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Supplementary Note 1. EXPERIMENTAL METHODS

Multilayer films consisting of Ta(3)/Pt(10)/[Ir(1)/Fe(0.5)/Co(0.5)/Pt(1)]20/ Pt(2) (layer

thickness in nm, in parentheses) were deposited on thermally oxidized 100 mm Si wafers by

DC magnetron sputtering at RT, using a ChironTM UHV system manufactured by Bestec

GmbH. The base pressure prior to film deposition was 1 × 10−8 Torr, and a working pres-

sure of 1.5× 10−3 Torr was maintained during the deposition by Ar sputtering gas. Buffer

layers of Ta(3)/Pt(10) were deposited before the active stack for better adhesion and film

texture. Additional capping by Pt(2) was added to protect the stacks from unwanted oxida-

tion. Film texture, surface roughness and interface quality were verified by X-ray diffraction

(XRD), atomic force microscopy (AFM), and X-ray reflectivity (XRR) [1]. Magnetization

[M(H)], Hall effect, and magnetic force microscopy (MFM) characterization were performed

on different pieces of the same wafer.

The magnetization [M(H)] measurements were carried out using a superconducting quan-

tum interference device (SQUID) with a magnetic property measurement system (Quantum

Design MPMS XL). Magnetotransport measurements were carried with a lock-in technique

using small current densities (as low as 105 A/m2) to avoid current induced changes in the

magnetic textures. The data was acquired at various temperatures (T ) between 5 K to 300 K

through a full hysteresis cycle, with 5 mT steps between the negative saturation field (H−S )

and the positive saturation field (H+
S ) after saturation at large fields (+4 T). Measurements

were carried out using an physical property measurement system (Quantum design, PPMS

6000), complemented by custom built variable temperature insert (VTI) housed in a high

field magnet [1].

The magnetic imaging experiments were conducted using a cryogenic frequency modu-

lated MFM system [2]. The sample was first stabilized at a given temperature (5− 200 K)

and then magnetized in the out of plane direction by applying µ0H = −0.5 T, well beyond

the saturation field (HOP
s ). After saturation, MFM images were acquired at field increments

as H was swept from H−S to H+
S . Images were acquired by scanning the magnetic MFM tip

parallel to the film surface at a constant scan height h without feedback, while recording

changes of the resonant frequency (∆f) of the cantilever from its natural value (f0) due to

magnetic forces acting on the tip [3]. These shifts provide information on magnetic texture

through the magnetic forces acting on the tip. In the limit of small oscillation amplitude and
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small frequency shift [2]: ∆f ≈ f1−(f0/2k0)(∂Fz/∂h), where k0 is the spring constant of the

cantilever [4], and f1 is a constant offset. It is possible to account for the finite oscillation

amplitude [5], but as we have demonstrated in recent work [6], this is not needed to describe

the signal phenomenologically. It is important to note that the signal magnitude strongly

depends on the tip-sample separation height h. Therefore, comparing the variation in ∆f

between scans is only meaningful if they were obtained at very similar values of h.

Supplementary Note 2. MAGNETIC PROPERTIES

Supplementary Fig. 1(a) shows the SQUID M(H) magnetization loops recorded in out-

of-plane (OP) and in-plane (IP) applied field at 100 K, while Supp. Fig. 1(b) shows the

variation of the saturation magnetization and effective out-of-plane anisotropy (Keff) with

temperature. Keff is determined from the difference in the saturation fields of the OP

and the IP magnetization loops: Keff = µ0MS

(
HIP
s −HOP

s

)
/2. HOP

s was taken as the

average saturation field of sweep-up and sweep-down branches [7]. The details of magnetic

parameters such as D, A, Keff and skyrmion properties for various thicknesses of Fe/Co have

been reported previously [1].

Supplementary Note 3. MAGNETIC FIELD CALIBRATION

The estimated topological Hall effect (THE) in these multilayers is 5%−10% of the total

Hall signal, and any field offsets between the experimental setups can often appear as residual

signals. In recent work, we have established the robustness of the residual signal at RT, and

the results were found to be consistent across different measurement setups [1]. In this work

using MPMS and PPMS, to avoid spurious residual signals, repeated measurements were

carried out to verify the magnetic field offset using a Pd reference sample (Quantum Design,

