chizat et al., 2018) to refine this initial estimate to learn cellular growth and death rates
automatically from data (see Chapter II).
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We then form the rescaled empirical distribution

Q̂t1(x) = P̂t1(x)
ĝ(x)t1−t2∫

ĝ(z)t1−t2dP̂ti(z)
,

and compute the optimal transport map π̂t1,t2 between Q̂t1 and P̂t2 .

3.1. Estimating couplings between adjacent time points

In order to identify an optimal transport plan connecting Q̂t1 and P̂t2 , we must solve an optimization
problem with a matrix-valued optimization variable. In the classical zero-entropy setting, the optimiza-
tion problem (2) is a linear program (when ε = 0). While the classical optimal transport linear program
can be difficult to solve for large numbers of points, fast algorithms have been recently developed (Cu-
turi, 2013) to solve the entropically regularized version of the transport program. Entropic regularization
speeds up the computations because it makes the optimization problem strongly convex, and gradient
ascent on the dual can be realized by successive diagonal matrix scalings called Sinkhorn iterations (Cu-
turi, 2013). These are very fast operations.

The scaling algorithm for entropically regularized transport has also been extended to work in the
setting of unbalanced transport (Chizat et al., 2018), where the equality constraints are relaxed to
bounds on the marginals of the transport plan (in terms of KL-divergence or total variation or a general
f-divergence). In our application this is very attractive from a modeling perspective for the following
reasons:

1. We may have misspecified the growth rate function ĝ(x). Unbalanced transport adjusts the input
growth rate in order to reduce the transport cost. This allows us to automatically learn growth
rates from scratch (see Chapter II).

2. Even if the growth rates are completely uniform, the random sampling can introduce what looks
like growth. For example, suppose there is a rare subpopulation of cells consisting of 5% of the
total. If at one time point, we randomly sample fewer of these cells so that they comprise 4%
of the total, and at the next time point we sample 6%, then it will look like this population has
increased by 50%. Unbalanced transport can automatically adjust for this apparent growth.

We use both entropic regularization and unbalanced transport. To compute the transport map between
the empirical distributions of expression profiles observed at time ti and ti+1, we solve the following
optimization problem:

π̂ti,ti+1 = arg min
π

∑
x∈Si

∑
y∈Si+1

c(x, y)π(x, y)− ε
∫∫

π(x, y) log π(x, y)dxdy

+ λ1KL

∑
x∈Si

π(x, y)
∥∥∥dP̂ti+1(y)

+ λ2KL

 ∑
y∈Si+1

π(x, y)
∥∥∥dQ̂ti(x)

 (4)

where ε, λ1 and λ2 are regularization parameters. We provide guidelines for tuning these parameters in
Chapter II.

This is a convex optimization problem in the matrix variable π ∈ RNi×Ni+1 , where Ni = |Si| is the
number of cells profiled at time ti. It takes about 5 seconds to solve this unbalanced transport problem
using the scaling algorithm of (Chizat et al., 2018) on a standard laptop with Ni ≈ 5000.

Note that by default the densities (on the discrete set Si) of the empirical distributions specified in
equation (3) are simply dP̂ti(x) = 1

Ni
. However, in principle one could use nonuniform empirical

distributions (e.g. if one wanted to include information about cell quality).
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To summarize: given a sequence of expression profiles S1, . . . , ST , we solve the optimization prob-
lem (4) for each successive pair of time points Si, Si+1. For the pair of time-points (ti, ti+1), this gives
us a transport map π̂ti,ti+1 . When we have enough data, this is a good estimate of πti,ti+1 because it is
well known that transport maps are consistent in the sense that

lim
Ni,Ni+1→∞

π̂ti,ti+1 = πti,ti+1 .

Taken together with the optimal transport principle:

πti,ti+1 ≈ γti,ti+1 ,

we therefore can estimate γti,ti+1 from π̂ti,ti+1 when Ni is large enough.

3.2. Estimating long-range couplings

We rely on an assumption of Markovity (or memorylessness) in order to estimate couplings over longer
time intervals. Recall that a stochastic process is Markov if the future is independent of the past, given
the present. Equivalently, it is fully specified by the couplings between pairs of time points. We define
Markov developmental processes in a similar spirit:

Definition 7 (Markov developmental process). A Markov developmental process Pt is a time-varying
distribution on RG that is completely specified by couplings between pairs of time points in the following
sense. For any three time points s < t < τ , the long-range coupling γs,τ is equal to the composition of
short-range couplings:

γt,τ ◦ γs,t = γs,τ .

