**Supplementary Information** 

# Znhit1 controls intestinal stem cell maintenance by regulating H2A.Z incorporation

Zhao et al.

**Supplementary Figure 1-12** 

**Supplementary Table 1-3** 





**Supplementary Figure 1** | **Expression pattern of Znhit1 in intestinal epithelium.** (a) Intestinal villi and crypts were mechanically isolated from 8-week-old C57BL/6 mice then subjected to qRT-PCR to examine the expression of *Lgr5* and *Znhit1*. (b) The crypts harvested from 8-week-old *Lgr5-EGFP-IRES-creERT2* mice were dissociated into single cells then subjected to FACS. qRT-PCR was employed to examine the expression of *Lgr5* and *Znhit1* in Lgr5+ ISCs (GFP<sup>hi</sup>), daughter progenitor cells (GFP<sup>low</sup>) and other crypt cells (GFP<sup>neg</sup>). Histone H3 was used as an internal control. The statistical data represent mean $\pm$ s.d. (n=3 mice).



Supplementary Figure 2 | Tissue-specific Znhit1 deletion in intestinal epithelium. (a)

Targeting strategy of *Znhit1*<sup>fl/fl</sup> mice (**b**) Genotyping of *Villin cre* (+/+), *Znhit1*<sup>fl/+</sup>; *Villin-cre* (fl/+) and *Znhit1*<sup>fl/fl</sup>; *Villin-cre* (fl/fl) mice. 423bp: wildtype allele. 546bp: floxed allele. (**c**) Intestine were harvested from *Villin cre* (+/+), *Znhit1*<sup>fl/+</sup>; *Villin-cre* (fl/+) and *Znhit1*<sup>fl/fl</sup>; *Villin-cre* (fl/fl) mice at P0 to examine *Znhit1* expression using qRT-PCR. Histone H3 was used as an internal control. The statistical data represent mean±s.d. (n=3 mice per genotype). Student's *t*-test: \*\*\* indicates P<0.001. \*\* indicates P<0.01. (**d**) Intestinal crypts were isolated from *Znhit1*<sup>fl/+</sup>; *Villin-cre* (fl/+) and *Znhit1*<sup>fl/fl</sup>; *Villin-cre* (fl/fl) mice at P9 for immunoblotting with the indicated antibodies. GAPDH served as a loading control.



Supplementary Figure 3 | Znhit1 deletion in intestinal epithelium has no effect on crypt cell death or villus cell terminal differentiation. Cleaved Caspase 3, Mucin2 and Chr-A staining of intestinal sections from  $Znhit1^{fl/+}$ ; *Villin-cre* and  $Znhit1^{fl/fl}$ ; *Villin-cre* mice at P9. Scale bar, 50 µm.



Supplementary Figure 4 | Inducible knockout of Znhit1 in intestinal epithelium. (a) Eight-week-old *Villin-creERT* (+/+) and *Znhit1*<sup>fl/fl</sup>; *Villin-creERT* (fl/fl) mice were daily injected with tamoxifen for 4 days followed by 7-day waiting period. Intestinal crypts were harvested for qRT-PCR to examine *Znhit1* expression. Histone H3 was used as an internal control. The statistical data represent mean±s.d. (n=3 mice per genotype). Student's *t*-test: \*\*\* indicates P<0.001. (b) Paraffin embedded intestine tissues of *Villin-creERT* (+/+) and *Znhit1*<sup>fl/fl</sup>; *Villin-creERT* (fl/fl) mice following tamoxifen treatment were stained with haematoxylin and eosin. Scale bar, 100 µm. (c) Ki67 staining of intestinal sections from *Villin-creERT* (+/+) and *Znhit1*<sup>fl/fl</sup>; *Villin-creERT* (fl/fl) mice following tamoxifen treatment. Scale bar, 50 µm. A representative result of three independent experiments was shown.



Supplementary Figure 5 | Inducible knockout of Znhit1 Lgr5+ ISCs. Eight-week-old  $Znhit1^{+/+}$ ; *Olfm4-IRES-eGFPCreERT2* (+/+) and  $Znhit1^{fl/fl}$ ; *Olfm4-IRES-eGFPCreERT2* (fl/fl) mice were daily injected with tamoxifen for 4 days. (a) Kaplan–Meier survival curves following tamoxifen administration (n=7 mice per genotype). (b) Embedded intestine tissues (D14-16) were subjected to H&E and Ki67 staining. A representative result of three independent experiments was shown. Scale bar, 100 µm.