Serial no.: Pd#090721 − 04, weight: 0.2812 g, susceptibility χg = 5.24 × 10−6 cm3/g)

and a Hall sensor (Lakeshore, model: XHGT-9060, serial no.: 53710, sensor type: InAs)

respectively. Supplementary Figs. 2(a) and (c) show the set field vs measured field and their

offset for MPMS and PPMS respectively. The field offset data presented in Supp. Figs. 2(b)

and 2(d) represent the repeated field calibration runs carried out for different field sweep

protocols. The variation in the field offsets is below ±1 mT in the field range (±0.6 T)
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SUPP. FIG. 1. The magnetization properties of [Ir(1)/Fe(0.5)/Co(0.5)/Pt(1)]20. (a) Magnetization

loops recorded at 100 K in out-of-plane (OP) and in-plane (IP) applied fields. The effective out-

of-plane anisotropy (Keff) is determined from the difference in saturation fields (HIP
s −HOP

s ). (b)

Temperature dependence of the effective out-of-plane anisotropy and the saturation magnetization.

Error bars in Keff represents the systematic error in determining the magnetic saturation field and

the magnetization.

relevant to the samples studied here. To avoid any field offset discrepancies resulting from

the variation in the field protocols, the calibration runs were performed using the same

protocols used for measuring the actual samples.

Supplementary Note 4. HALL TRANSPORT

A. Topological Hall Analysis

In case of B20 skyrmion lattices, such as in bulk crystals of MnSi and FeGe, the mea-

sured raw Hall resistivity (ρyx) shows a characteristic hump [8, 9] which correlates with the

emergence of a skyrmion lattice. This characteristic feature in B20 clearly differentiates the

transport data from magnetization. However, as mentioned in the main text, this feature

does not always appear. In our multilayer case the characteristic features in the raw Hall data

are subtle and need more careful inspection. As described in the main text, the topological

Hall signal is extracted as the residual of the fit of ρyx to ρfityx = R0H +RSM(H). It is thus

important to establish the validity of this residual signal and the analysis employed. Here, by

comparing the first derivatives of the measured data −dρnorm
yx /dH and dMnorm/dH, we show
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SUPP. FIG. 2. Magnetic field calibration for PPMS and MPMS. (a) Set vs measured magnetic

field and their offset [defined as (set field)–(measured field)] using a Pd reference sample in MPMS.

(b) Magnetic field offset in MPMS for two different field protocols. (c) Set vs measured magnetic

field and their offset [defined as (set field)–(measured field)] using a Hall sensor in PPMS and (d)

the magnetic field offset in PPMS for two different field protocols. [The arrows in panels (b) and

(d) indicate the field sweep direction.]

that the observed residual signal indeed results from the additional component captured in

the transport data [1]. Supplementary Figs. 3(a),(b) show the as-measured and magnetic-

field offset-corrected magnetization and transport data for [Ir(1)/Fe(0.5)/Co(0.5)/Pt(1)]20

recorded at 5 K. As shown in Supp. Fig. 3(c), the first derivatives clearly show the distinct

peaks separated by 20 mT (blue and red dashed lines) indicating the changes in transport

signals are distinctly different from magnetization. Furthermore, the peak positions of the

residual signals match the peak positions of −dρnorm
yx /dH, indicating the source of residual

signal is indeed transport and not magnetization. Also, the smoothly varying magnetization
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SUPP. FIG. 3. Topological Hall analysis and its validity. (a),(b) As-measured (black curve) and

magnetic-field offset-corrected (red curve) M(H) and ρyx(H) for a [Ir(1)/Fe(0.5)/Co(0.5)/Pt(1)]20

stack, recorded at 5 K. (c) Comparison of first derivatives of Hall (filled black squares) and magne-

tization (filled red circle) with the residual Hall signal. As indicated by blue dashed lines, the peak

positions of the residual Hall signal (bottom panel, filled blue squares) match the peak positions of

−dρnorm
yx /dH. While the red dashed lines indicate the peak position of dMnorm/dH, which is offset

from the transport data. [The arrows in panels (a),(b) indicate the field sweep direction for −Hs

to +Hs branch corresponding to panels (c). Panel (b) is reproduced in Fig. 1(a) in the main text.]

and Hall signal in this case provide reliable means of fitting.

