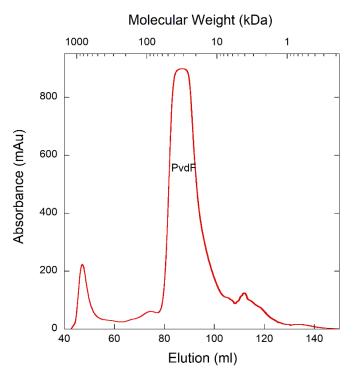
Supporting Information

PvdF of pyoverdin biosynthesis is a structurally unique N^{10} -formyltetrahydrofolate-dependent formyltransferase

Nikola Kenjic¹, Matthew R.Hoag², Garrett C. Moraski³, Carol A. Caperelli⁴, Graham R.Moran⁵, and Audrey L. Lamb^{1,*}

¹Department of Molecular Biosciences, 1200 Sunnyside Ave, University of Kansas, Lawrence, KS, 66045 ²Department of Chemistry and Biochemistry, 3210 N Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211

³Department of Chemistry and Biochemistry, 103 Chemistry and Biochemistry Building, Montana State University, Bozeman, MT, 59717


⁴Winkle College of Pharmacy, University of Cincinnati, ML 0514, 231 Albert Sabin Way, MSB 3109B, Cincinnati, OH, 45267

⁵Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL 60660

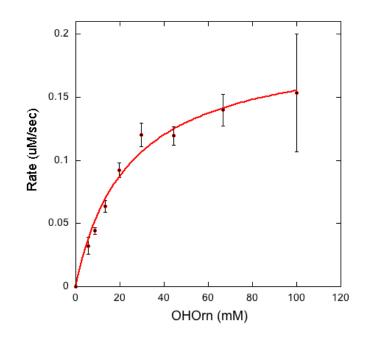

Contents

Figure S-1: Size exclusion chromatogram

Figure S-2: Michaelis-Menten kinetics using synthesized OHOrn as the varied substrate.

Supplemental Figure S1. Size exclusion chromatography elution profile from a Superdex 200 column (GE Healthcare). PvdF elutes only in the peak at 89 ml, consistent with the molecular weight of a monomer, 31 kDa.

Supplemental Figure S2. Steady state kinetics in the presence of synthesized hydroxyornithine as a substrate. The high value of $K_{\rm M}$ is rationalized by the instability of the OHOrn substrate. This plot was generated in triplicate using a plate reader on a single day. The kinetic constants derived from the above plot are $K_{\rm m} = 30 \pm 10$ mM, $k_{\rm cat} = 1.0 \pm 0.2$ sec⁻¹. On subsequent days, the $K_{\rm M}$ increased and $k_{\rm cat}$ decreased, and the experiment could not be reliably replicated.