Note that the optimal transport maps π̂s,t do not necessarily have this compositional property! Com-
posing the OT coupling from time s to t and then from t to τ is not the same as optimally transporting
from s directly to τ . In general, we do not recommend computing OT maps directly between distant
time points.

We leverage the Markovity assumption to estimate couplings over long time intervals by composing
estimates over shorter intervals. Formally, for any pair of time points ti, ti+k, we estimate the coupling
γ̂ti,ti+k

by composing as follows:

γ̂ti,ti+k
= π̂ti,ti+1 ◦ π̂ti+1,ti+2 ◦ . . . ◦ π̂ti+k−1,ti+k

.

These compositions are computed via ordinary matrix multiplication.
It is an interesting question to what extent developmental processes are Markov. On gene expression

space, they are likely not strictly Markov because, for example, the history of gene expression can influ-
ence chromatin modifications, which may not themselves be fully reflected in the observed expression
profile but could still influence the subsequent evolution of the process. However, it is possible that
developmental processes could be considered Markov on some augmented space.

4. Interpreting transport maps

In the previous section we introduced the principle of optimal transport for time series of gene expres-
sion profiles. Given a time series of expression profiles S1, . . . , ST , we use this principle to compute a
sequence of transport maps between subsequent time slices. In this section we define the ancestors and
descendants of any subset of cells from this sequence of transport maps in Section 4.1. Then, in Sec-
tion 4.2 we explain an intuitive physical interpretation of entropy-regularization. Finally, in Section 4.3
we describe a connection between optimal transport, gradient flows, and Waddington’s landscape.
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4.1. Defining ancestors, descendants and trajectories

We now define the descendants and ancestors of subgroups of cells evolving according to a Markov (i.e.
memoryless) developmental process.

Our definition of ancestors and descendants relies on a notion of pushing sets of cells through a trans-
port map. Before defining ancestors and descendants, we introduce this terminology. As a distribution
on the product space RG × RG, a coupling γ assigns a number γ(A,B) to any pair of sets A,B ⊂ RG

γ(A,B) =

∫
x∈A

∫
y∈B

γ(x, y)dxdy.

This number γ(A,B) represents the amount of mass coming from A and going to B. When we don’t
specify a particular destination, the quantity γ(A, ·) specifies the full distribution of mass coming from
A. We refer to this action as pushing A through the transport plan γ. More generally, we can also push
a distribution µ forward through the transport plan γ via integration

µ 7→
∫
γ(x, ·)dµ(x).

We refer to the reverse operation as pulling a set B back through γ. The resulting distribution γ(·, B)
encodes the mass ending up at B. We can also pull distributions µ back through γ in a similar way:

µ 7→
∫
γ(·, y)dµ(y).

We sometimes refer to this as back-propagating the distribution µ (and to pushing µ forward as forward
propagation).

Equipped with this terminology, we define ancestors and descendants as follows:

Definition 8 (descendants in a Markov developmental process). Consider a set of cells C ⊂ RG, which
live at time t1 are part of a population of cells evolving according to a Markov developmental process
Pt. Let γt1,t2 denote the coupling from time t1 to time t2. The descendants of C at time t2 are obtained
by pushing C through γ.

Definition 9 (ancestors in a Markov developmental process). Consider a set of cellsC ⊂ RG, which live
at time t2 and are part of a population of cells evolving according to a Markov developmental process
Pt. Let π denote the transport map for Pt from time t2 to time t1. The ancestors of C at time t1 are
obtained by pulling C back through γ.

Trajectories: We define to the ancestor trajectory to a set C as the sequence of ancestor distributions
at earlier time points. Similarly, we refer to the descendant trajectory from a set C as the sequence of
descendant distributions at later time points.

4.2. Interpreting the entropy regularization parameter

In this section we explain a physical interpretation of entropy-regularized optimal transport.
Consider a collection of N indistinguishable particles undergoing Brownian motion with diffusion

coefficient ε. Suppose we observe the positions ofN particles at times 0 and 1. But because the particles
are indistinguishable, we don’t know which particle at time 0 corresponds to each particle at time 1. If
N = 1, this is of course not an issue, and the distribution on paths connecting the starting and ending
point is called a Brownian bridge.

