Supporting Information

Redox and "Antioxidant" Properties of Fe₂(μ-SH)₂(CO)₄(PPh₃)₂

Husain N. Kagalwala, Noemie Lalaoui, Qian-Li Li, Liang Liu, Toby Woods, and Thomas B. Rauchfuss* School of Chemical Sciences University of Illinois Urbana, IL 61801, USA

Figure S1. ¹H NMR spectrum (500 MHz, CD_2Cl_2) of $Fe_2(\mu-S_2)(CO)_4(PPh_3)_2$ at 20 °C.

Figure S2. ³¹P NMR spectrum (202 MHz, CD_2CI_2) of $Fe_2(\mu-S_2)(CO)_4(PPh_3)_2$ at 20 °C.

Figure S3. IR spectrum of $Fe_2(\mu-S_2)(CO)_4(PPh_3)_2$ in CH_2Cl_2 solution (20 °C).

Figure S4.¹H NMR spectrum (500 MHz, CD_2CI_2) of $[(\mu-H)Fe_2(\mu-S_2)(CO)_4(PPh_3)_2]BAr^{F_4}$ at 20 °C. *Inset:* expansion of high field region.

Figure S5. ³¹P NMR spectrum (202 MHz, CD₂Cl₂) of $[(\mu-H)Fe_2(\mu-S_2)(CO)_4(PPh_3)_2]BArF_4$ at 20 °C.

Figure S6. ¹H-³¹P HMBC spectrum of $[(\mu-H)Fe_2(\mu-S_2)(CO)_4(PPh_3)_2]BAr^{F_4}$ at 20 °C.

Figure S7. IR spectrum in CH₂Cl₂ solution of $[(\mu-H)Fe_2(\mu-S_2)(CO)_4(PPh_3)_2]BAr^F_4$ at 20 °C.

Figure S8. ¹H NMR spectrum (500 MHz, CD_2Cl_2) of $Fe_2(\mu$ -SH)₂(CO)₄(PPh₃)₂ at 20 °C.

Figure S9. ³¹P NMR spectrum (202 MHz, CD_2CI_2) of $Fe_2(\mu-SH)_2(CO)_4(PPh_3)_2$ at 20 °C.

Figure S10. ¹H-³¹P HMBC spectrum of $Fe_2(\mu$ -SH)₂(CO)₄(PPh₃)₂ at 20 °C.

Figure S11. IR spectrum in CH_2CI_2 of $Fe_2(\mu-SH)_2(CO)_4(PPh_3)_2$ at 20 °C.

Figure S12. ¹H NMR spectrum (500 MHz, CD_2CI_2) of [(μ -H)Fe₂(μ -SH)₂(CO)₄(PPh₃)₂]BAr^F₄ (generated *in situ*) at -20 °C. The hydride signals indicate approximately 1:1 isomer ratio.

Figure S13. ³¹P NMR spectrum (202 MHz, CD_2Cl_2) of $[(\mu-H)Fe_2(\mu-SH)_2 (CO)_4(PPh_3)_2]BAr^F_4$ (generated *in situ*) at -20 °C.

Figure S14. ¹H-³¹P HMBC spectrum of $[(\mu-H)Fe_2(\mu-SH)_2(CO)_4(PPh_3)_2]BAr^{F_4}$ (generated *in situ*) at -50 °C.

Figure S15. IR spectrum of a CH₂Cl₂ solution of $[(\mu-H)Fe_2(\mu-SH)_2(CO)_4(PPh_3)_2]BAr^F_4$ at 20 °C.

Figure S16. ¹H NMR spectrum (500 MHz, CD₂Cl₂) of Fe₂(µ-SMe)(µ-SH)(CO)₄(PPh₃)₂ at 20 °C. *Inset:* expansion of SMe and SH signals.

Figure S17. ³¹P NMR spectrum (202 MHz, CD_2CI_2) of $Fe_2(\mu$ -SMe)(μ -SH)(CO)₄(PPh₃)₂ at 20 °C.

Figure S18. ¹H-³¹P HMBC spectrum of Fe₂(SMe)(SH)(CO)₄(PPh₃)₂ at 20 °C.

Figure S19. IR spectrum of a CH_2CI_2 solution of $Fe_2(\mu-SMe)(\mu-SH)(CO)_4(PPh_3)_2$ at 20 °C.

Figure S20. ¹H NMR spectrum (500 MHz, CD_2Cl_2) of $[(\mu-H)Fe_2(\mu-SMe)(\mu-SH)(CO)_4(PPh_3)_2]BAr^F_4$ at 20 °C. *Insets:* expansions of the spectra in the *SMe*, *SH*, and Fe*H* regions.

Figure S21. ³¹P NMR spectrum (202 MHz, CD₂Cl₂) of $[(\mu-H)Fe_2(\mu-SMe)(\mu-SH)(CO)_4(PPh_3)_2]BAr^F_4$ at 20 °C.

Figure S22. IR spectrum of CH_2Cl_2 solution of $[(\mu-H)Fe_2(\mu-SMe)(\mu-SH)(CO)_4(PPh_3)_2]BAr^{F_4}$ at 20 °C.

Figure S23. ¹H NMR spectra (500 MHz, CD_2Cl_2) of $Fe_2(\mu-SR)_2(CO)_{6-x}(PPh_3)_x$ derivatives (R = H, Me), depicting the μ -SH signals.

Figure S24. ³¹P NMR spectra (202 MHz, CD_2CI_2) of $Fe_2(\mu-SR)_2(CO)_{6-x}(PPh_3)_x$ derivatives (R = H, Me).

Figure S25. Reflectance IR spectrum of the black solid generated from the reaction of 1^{HH} with 2 equiv TEMPO in THF solution.

Figure S26. IR spectra of THF solutions of (a) 1 (b) 1^{HH} .