**Supplementary Figure 6 | Znhit1 deletion induces a significant downregulation of 15 Lgr5+ ISC signature genes.** Venn diagram showing the overlap between Lgr5+ ISC signature genes TSS and Znhit1-downregulated genes. The significance was evaluated by fisher's exact test.



Supplementary Figure 7 | Znhit1 deficiency has no obvious effect on the expression of *Ascl2*, *Cdk6*, *Msi1* or *Axin2*. (a) Eight-week-old *Villin-creERT* (+/+) and *Znhit1*<sup>fl/fl</sup>; *Villin-creERT* (fl/fl) mice were daily injected with tamoxifen for 4 days followed by 7-day waiting period. Intestinal crypts were harvested for qRT-PCR to examine the expression of indicated genes. Histone H3 was used as an internal control. The statistical data represent mean±s.d. (n=3 mice per genotype). (b) *Axin2 in situ* was performed in intestinal sections from *Villin-creERT* (+/+) and *Znhit1*<sup>fl/fl</sup>; *Villin-creERT* (fl/fl) mice following tamoxifen treatment. A representative result of three independent experiments was shown.



Supplementary Figure 8 | Lgr5+ ISC specific Znhit1 deletion leads to TGF- $\beta$  activation in crypts. *Znhit1*<sup>+/+</sup>; *Olfm4-IRES-eGFPCreERT2* and *Znhit1*<sup>fl/fl</sup>; *Olfm4-IRES-eGFPCreERT2* mice were daily injected with tamoxifen for 4 days followed by 7-day waiting period. Then, embedded intestine tissues were subjected to phospho-Smad2 staining. A representative result of three independent experiments was shown. Scale bar, 50 µm.



Supplementary Figure 9 | Znhit1 deficiency promotes the differentiation of Paneth cells. Lysozyme staining of intestinal sections from  $Znhit1^{fl/+}$ ; *Villin-cre* and  $Znhit1^{fl/fl}$ ; *Villin-cre* mice at P15. A representative result of three independent experiments was shown. Scale bar, 100 µm. The Lysozyme+ cells were quantified, and the data represent mean±s.d. (n=3 mice per genotype). Student's *t*-test: \*\* indicates P<0.01.



Supplementary Figure 10 | GO biological function enrichment analysis of 107 Znhit1-regulated genes with TSS H2A.Z binding.



Supplementary Figure 11 | H2A.Z deletion mimics Znhit1-deficient phenotype. (a) Body weights of  $H2afv^{+/+}$ ;  $H2afz^{+/+}$ ; *Villin-cre*,  $H2afv^{fl/fl}$ ;  $H2afz^{+/+}$ ; *Villin-cre*,  $H2afv^{+/+}$ ;  $H2afz^{fl/fl}$ ; *Villin-cre* and  $H2afv^{fl/fl}$ ;  $H2afz^{fl/fl}$ ; *Villin-cre* mice at indicated time. The data represent mean±s.d. (n=5 mice per group). Kruskal-Wallis' H test: \*\* indicates P<0.01. (b) Intestine sections of  $H2afv^{+/+}$ ;  $H2afz^{+/+}$ ; *Villin-cre* and  $H2afv^{fl/fl}$ ;  $H2afz^{fl/fl}$ ; *Villin-cre* mice. A representative result of three independent experiments was shown. Scale bar, 100 µm. (c) Intestinal crypts were isolated from  $H2afv^{+/+}$ ;  $H2afz^{+/+}$ ; *Villin-cre* and  $H2afv^{fl/fl}$ ;  $H2afz^{fl/fl}$ ; *Villin-cre* mice at P9, embedded in Matrigel (100 crypts per well) and cultured for 5 days. Scale bar, 50 µm.



Supplementary Figure 12 | Full immunoblots.