B. Scaling of ρyx with ρxx and validity of the topological Hall effect analysis

Supplementary Fig. 4 shows examples of the extracted THE signal for multilayer stacks

with varying number of repeats. Panels (a) and (d) show the measured ρyx and the fit [with

and without accounting for the anomalous Hall effect (AHE) dependence on the specific

shape of ρxx(H)]. Panels (c) and (f) show the overlap of THE signal resulting from the two
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SUPP. FIG. 4. The role of longitudinal resistivity (ρxx) in the anomalous Hall effect (ρyx)

and the extracted residual signal for [Ir(1)/(Fe0.5)/Co(0.5)/Pt(1)]20 measured at 5 K and for

[Ir(1)/(Fe0.5)/Co(0.5)/Pt(1)]2 measured at 100 K. (a,d) ρyx as a function of µ0H. Black open

circles show the raw data, solid red line is a fit with AHE contribution taken as RsM(H), solid

red circles are a fit with AHE as aρxx + bρ2
xx. (b,e) ρxx as a function of µ0H. (c,f) The residual

between raw data of ρyx and fits. Solid line is the fit with AHE contribution taken as RsM(H),

open circles are the fit with AHE as aρxx + bρ2
xx.

sets of analysis. This result is consistent with the scaling behavior shown in Supp. Fig. 5.

We note that the variation of ρxx(H) is very small (2 − 5 nΩ · cm) in these multilayers for

field values corresponding to magnetic textures. Furthermore, ρxx features asymmetry with

field sweep [∆ρxx shown in panels (b) and (e) points to the difference in ρxx for a positive

and negative saturation of magnetization]. Such asymmetry in ρxx in multilayers can be

8



1 4 1 6 1 8 2 0

- 2 0 0

- 3 0 0

- 4 0 0
 a t  µ 0 H = 0 . 6 T  ( H > H S )
 ρy x =  a * ρx x + b * ρ2

x x + c

 a t  µ 0 H = 0 . 2 T  ( H < H S )
 ρy x =  a * ρx x

T = 3 0 0 K

ρ y
x(T

) [n
Ω

.cm
]

ρx x ( T )  [ µΩ . c m ]

T = 5 K

SUPP. FIG. 5. Scaling of ρyx(T ) with ρxx(T ) for [Ir(1)/(Fe0.5)/Co(0.5)/Pt(1)]20 at fixed field .

attributed to the chiral domain walls stabilized by DMI [10]. However, the impact of such

chiral domain wall resistance on ρyx is not clearly understood yet. Supplementary Fig. 4

clearly shows that ρxx(H) has no effect on our extraction of THE.

The anomalous Hall effect in B20 systems, like FeGe, is well described by linear [ρxx(H),

skew] and quadratic [ρ2
xx(H), side jump and intrinsic] terms [11, 12], with transport usually

dominated by the side jump mechanism for pure FeGe, and skew scattering when doped

[11]. However, the scaling of ρyx with ρxx is not well understood in multilayers [13] due

to the inhomogeneous structural and magnetic environment experienced by charge carriers.

The scaling behavior in multilayers is expected to be controlled by the relative thickness

of the layers and the mean free path of the charge carriers (l). When the layer thickness

is less than l, transport is dominated by skew scattering [13]. This is consistent with the

description of AHE by RSM(H) , Eq. 3 of the main text, generally employed for magnetic

multilayers [14, 15].

Supplementary Figs. 5 and 6 show the variation of ρyx and ρxx with temperature, field

and the scaling behavior for different field values corresponding to skyrmions, chiral domains

(at H < HS) and a fully polarized ferromagnetic state (H > HS). The figures show that

within the field and temperature regimes explored in this study, the scaling between ρyx and

ρxx can be approximated by a linear dependence. This is consistent with the dominant skew

scattering expected in these multilayer systems [13]. A quadratic dependence is followed for
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SUPP. FIG. 6. Scaling of ρyx(H) with ρxx(H) with applied field below the saturation of magne-

tization for [Ir(1)/(Fe0.5)/Co(0.5)/Pt(1)]20 at different temperatures. Top row were measured at

300 K, middle row at 100 K and bottom row at 5 K.

a fully polarized ferromagnetic phase, consistent with a conventional ferromagnetic behavior.

These observations indicate that skew scattering plays a major role in charge transport in

the presence of chiral domain walls and skyrmions.

C. Temperature Dependence of the Topological Hall Effect

Supplementary Fig. 7 shows the temperature dependence of the magnetization, Hall,

residual Hall profile and fit parameters. Supplementary Fig. 7(b) shows the experimental
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SUPP. FIG. 7. Temperature dependence of magnetization and Hall effect for [Ir(1)/Fe(0.5)/

Co(0.5)/Pt(1)]20. (a) Magnetization measured at various temperatures (5 − 300 K). (b) Total

Hall signal measured at various temperatures (5−300 K) and the fit using the procedure described

in the main text and data from panel (a). (c) Residual Hall signal at 50 K resulting from panel

(b). (d) Temperature dependence of the anomalous Hall coefficient, RS and the ordinary Hall

coefficient, R0, resulting from the fit data in panel (b) (R0, is reproduced in Fig. 2(b) in the main

text).