For N > 1, the distribution over possible paths connecting the starting and ending points involves
two components:
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1. A coupling of the particles specifying which particle goes where (because the particles are indis-
tinguishable, this is not uniquely specified by the observations).

2. Given a matching, the distribution on paths for each matched pair is a Brownian bridge.

The coupling is a random permutation that matches points at time 0 to points at time 1. The distri-
bution of this random permutation depends on the variance (or diffusion coefficient) of the Brownian
motion. If the diffusion coefficient is larger, then it is more likely that particles will swap positions over
larger distances. It turns out that the expected (i.e. average) coupling can be computed by maximum
entropy optimal transport. These ideas can be traced back to Schrodinger’s 1932 work in statistical elec-
trodynamics (Schrodinger, 1932), but the connection to optimal transport was not made explicit until
recently (Cuturi, 2013; Léonard, 2014). We summarize this in the following theorem:

Theorem 1. Entropy regularized optimal transport gives the expectation of the distribution over cou-
plings induced by Brownian motion, when the diffusion coefficient of the Brownian motion is equal to
the entropy regularization parameter.

4.3. Gradient flow and Waddington’s landscape

In this section we show how optimal transport can be interpreted as a gradient flow in gene expression
space (capturing cell-autonomous processes) or in the space of distributions (capturing cell-nonautonomous
processes). For a full treatment of the rich OT theory of gradient flows, we refer the reader to (Ambrosio
et al., 2005; Santambrogio, 2015).

We begin by considering the simple setting described by Waddington’s landscape, which describes
a gradient flow in gene expression space and is a special case of what we can capture with optimal
transport. Mathematically, Waddington’s landscape defines a potential function Φ assigning potential
energy Φ(x) to a cell with expression profile x. The cells roll downhill according to the gradient of Φ to
describe a trajectory x(t) satisfying the differential equation

dx

dt
= −∇Φ(x). (5)

This equation governing the trajectory of individual cells induces a flow in the distribution of the popu-
lation of cells:

dPt
dt

= div[∇Φ(x)Pt]. (6)

Intuitively, this equation states that the change in mass for each small volume of space (on the left-hand
side) is equal to the flux of mass in and out (given by the divergence on the right hand side).

Optimal transport can capture this type of potential driven dynamics: the true coupling specified by (5)
is close to the optimal transport coupling over short time scales. To motivate this, we appeal to a classical
theorem establishing a dynamical formulation of optimal transport.

Theorem 2 (Benamou and Brenier, 2001). The optimal objective value of the transport problem (1) is
equal to the optimal objective value of the following optimization problem:

minimize
ρ,v

∫ 1

0

∫
RG

‖v(t, x)‖2ρ(t, x)dtdx

subject to ρ(0, ·) = P, ρ(1, ·) = Q

∇ · (ρv) =
∂ρ

∂t

. (7)
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In this theorem, v is a vector-valued velocity field that advects2 the distribution ρ from P to Q, and the
objective value to be minimized is the kinetic energy of the flow (mass × squared velocity). In our
setting, the two distributions are snapshots Ps and Pt of a developmental process at two time points, and
the theorem shows that the transport map πs,t can be seen as a point-to-point summary of a least-action
continuous time flow, according to an unknown velocity field. In the special case when the velocity field
is the gradient of a potential Φ (i.e. Waddington landscape), the theorem implies that the coupling (5)
achieves the optimal transport cost. In other words, OT can capture potential driven dynamics. In
addition, optimal transport can also describe much more general settings. This velocity field could
change over time and also depend on the entire distribution of cells, so optimal transport can describe
very general developmental processes including those with cell-cell interactions, as we describe below.

We will show that the evolution (6) is a special case of a Wasserstein gradient flow to minimize the
linear energy functional

E(P) =

∫
Φ(x)dP(x).

We will then describe non-linear gradient flows, which can capture cell-cell interactions.
To understand gradient flows, let’s start with the familiar notion of gradient descent:

xk+1 = −η∇E(xk) + xk.