| Gene ID   | log2FoldChange | P-value   |
|-----------|----------------|-----------|
| Ctsl      | 3.45           | 8.68E-144 |
| Areg      | 3.15           | 6.18E-137 |
| Pdlim7    | 3.62           | 4.91E-125 |
| Cyp4v3    | -2.69          | 4.43E-118 |
| Hmox1     | 4.28           | 3.25E-103 |
| Cbr3      | 4.76           | 8.99E-103 |
| Tgfbr2    | 2.26           | 2.15E-85  |
| Psat1     | 2.26           | 7.71E-85  |
| Ppl       | 2.39           | 1.09E-77  |
| Emp2      | 2.75           | 3.34E-77  |
| Abcb1b    | 3.32           | 2.81E-73  |
| Crip2     | 3.58           | 2.40E-62  |
| Adm2      | 5.43           | 1.64E-61  |
| Plbd1     | -2.10          | 3.09E-60  |
| Dusp3     | 2.57           | 6.60E-58  |
| Avpil     | 2.34           | 2.78E-56  |
| Rab11fip5 | 3.82           | 2.01E-55  |
| Spry4     | 3.19           | 4.85E-54  |
| Htral     | 3.65           | 5.29E-54  |
| Smim1     | 3.81           | 2.12E-53  |
| Dpysl3    | 3.15           | 8.44E-52  |
| Ptrf      | 3.38           | 3.06E-51  |
| Trib3     | 2.73           | 3.72E-51  |
| Plau      | 4.32           | 3.56E-50  |
| Gcntl     | 3.01           | 1.19E-49  |
| Pcca      | -2.11          | 4.22E-49  |
| Arg2      | -2.18          | 4.93E-49  |
| Lamc3     | 3.40           | 2.92E-48  |
| Svip      | -2.31          | 4.92E-48  |
| Ereg      | 2.57           | 1.60E-47  |
| Tubb2a    | 1.81           | 2.19E-44  |
| Car4      | -1.80          | 2.30E-43  |
| Pmm1      | 1.89           | 2.42E-43  |
| Gabarapl1 | 1.88           | 6.55E-43  |
| Hk1       | 2.34           | 8.53E-43  |
| Scrn2     | -1.77          | 1.59E-40  |

Supplementary Table 1 | 107 genes Znhit1-regulated genes with TSS H2A.Z binding.

| Fam129a       | 2.38  | 4.06E-39 |
|---------------|-------|----------|
| Fbp1          | -1.95 | 1.42E-38 |
| Ephx1         | 2.50  | 2.58E-38 |
| Pik3r3        | 1.86  | 1.47E-37 |
| Tnfrsf12a     | 3.03  | 9.52E-37 |
| Itgb3         | 3.20  | 2.27E-36 |
| Trf           | 3.17  | 4.66E-36 |
| Icam1         | 2.59  | 2.25E-32 |
| Fam20a        | -1.70 | 2.32E-32 |
| Rab19         | -1.98 | 2.39E-31 |
| Plxnd1        | 2.01  | 9.85E-31 |
| Dusp 1        | 1.98  | 4.76E-30 |
| Opn3          | 2.19  | 2.99E-29 |
| Setd4         | 1.87  | 4.92E-29 |
| Dennd5a       | 1.84  | 2.02E-28 |
| Cadm4         | 2.44  | 2.29E-28 |
| Ltbp2         | 4.16  | 6.30E-28 |
| Gpr157        | -1.81 | 7.95E-28 |
| Rgcc          | 1.98  | 8.93E-28 |
| Fzd1          | 2.85  | 1.99E-27 |
| AI427809      | -2.70 | 1.97E-26 |
| Chac1         | 2.43  | 2.14E-26 |
| Plk2          | 4.42  | 3.96E-26 |
| Nkain4        | 3.43  | 8.42E-25 |
| Ffar4         | 1.97  | 2.49E-24 |
| Smtnl2        | 3.01  | 2.86E-24 |
| Mdfi          | 5.31  | 2.97E-24 |
| Gpsm1         | 1.96  | 5.56E-24 |
| Vwce          | -2.33 | 1.10E-23 |
| Tgfbr3        | 2.97  | 1.16E-23 |
| Emc9          | -1.88 | 3.78E-22 |
| Slc35e4       | 2.81  | 1.58E-20 |
| Timp3         | 3.24  | 2.61E-20 |
| Macrod1       | -1.81 | 4.81E-20 |
| Npr1          | 2.91  | 6.33E-20 |
| Klf2          | 2.45  | 6.81E-20 |
| Slc27a2       | -1.93 | 6.43E-19 |
| Cdkn1c        | 1.86  | 3.65E-18 |
| S100a14       | 1.97  | 7.49E-18 |
| Arhgef37      | 2.73  | 1.63E-17 |
| 8430419L09Rik | -2.49 | 6.02E-15 |