Hall data and the fit using Eq. 3 from the main text for different temperatures. Supplemen-

tary Fig. 7(c) shows the residual signal for T = 50 K resulting from panel (b), the arrows

indicate the THE peak magnitude for H < 0 and H > 0. The magnitude of THE profiles for

various temperatures resulting from panel (b) is summarized in Fig. 2(b) in the main text.

The asymmetry in peak magnitude (H < 0 vs H > 0) results from hysteretic domain forma-

tion as the magnetization changes from negative saturation to positive upon field reversal [1].
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As indicated in Supp. Fig. 7(b), the high field slope of the transport data representing the

ordinary Hall coefficient, R0, changes systematically as the temperature changes from 5 K

to 300 K. Supplementary Fig. 7(d) summarizes the fit parameters Rs(T ) and R0(T ), which

is also reproduced in Fig. 2(b) in the main text together with max (|∆ρyx|). Importantly,

R0(T ) changes sign near T = 85 K, while RS(T ) and max (|∆ρyx|) show that they scale

differently with T . This suggests that the anomalous and topological components originate

from different Berry phase mechanisms and that ∆ρyx is not a spurious signal associated

with magnetization or the AHE component.

D. Evolution of the Topological Hall and Magnetic Textures at 50 K

Supplementary Fig. 8 shows the evolution of the residual Hall signal with field and the

signed density of topological charge of various magnetic textures observed in the MFM scans

at 50K. The analysis of skyrmions, nsk, worms, nw and the total topological charge, nT, is

similar to the 5K data presented in Fig. 3(a) in the main text. We observe qualitative

agreement between nT and ∆ρyx at 50 K, similar to the 5 K case. However, close inspection

shows an offset between the H > 0 peak-positions for ∆ρyx and nT. This offset is, at least

partially, a result of domain metastability and the perturbing influence of the magnetic

tip, which can write and erase features. The metastability of these magnetic textures is

demonstrated by performing repeated MFM scans on the same area of the sample. The

data point corresponding to the red asterisk in Supp. Fig. 8 indicates the reduction in nT as

the tip erases the magnetic textures. We discuss this metastability in Supplementary Note

4 E.

E. Metastability and Manipulation of Magnetic Textures

In Supp. Fig. 9, we show examples of tip manipulation of domains highlighted in Supp.

Fig. 16(d),(q) [also shown in main text Fig. 1(d),(j)]. Near the negative ∆ρyx peak, the

perturbation from the tip creates more domains, reducing the net magnetization of the

sample towards zero. On the other hand, near the positive ∆ρyx peak [Supp. Fig. 9(c),(d)],

the perturbation deletes domains and pushes the system towards the polarized state. In

these manipulations the influence of the tip cannot be simply ascribed to the stray field

12
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SUPP. FIG. 8. Evolution of magnetic textures and the residual Hall signal with field recorded

at 50 K. Comparison between ∆ρyx (right axis) and the signed density of topological charge (left

axis), which is determined from MFM data as that of skyrmions, nsk, or isolated features nsk +nw,

or total topological charge, nT. For nT, each worm is assigned an appropriate number of skyrmions

|QW| by fit, and each isolated skyrmion is counted once. We also show the density extracted from

Eq. 2 in the main text assuming ρTH = ∆ρyx (inverted gray triangles with dotted line), with

P = 0.56 [16] and R0 from Fig. 2(b). Empty symbols indicate points with a lower confidence,

that result from counting worms embedded in a dense domain background using a deep learning

network presented in the following sections. The gray shaded area shows the confidence bounds

for nT, with uncertainty arising from the fit procedure of assigning skyrmions to worms detailed in

the following sections. The confidence bounds from fitting worms embedded in the dense domain

background appear with a darker shade. The red asterisk corresponds to a second pass over the

scan area in which the tip erased magnetic features and reduced nT [see e.g. Supp. Fig. 9(c),(d)].

because in both cases it is parallel to the external field directly under the tip, where it is

strongest. This indicates that the perturbation from the tip drives the magnetic texture to

a lower energy state, implying the metastability of these textures.
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SUPP. FIG. 9. Examples of metastability and influence of the MFM tip on magnetic texture.

Color bars show ∆frange. Black arrows indicate the raster pattern of the scans: horizontal double

arrows show the back or forth direction (fast axis); large vertical arrow shows the direction the tip

is stepped in after a back and forth cycle (slow axis). (a) Detail from Supp. Fig. 16(d) [Fig. 1(d)

in the main text] – part of a sweep towards µ0H = 0 T – which shows the MFM signal acquired

by a first pass at h = 40 nm. (b) The same area after a second MFM pass. Red arrows mark

new features. (c) Detail from Supp. Fig. 16(q) [Fig. 1(j) in the main text] – part of a sweep from

µ0H = 0 T – which shows the MFM signal acquired by a first pass at h = 45 nm. Red arrows

mark features that are missing in the next panel. (d) The same area as in (c) after a second MFM

pass. Scalebars are 500 nm.