This can be rewritten as a proximal procedure, where one seeks to minimizeE over all x in the proximity
of xk:

xk+1 = arg min
x

E(x) +
1

2η
‖x− xk‖2. (8)

We can perform a similar proximal procedure in the space of distributions, replacing the Euclidean norm
‖ · ‖2 with the Wasserstein distance:

Pk+1 = arg min
ρ

E(ρ) +
1

2η
W 2

2 (ρ,Pk). (9)

This produces a sequence of iterates P0,P1, . . . ,Pk. The gradient flow is the limit obtained as we shrink
the step-size η ↓ 0. In (Jordan et al., 1998), it’s proven that for the linear energy functional

E(P) =

∫
Φ(x)dP(x),

the limiting gradient flow converges to a solution of (6).
Going beyond the linear energy functional associated with Waddington’s landscape, one could de-

scribe cell-cell interactions with an interaction energy of the form

E(P) =

∫∫
I(x, y)dP(x)dP(y).

Gradient flows for interaction potentials are discussed in chapter 7 of (Santambrogio, 2015).

Learning models of gene regulation Motivated by this interpretation of optimal transport as a
gradient flow according to an unknown vector field, we describe a strategy to estimate such a vector field
from data in Chapter II. We interpret the vector field as a model of gene regulation – it predicts gene
expression at later time points as a function of transcription factor expression at current time points. We
assume that the vector field does not change over time, and describes a cell-autonomous flow, but we do
not assume that it comes from a potential function.

2 Advection, a term borrowed from fluid mechanics, refers to the transport of a substance by bulk motion. The constraint that
the divergence of the flow is equal to the rate of change of ρ means that ρ flows according to the velocity field v, without
gaining or losing mass.
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II. WADDINGTON-OT : Concepts and Implementation

Building on the theoretical foundations developed in Modeling developmental processes with optimal
transport, we developed WADDINGTON-OT: our method for computing ancestor and descendant trajec-
tories, interpolating developmental processes, inferring gene regulatory models, and visualizing devel-
opmental landscapes. We begin with an overview in Section 1, and we then describe the specific details
in Sections 2 - 8.

1. Overview

To apply WADDINGTON-OT to a dataset, we pursue the following steps. The code is available on
GitHub:

https://github.com/broadinstitute/wot/

Specifically, in the sections below we describe our procedures for

• computing transport maps

• computing trajectories to cell sets

• fitting local and global regulatory models

• interpolating the distribution of cells at held-out time points.

To keep the focus here general-purpose, we defer all reprogramming-specific details to the subsequent
sections of STAR Methods.

Input data: The input to our suite of methods is a temporal sequence of single cell gene expression
matrices, prepared as described in STAR Methods: Preparation of expression matrices.

Computing transport maps: Waddington-OT calculates transport maps between consecutive time
points and automatically estimates cellular growth and death rates. In Section 2 below we provide
guidelines for defining the cost function, selecting regularization parameters and (optionally) providing
an initial estimate of growth and death rates.

Ancestors, descendants, and trajectories: We describe in Section 3 how we compute trajec-
tories plot trends in gene expression. Briefly, the developmental trajectory of a subpopulation of cells
refers to the sequence of ancestors coming before it and descendants coming after it. Using the trans-
port maps, we can calculate the forward or backward transport probabilities between any two classes of
cells at any time points. For example, we can take successfully reprogrammed cells at day 18 and use
back-propagation to infer the distribution over their precursors at day 17.5. We can then propagate this
back to day 17, and so on to obtain the ancestor distributions at each previous time point. This is the
developmental trajectory to iPS cells. We can then readily plot trends in gene expression over time.
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Fitting regulatory models: We describe our method to fit a regulatory model to the transport maps
in Section 4. Transcription factors (TFs) that appear to play important roles along trajectories to key des-
tinations are identified by two approaches. The first approach involves constructing a global regulatory
model, related to the framework we describe above in Section I.4.3. Pairs of cells at consecutive time
points are sampled according to their transport probabilities; expression levels of TFs in the cell at time t
are used to predict expression levels of all non-TFs in the paired cell at time t+ 1, under the assumption
that the regulatory rules are constant across cells and time points. (TFs are excluded from the predicted
set to avoid cases of spurious self-regulation). The second approach involves local enrichment analysis.
TFs are identified based on enrichment in cells at an earlier time point with a high probability (> 80%)
of transitioning to a given fate vs. those with a low probability (< 20%).