| Fa2h          | 4.23  | 8.63E-15 |
|---------------|-------|----------|
| Tcea3         | -2.50 | 3.34E-14 |
| Etv4          | 2.33  | 3.56E-14 |
| Cxcl2         | 5.48  | 3.60E-14 |
| Tnfsf9        | 2.60  | 1.54E-13 |
| Pyroxd2       | -1.96 | 3.78E-12 |
| Trp53inp1     | 2.09  | 3.86E-12 |
| Btg3          | 1.88  | 8.63E-12 |
| Plcd3         | 3.28  | 2.19E-11 |
| Herc6         | -1.86 | 9.06E-11 |
| Ajuba         | 2.96  | 1.32E-10 |
| Tnfaip8l3     | -1.81 | 1.34E-10 |
| Mal           | 3.94  | 1.37E-10 |
| Stk32c        | 2.24  | 1.47E-10 |
| Cercam        | 2.77  | 1.20E-09 |
| Tgfbl         | 1.75  | 1.23E-09 |
| Cxcl1         | 4.13  | 1.70E-09 |
| Esrrg         | -2.61 | 2.57E-09 |
| Gsap          | 2.97  | 7.83E-09 |
| Ppp1r9a       | -2.09 | 2.78E-08 |
| Rasl11a       | 1.74  | 3.00E-08 |
| Cxcl5         | 4.39  | 6.78E-08 |
| Lyplal1       | -1.79 | 1.60E-06 |
| Sh3bp5        | 1.84  | 2.03E-05 |
| Gng11         | -1.72 | 2.22E-05 |
| Ifit2         | -1.93 | 3.57E-05 |
| 1700003E16Rik | -2.73 | 3.57E-04 |
| Carl1         | 3.95  | 5.76E-04 |
| Lgr5          | -2.19 | 1.51E-03 |
| Clic6         | -3.14 | 1.54E-03 |
|               |       |          |

## Supplementary Table 2 | Primers for RT-qPCR.

| Quantitiative RT-PCR primers | Forward (5'-3')         | Reverse (5'-3')         |
|------------------------------|-------------------------|-------------------------|
| НЗ                           | TGTGGCCCTCCGTGAAATC     | GGCATAATTGTTACACGTTTGGC |
| Znhit1                       | TGGGCAAGAGGCTACCTCA     | CAGATGCACTCAGGTTCTGCT   |
| Lgr5                         | CGGGACCTTGAAGATTTCCT    | GATTCGGATCAGCCAGCTAC    |
| Ascl2                        | TGCCGCACCAGAACTCGTAG    | ACTCCAGACGAGGTGGGCAT    |
| Olfm4                        | CAGCCACTTTCCAATTTCACTG  | GCTGGACATACTCCTTCACCTTA |
| Clic6                        | CTCTGGGTTAGACTCTCAGGG   | GGTGCCTCTGTGTCCATGTT    |
| Dach1                        | CCTGGGAAACCCGTGTACTC    | AGATCCACCATTTTGCACTCATT |
| Esrrg                        | AAGATCGACACATTGATTCCAGC | CATGGTTGAACTGTAACTCCCAC |
| Scn2b                        | CGGAGCATGGAAGTCACAG     | CTGCTTGTGGTTCACGGTGTA   |
| Tgfb1                        | CTCCCGTGGCTTCTAGTGC     | GCCTTAGTTTGGACAGGATCTG  |
| Tgfbr2                       | CCGCTGCATATCGTCCTGTG    | AGTGGATGGATGGTCCTATTACA |
| Pla2g2e                      | CCAGTGGACGAGACGGATTG    | AGCAGCTCTCTTGTCACACTC   |
| Lyz2                         | ATGGAATGGCTGGCTACTATGG  | ACCAGTATCGGCTATTGATCTGA |
| Норх                         | AGGAGCAGACGCAGAAATG     | GAAACATCAAAACAGCCTGGG   |
| H2afv                        | GCTAAGGCGGTGTCTCGTTC    | TGTGGTGCGAGTCTTCAAGTG   |
| H2afz                        | CCAAGACAAAGGCGGTTTCC    | TCCTGCCAACTCAAGTACCTC   |
| Cdk6                         | GGCGTACCCACAGAAACCATA   | AGGTAAGGGCCATCTGAAAACT  |
| Msi 1                        | TAAAGTGCTGGCGCAATCG     | TCTTCGTCCGAGTGACCATCT   |
| Axin2                        | GCTCCAGAAGATCACAAAGAGC  | AGCTTTGAGCCTTCAGCATC    |

## Supplementary Table 3 | Primers for ChIP-qPCR.

| ChIP-qPCR primers | Forward (5'-3')        | Reverse (5'-3')         |
|-------------------|------------------------|-------------------------|
| Negative region   | CCCTCTACAGAACCACC      | TCCTTCATTCCCACATC       |
| Lgr5              | GGTGAAGACGCTGAGGTTGG   | CCTCTACAGGCTCCCTGCTCT   |
| Clic6             | CTCACCCTGAGCAGCGTCG    | CTCCTGGTCCCTCGATTGTC    |
| Tgfbr2            | CGAGATGGCAAAGCTGAGGA   | CCGGAAAGGGAAGTTTAAGAAGT |
| Tgfb1             | GCACTGCGCTGTCTCGCAAGGA | TTTGTGGCTCCCGAGGGCTGGT  |