Supplementary Note 5. MICROMAGNETIC SIMULATIONS

Micromagnetic simulations of magnetic textures in [HM(1 nm)/FM(1 nm)/HM(1 nm)]20

multilayers were performed using the MuMax3 package [17], which accounts for interfacial

DMI. HM and FM represent non-magnetic heavy metal (Pt and Ir) and ferromagnetic metal

(Fe/Co) layers respectively. Stacks were modeled with a mesh size of 4 × 4 × 4 nm3 over

an area of 2 × 2 µm2. The magnetic parameters used for simulations [1, 18] are discussed

in Supplementary Note 2. To simulate the evolution of magnetic textures, the stacks were

relaxed to an equilibrium magnetic state at µ0H = 0 T and then H was swept incrementally

towards the saturation field. The simulations were performed at 0 K, while the magnetic

parameters used correspond to M(H) as determined by SQUID at 5 and 200 K. As presented
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in Supp. Figs. 10, 11, the simulated magnetic textures evolve from stripe-domains at µ0H =

0 T to worms and skyrmions at higher field. At sufficiently high field a uniformly magnetized

FM state is realized. The evolution of the magnetic textures is qualitatively consistent with

our experimental observations.

A. Simulated MFM Images

The MFM images presented in the main text and in Supp. Figs. 10, 11 were obtained by

convolving the transfer function of the tip with the calculated stray field from the simulation

magnetization [19]. The stray field was calculated using [20]:

Hz(~k) = −1

2

20∑
i=1

(1− e−kdi)e−kh


−ikx
−iky

1

 · ~mi(~k), (1)

where Hz(~k) is the Fourier transform along the x − y directions, with ~k = (kx, ky), k ≡√
k2
x + k2

y, h is the distance between the MFM tip and the surface, di is the distance be-

tween the i-th layer and the surface and ~mi(~k) is the Fourier transform of the simulated

magnetization in the i-th layer. To account for the blurring effects of the tip and amplitude

we have used the model and tip parameters from [6]. Since the MFM does not measure

in 4 × 4 nm2 resolution, we have down-sampled the images so that each pixel covers a

24× 24 nm2 area, which reflects the sampling intervals of the experimental measurements.

B. Topological Charge of Simulated Worms

Figures 4(c),(f) in the main text present the contribution of individual domains to nT.

Equation 1 in the main text is an integral over the whole plane, which gives the total winding

number for the whole magnetic texture. In order to obtain local information which reflects

the contribution of an individual domain to this winding number we have to define domain

boundaries. For a background polarized to nz = 1 and domains at the center of which

nz = −1 we define the boundary by the line along which nz ≈ 0.85. We then performed

the same integration as in Eq. 1, but only inside the domain boundaries. Our integration

yielded results which were close to integer, indicating that the contribution to the integral

from areas outside the domains was not significant. This analysis enabled us to provide an
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SUPP. FIG. 10. Results of micromagnetic simulations with A = 11 pJ/m, D = 2 mJ/m2, Ms =

1.34 MA/m and Keff = 0.2 MJ/m3. (a) Values of the mean magnetization along the z direction

〈nz〉 (left axis, red circles), and of the topological charge density (right axis, blue line), calculated

from the simulation results for various fields, considering only the bottom layer. (b-g) MFM

images calculated from the simulation results showing the evolution of magnetic texture as the

field progresses. The images are of a 2×2 µm2 area. Color bars represent a range of approximately

0.2 Hz. White frame in (f) shows the features presented in Fig. 4 (a-c)

estimate for the contribution of individual domains to, nT, the total topological charge in a

simulated image.

Supplementary Note 6. MFM RESULTS

MFM images recorded at different temperature (T = 5, 50, 100, 150, 200 K) and field

are presented at the end of this supplement, in the appendix, starting on page 28.
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SUPP. FIG. 11. Results of micromagnetic simulations for A = 11 pJ/m, D = 2 mJ/m2, Ms =

1.16 MA/m and Keff = 0.05 MJ/m3. (a) Values of the mean magnetization along the z direction

〈nz〉 (left axis, red circles), and of the topological charge density (right axis, blue line), calculated

from the simulation results for various fields, considering only the bottom layer. (b-g) MFM images

calculated from the of the simulation results showing the evolution of magnetic texture as the field

progresses. The images are of a 2 × 2µm2 area. Color bars represent a range of approximately

0.2 Hz. White frame in (e) shows the features presented in Fig. 4 (d-f)

A. MFM Scans Near the Peaks of ∆ρyx

The fields in which ∆ρyx peaks are of particular interest, as those are the fields where

we expect to image magnetic textures which provide the maximal contribution to THE.