Geodesic interpolation: To validate the temporal couplings, Waddington-OT can interpolate the
distribution of cells at a held-out time point. The method is performing well if the interpolated distri-
bution is close to the true held-out distribution (compared to the distance between different batches of
the held-out distribution). Otherwise, it is possible that the method requires more data or finer temporal
resolution.

Section 5 describes our method to interpolate the distribution of cells at a held-out time point. The
specific application for validation of our method on iPS reprogramming data is presented in STAR
Methods: Validation by geodesic interpolation. We performed extensive sensitivity analysis to show
that our temporal couplings produce valid interpolations over a wide range of parameter settings per-
turbations to the data (downsampling cells or reads). See STAR Methods: QUANTIFICATION AND
STATISTICAL ANALYSIS for this sensitivity analysis.

2. Computing transport maps

Recall that for any pair of time points we compute a transport plan that minimizes the expected cost of
redistributing mass, subject to constraints involving the relative growth rate (see Chapter I for a precise
statement of the optimization problem).

The transport map π̂t1,t2 connecting cells from time t1 to cells from time t2 has a row for each cell x
at time t1 and a column for each cell y at time t2. Each row specifies the descendant distribution of a
single cell x from time t1. The descendant mass is the sum of all the entries across a row. This row-sum
is proportional to the number of descendants that x will contribute to the next time point. Intuitively, the
descendant distribution specifies which cells at time t2 are likely to be descendants of x (see Section 4.1
of Chapter I for the formal definition of descendants in a developmental process).

Similarly, each column specifies the ancestor distribution of a cell y from time t2. The ancestor mass
is usually the same for each cell y. The ancestor distribution tells us which cells at time t1 are likely to
give rise to the cell y.

To compute these transport matrices, we need to specify a cost function, numerical values for the
regularization parameters, and (optionally) an initial estimate for the relative growth rate.

2.1. Cost function

To compute the cost of transporting each individual point x from time t1 to position y at time t2, we first
perform principal components analysis (PCA) on the data from this pair of time points. This dimension-
ality reduction is performed separately for each pair of adjacent time points. We define the cost function
to be squared Euclidean distance in this ‘local-PCA space’.

Finally, we normalize the cost matrix by dividing each entry by the median cost for that time interval.
Here the cost matrix is the matrix with entries Ci,j = c(xi, yj) for each xi form time t1 and yj at time t2.
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This rescaling of the cost allows us to refer to specific numerical values of the regularization parameters,
without worrying about the global scale of distances.

2.2. Regularization parameters

The optimization problem (4) involves three regularization parameters:

• The entropy parameter ε controls the entropy of the transport map. An extremely large entropy
parameter will give a maximally entropic transport map, and an extremely small entropy parameter
will give a nearly deterministic transport map. The default value is 0.05.

• λ1 controls the degree to which transport is unbalanced along the rows. Large values of λ1 impose
stringent constraints related to relative growth rates. Small values of λ1 give the algorithm more
flexibility to change the relative growth rates in order to improve the transport objective. The
default value is 1. To visually inspect the degree of unbalancedness, we recommend plotting the
input row-sums vs the output row-sums of the transport map (Figure S1D-F).

• λ2 controls the degree to which transport is unbalanced along the columns. The default value is
λ2 = 50. This large value essentially imposes equality constraints for the column marginals. A
smaller value of λ2 would allow different amounts of mass to transport to some cells at time t2.
We strongly recommend keeping a large value for λ2 so that the results are balanced along the
columns. To visually inspect the degree of unbalancedness, one can plot the input column-sums
vs the output column-sums of the transport map.

As we demonstrate in QUANTIFICATION AND STATISTICAL ANALYSIS in STAR Methods, our
validation results are stable over a wide range of values for ε and λ1.

2.3. Estimating relative growth rates

Our method solves the optimization problem (4) several times, using the output row-sums of the optimal
transport map π̂t1,t2 as a new estimate for the relative growth rate function ĝ(x). By default, we initialize
with

ĝ(x) = 1,

so that all cells grow at the same rate. If one has some prior knowledge of growth rates (e.g. based on
gene signatures of proliferation and apoptosis), this can be incorporated in the initial estimate for ĝ(x).
For our reprogramming data, we show how we formed an initial estimate for relative growth rates in
Estimating growth and death rates and computing transport maps.

3. Ancestors, descendants, and trajectories

Given a set of cells C, we can compute the descendant distribution of the entire set by adding the de-
scendant distributions of each cell in the set. This can be computed efficiently via matrix multiplication
as follows: Let S1 denote all the cells from time point t1, and let

p(x) =

{
1 x ∈ C
0 otherwise

denote the uniform distribution on C ⊂ S. The descendant distribution of C is given by π̂t1,t2p. We
compute ancestor distributions in a similar way, except instead of taking the sum we compute an average.

15



In particular, we define a function p(x) as above, then normalize it to sum to 1 and then form the matrix-
vector product

pT π̂t0,t1

to obtain the ancestor distribution on time t0.
After computing the trajectory to or from a cell set C (in the form of a sequence of ancestor and

descendant distributions), we compute trends in expression for any gene or gene signature of interest
along the trajectory. For each time point, we compute the mean expression weighting each cell according
to the probability distribution defined by the ancestor or descendant distribution.

4. Learning gene regulatory models

We employ two strategies to summarize the transport maps by learning models of gene regulation. The
first model uses local enrichment analysis to identify transcription factors (TFs) enriched in ancestors of
a set of cells. The second model is motivated by the dynamical systems formulation of optimal transport,
as described above in Section 4.3 of Chapter I.

4.1. Local model: TF enrichment analysis of top ancestors

We perform local enrichment analysis as follows. Given a set of cells C at time t2, we first compute
the ancestor distribution of C at an earlier time t1, as described in Section 3 above. We then select cells
contributing the most mass to the ancestor distribution, until a certain amount of mass is accounted for
(e.g. 30% of the ancestor mass). We refer to these as the top ancestors at time t1 of the cell set C.
Finally, we compare the top ancestors to a null set of cells from the same time point. For example, this
null cell set could be:

• all cells except for the top ancestors,

• the bottom ancestors (defined to be all cells except for the top ancestors of a less-strict cut-off),

• the bottom ancestors restricted to a specialized subset (e.g. all other trophoblasts when C is a
specific subset of trophoblasts like spongiotrophoblasts).

4.2. Global model: learning a cell-autonomous gradient flow

To learn a simple description of the temporal flow, we assume that a cell’s trajectory is cell-autonomous
and, in fact, depends only on its own internal gene expression. We know this is wrong as it ignores
paracrine signaling between cells, and we discuss models that include cell-cell communication below.
However, this assumption is powerful because it exposes the time-dependence of the stochastic process
Pt as arising from pushing an initial measure through a differential equation:

ẋ = f(x). (10)

Here f is a vector field that prescribes the flow of a particle x. Our biological motivation for estimating
such a function f is that it encodes information about the cell-autonomous regulatory networks that
create the equations of motion in gene-expression space.

We propose to set up a regression to learn a regulatory function f that models the fate of a cell at time
ti+1 as a function of its expression profile at time ti. Our approach involves sampling pairs of points
using the couplings from optimal transport:
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• For each pair of time points ti, ti+1, we sample pairs of cells
(
Xti , Xti+1

)
from the joint distribu-

tion specified by the transport map π̂ti,ti+1 .

• Using the training data generated in the first step, we set up the following regression:

min
f∈F

Eπ̂ti,ti+1

∥∥Xti+1 − f(Xti)
∥∥2 ,

where F is a rectified-linear function class defined in terms of a specific generalized logistic function
` : R 7→ R:

`(x; k, b, y0, x0) =
ky0

y0 + (k − y0)e−b(x−x0)
,

where k, b, y0, x0 ∈ R are parameters of the generalized logistic function `(x).
We define a function class F consisting of functions f : RG → RG of the form

f(x) = U`(WTx),

where ` is applied entry-wise to the vector WTx ∈ RM to obtain a vector that we multiply against
U ∈ RG×M . Here T ∈ RGTF×G denotes a projection operator that selects only the coordinates of x that
are transcription factors, and GTF is the number of transcription factors. Intuitively, this gives a set of
low-rank, linear functions with sparse factors. Each rank-1 component can be interpreted as a regulatory
module of transcription factors acting on a module of regulated genes.