Therefore, for each temperature we took care to obtain an MFM scan at those peaks.

Supplementary Fig. 12 shows the magnetic texture measured at the negative peak and Supp.

Fig. 13 for the positive one. As can be seen in Supp. Fig. 12, the lack of skyrmions and
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SUPP. FIG. 12. Temperature dependence of magnetic textures corresponding to the ∆ρyx peak

for H < 0. (a)-(e) MFM images at T = 5, 50, 100, 150, 200 K and an applied field of µ0H =

−0.225,−0.235,−0.255,−0.257,−0.255 T respectively (scan heights are 40, 35, 35, 35, 30 nm).

Changes in field value represents the shift in peak position with temperature. Scalebars are 1 µm.

abundance of worms at the peak persists for T ≤ 100 K. Above that temperature, magnetic

imaging shows worms and skyrmions together, as in Supp. Fig. 13. Since the overall peak

shapes of ∆ρyx are quite independent of temperature, we see this as further evidence for the

higher topological charge of worms.

Supplementary Note 7. IMAGE ANALYSIS

As described in the main text, to estimate the topological charge of a worm (QW) we

need to estimate the number of skyrmions it is composed of. Here, our analysis involves

two steps. First, we label the magnetic worms based on strength of the MFM signal. Pixels

exhibiting stronger positive MFM signal are more likely to be part of a worm, while the weak

or negative ones correspond to the background. Here, we note that as the worms/skyrmions

are magnetized in the opposite direction compared to the background and hence to the
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SUPP. FIG. 13. Temperature dependence of magnetic textures corresponding to the ∆ρyx peak

for H > 0. (a)-(e) MFM images at T = 5, 50, 100, 150, 200 K and an applied field of µ0H =

0.37, 0.355, 0.32, 0.295, 0.33 T respectively (scan heights are 40, 35, 35, 50, 40 nm.). Change in field

value represents the shift in peak position with temperature. Scalebars are 1 µm.

MFM tip, the tip experiences a repulsive force giving rise to a strong positive signal. Such

a strong signal from worms/skyrmions makes the identification easier. After labeling, the

second step involves the fitting of each worm with a train of skyrmions. For each connected

group of pixels labeled as ”worms”, we perform several iterations and attempt to find the

optimal number of skyrmions which best describes the data.

A. Labeling

We start by applying the K-means clustering algorithm [21] on the ∆f values of a scan

in order to divide the data into two groups – worms (including skyrmions) and background.

We denote the mean value for worms (the stronger signal) as c1 and the background as c2

(weaker signal). Each pixel in the image is thus attributed a value cα with α = 1 or α = 2,

according to the group it belongs to.
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Due to the effects of tip convolution and scan height, the magnetic features measured by

the MFM are larger than their true size. Therefore, the smallest domain sizes measured by

MFM are limited by the tip curvature radius of ≈ 30 nm, which is approximately the size

of a pixel in our images 25 × 25 nm2 . Also, based on our previous work [1, 6], skyrmions

with a radius of 40 nm are a reasonable lower limit. We feed this spatial information into

our labeling analysis to avoid features smaller than two pixels, which are not physical.

The optimal labeling, given these two conditions, minimizes the following cost function:

J(f) =
∑′

iD
1
i (f) +

∑′′
i D

2
i (f) +

∑
〈i,j〉 Vij, to find the optimal matrix of labels f . Here i, j

are pixels in the image,
∑′

i is a sum over all pixels labeled c1,
∑′′

i is a sum over all pixels

labeled c2, Dα
i = (∆fi− cα)2 is a measure for how well the label α fits the ith pixel, Vij = λ

if fi 6= fj and 0 otherwise, and
∑
〈i,j〉 is a sum over nearest neighbors. The minimization of

J(f) is performed using graph cuts with a piecewise constant prior [22]. The value of the

parameter λ is chosen as the smallest parameter for which the optimal labeling no longer

includes single-pixel domains. The resulting labeling f is a binary image which is true for

pixels positively identified as worms, and false for those in the background.

B. Fitting

For each connected group of pixels labeled as worms, we now fit the number of skyrmions.

We perform several iterations, assuming a different minimal spacing between skyrmions in

each one. Similarly, K-means was employed to iteratively divide the worm pixels into groups,

where the mean of each group is assumed to be the location of a skyrmion. If the mean of

the group lies outside the worm area (as would happen with a small number of groups or

banana shaped worms), we choose the closest point within the worm to be the new mean for

the group. The worm is divided into an increasing number of groups until at some number

N , the spacing between groups is smaller than the minimal spacing. We then fit N − 1

skyrmions, with the group means used as initial skyrmion positions. The fitting is done

using a multipole expansion for the magnetic field from skyrmions (MEFS) model [6], in

which we approximate the stray field from a skyrmion as the field of a magnetic dipole and

quadrupole. Since we are only interested in the number of skyrmions which fits the data,

we employ the truncated cone model [6] for the tip because it is computationally cheap.

Skyrmion–skyrmion repulsion grows exponentially on the scale of the skyrmion radius [23],
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therefore we reject fit results in which the distance between neighboring skyrmions is smaller

than a skyrmion radius, which we previously estimated to be approximently 40 nm [6].

In order to provide some constraint on the amplitude, we first consider the case of a

single skyrmion; as we have stated before, a single skyrmion will be captured by several

pixels. Given the sharp shape of the skyrmion signal, the peak will be larger than the mean

value of all the pixels which constitute the skyrmion. Extending this condition to worms, we

constrain the amplitude of each fitted skyrmion to be at least the mean value of all pixels

labeled as worms.

The fitting procedure that we establish therefore assigns the minimum number of

skyrmions which best fits the data by constraining the amplitude per skyrmion. As a

lower bound we take the numbers of skyrmions which can fit in a worm, and are similar in

width to skyrmions observed in Fig. 1(j) (≈ 100 nm) since if their densities were lower we

should able to resolve them. For an upper bound we take the number of skyrmions which

can fit into a worms so that their centers are still 40 nm apart which is the typical radius

[6]. The lower bound thus corresponds to the width of skyrmions which we have measured,

and the upper bound corresponds to our estimate of the actual skyrmion radius without tip

convolution [6].

C. Worms in a Background of Dense Domains

As Supp. Figs. 16, 17, and 18 show, for fields in the intermediate range between µ0H =

0 T and THE peaks, the magnetic texture is dominated by dense domains, giving rise to

an apparent non-zero Hall signal, ∆ρyx 6= 0, as shown in Supp. Fig. 7(c). We would like

to obtain some insight on whether or not this contribution to ∆ρyx comes from worm-like

features, as was clearly the case for images corresponding to fields between the peaks in

∆ρyx and saturation. Our hypothesis is that as the dense stripe domain pattern evolves

upon reducing the field towards µ0H = 0 T, some of the worm-like features observed at

higher fields persist and coexist with stripe domains and contribute to THE. In order to

extract the density of worms and hence topological charge from these images, we need a

vigorous method for classifying pixels to worms and dense domain background.

Here, classification which relies on the ∆f value is problematic, as both up-domains

and worms exhibit a similar positive signal. Establishing such a classification based on a
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quantitative metric which will be reliable for a range of scans obtained over a wide variety of

temperature, field and scans height using a set of predetermined features can be remarkably

difficult, as such general features which distinguish a worm from a dense domain pattern are

very hard to define. Here, we pursue a more data-oriented approach in which an algorithm

extracts relevant features from supplied examples. We assume that a feature contributes to

THE signal if it resembles a worm [such as in Supp. Fig. 16(d)] more than it resembles dense

domains [such as in Supp. Fig. 16(g)] and hence the parameters corresponding to worms in

Supp. Fig. 12(a) act as reference for classification of features in dense images.

Deep learning models, specifically convolutional neural networks, are especially well suited

for this task [24], as they can learn to distinguish complex features accurately using a large

number of successive convolution layers. In addition to classification, we require the model

to output spatial information - specifically which pixels in the image correspond to worms

and otherwise dense domains. As shown by Long et al. [25], it is possible to add several

upsampling layers to a classification convolutional network in a directed acyclic graph (DAG)

architecture, and thus obtain spatial information in addition to classification. In the data

analysis for this paper, we have used the MatConvNet toolbox [26], which provides an

implementation for DAG neural networks that can be used in Matlab. The classification

network we used was the pretrained VGG-VD16 network, downloaded from the MatConvNet

website. We adapted the algorithm for our purpose by changing the last fully connected

layer to have 2 classes only, and adding upsampling layers with 2 classes for the FCN8

architecture [25].