We set up the following optimization over matrices U ∈ RG×M and W ∈ RM×GTF :

min
U,W

Er
∥∥Xti+1 − U`(WTXti)

∥∥2 + η1‖U‖1 + η2‖W‖1,+η3‖W‖22

s.t. U ≥ 0.
(11)

where (Xti , Xti+1) is a pair of random variables distributed according to the normalized transport map
r, and ‖U‖1 denotes the sparsity-promoting `1 norm of U , viewed as a vector (that is, the sum of the
absolute value of the entries of U ). Each rank one component (row of U or column of W ) gives us
a group of genes controlled by a set of transcription factors. The regularization parameters η1 and η2
control the sparsity level (i.e. number of genes in these groups).

Implementation: We designed a stochastic gradient descent algorithm to solve (11). Over a se-
quence of epochs, the algorithm samples batches of points (Xti , Xti+1) from the transport maps, com-
putes the gradient of the loss, and updates the optimization variables U and W . The batch sizes are
determined by the Shannon diversity of the transport maps: for each pair of consecutive time points, we
compute the Shannon diversity S of the transport map, then randomly sample max(S × 10−5, 10) pairs
of points to add to the batch. We run for a total of 10, 000 epochs.

Cell non-autonomous processes: The gradient flow (10) addresses cell-autonomous processes.
Otherwise, the rate of change in expression ẋ is not just a function of a cell’s own expression vector
x(t), but also of other expression vectors from other cells. We can accommodate cell non-autonomous
processes by allowing f to also depend on the full distribution Pt:

dx

dt
= f(x,Pt). (12)

Concretely, we could allow f to depend on the mean expression levels of specific genes (expressed by
any cell) encoding, for example, secreted factors or direct protein measurements of the factors them-
selves. For a theoretical description of gradient flows with interactions, see Section 4.3 of Chapter I.
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5. Geodesic interpolation for validation

Optimal transport provides an elegant way to interpolate distribution-valued data, analogous to how
linear regression can be used to interpolate numerical or vector-valued data. Given two numerical data-
points, the simplest way to interpolate is to connect them with a line; this is the shortest path connecting
the observed data. Given two distributions, we interpolate by finding the shortest path in the space of
distributions. To do this we need a notion of distance between distributions, and for this we use the
metric induced by optimal transport. This metric space is called Wasserstein space, and this form of
interpolation is called geodesic interpolation (Villani, 2008).

We derive a modified version of geodesic interpolation that takes into account cell growth. Ordinarily,
an interpolating distribution is computed by first computing a transport map between the distributions,
and then connecting each point in the first distribution to points in the second according to the transport
map. Finally, an interpolating point cloud is produced by from the midpoints of those line segments.
(More generally, instead of taking just midpoints, one one can also construct a family of interpolations
that sweep from the first distribution to the second). We extend this framework to accommodate growth
by changing the mass of the point we place at the midpoint (to account for the fact that cells will have a
different number of descendants at time t1 than they will at time t2).

Specifically, to interpolate at time s ∈ (t1, t2), we first renormalize the rows of the transport map so
they sum to roughly ĝ(x)s−t1∫

ĝ(x)s−t1dP̂t1

instead of ĝ(x)t2−t1∫
ĝ(x)t2−t1dP̂t1 (x)

. This takes into account the descendant

mass each cell will have by time s instead of by time t2. We then sample points z1, . . . , zN as follows:

1. Sample a pair of points (x, y) from the joint distribution specified by the transport map.

2. Identify the point
z = αx+ (1− α)y

along the line segment connecting x and y. Here α is given by s = αt1 + (1− α)t2.

By repeating the steps above, we accumulate a point-cloud of points z1, . . . , zN . Finally, we define the
interpolating distribution as

P̂(s) =
1

N

N∑
i=1

δzi .

Equipped with this notion of interpolation, we can test the performance of optimal transport by com-
paring the interpolated distribution to held-out time points. Using the data from time ti and ti+2, we
interpolate to estimate the distribution Pti+1 . We then compute the Wasserstein distance between the in-
terpolated distribution and the observed distribution. We compare this distance to a null model generated
from the independent coupling where we sample pairs (x, y) independently x ∼ P̂ti and y ∼ P̂ti+2 in
step 1 above. We also compare the interpolated distance to distance between batches of Pti+1 . Optimal
transport is performing well if the interpolated point cloud is as close to the batches of the held out time
point as the batches are to each other, and the null-interpolated point cloud is farther away.

We present our application for validation in the case of IPS reprogramming in the STAR Methods
(Validation by geodesic interpolation).
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