In order to minimize the training time, we try to make maximal use of existing knowl-

edge, and only fine-tune the network to our needs. The VGG-VD16 network was trained

on RGB images. Since the measurement noise in our MFM is at least 10 mHz, and the

maximum values we measure are smaller than 100 Hz, we require only four significant digits

to accurately describe our data. We can therefore convert our MFM data (single channel

in double-precision floating-point format) to RGB images (three channels of unsigned 8-bit)

without any loss of accuracy. We achieve this by creating a histogram of the data with

the number of bins adjusted so that the bin centers are 10 mHz apart (noise limit). Each

bin was then assigned with a corresponding RGB value using the Matlab Parula color map,

thus rendering an RGB image which contains all the information from the MFM scan. This

routine is very similar to the way MFM images are displayed as RGB images in all figures
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image ground truth prediction

SUPP. FIG. 14. Examples for the application of the deep learning model on the test set. Left

column shows the synthetic data of worms on a dense domain background. The middle column

shows the ground truth used for training. Rightmost column is the prediction of the model. These

images do not have a single length scale for all features, as different features come from different

temperatures where the conversion form pixels to length is different.

in this paper.

Next, we need to create synthetic data which is representative of worms and dense domain

pattern to properly train the model to segment any given image. For instance, learning the

features of worms will require many different images to account for the great variations

in signal intensity, length-scale and shape. On the other hand, it is also important to

provide examples of dense domain patterns with different rotations to avoid over-fitting to

orientations. Notably, the scaling portion of the training is well taken care of by MatConvNet

which randomly rescales training images.

For training images of the dense domain background we took a set of images measured

at µ0H = 0 T, where the magnetization is roughly 0, hence we expect an equal number

of up and down domains with no worms, and randomly cropped a 128 × 128 frame. In

addition, the cropped image was randomly rotated by 0, 90, 180 or 270 degrees. For worms
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we used the algorithm elaborated in Supplementary Note 7 A on images with worms on a

polarized background to obtain labeled examples. We then generated a list of all the worms

in the images, where we define an individual worm as a set of pixels labeled as worms with

an 8-connected neighborhood (pixels which are no more than one row and/or one column

away from each other). For each dense domain background we then randomly picked about

10 worms from all the available images, and then planted each one in the dense domain

background with a random margin of several pixels around it, so that the model will be able

to capture the entire shape of the worms, and not just the stronger signal part.

The signal intensity of worms varies greatly between different scans, and can be much

stronger than the signal of the dense domains. To avoid a bias towards those examples, we

ensured all worms have the same maximum value. For scans of worms and dense domains

that were obtained under similar conditions – temperature and scan height, the worms have

a signal which is about ×4 stronger than that of the dense domains [Supp. Fig. 17(c) and

(h) for example]. We therefore constrained the absolute value of the mean of the dense

domains in the synthetic image to be 0.3 of the worm maximum so that it will be similar to

the raw data ratio.

Overall we have used 20000 images, 18500 as a training set and 1500 for validation. For

each image we created both a classification and a segmentation training example. During

training we used the MatConvNet [26] default parameters except for the class weights. As

there are approximately 10 background pixels for each worm pixel, a model can reach high

accuracy if it classifies all pixels as background. In order to avoid the convergence of the

model to such a solution, we assigned a weight of 10 to worms and 1 to the background.

After 4 epochs the model achieved an accuracy of 97% on 500 extra images used as a test

set. Further training reduced the test set accuracy, probably as a result of over-fitting. The

true negative rate was 0.98 and the true positive rate was 0.76. Two examples from the test

set can be seen in Supp. Fig. 14.

Each image in the intermediate field range was then fed through the network. The output

is a binary image which is true for worms and false for the background. An example for

the network application on data can be seen in Supp. Fig. 15. We then copied the pixels

classified as worms (with a margin of two pixels) from the original image and placed them

in a background of zeros. A Gaussian filter of 5 × 5 pixels with σ = 10 was then used to

smoothen the edges. The result is an estimate of a scan which has only the worms in it
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(a) (b)

SUPP. FIG. 15. Examples for the application of the deep learning model on data. (a) network

output on Supp. Fig. 16(g), (b) network output on Supp. Fig. 17(d). The red markers are the

boundaries of areas classified by the network as worms. The scale bars are of 1 µm.

without the dense domain background. We then applied the algorithm in Supplementary

Note 7 A and Supplementary Note 7 B on this image to obtain the topological charge.

Given the true negative and positive rates of 0.98 and 0.76 respectively, we proceeded to

estimate the classification errors. Our estimate is based on the probability that the network

will make a classification error for a single pixel. For simplicity, we will assume that the

prediction of a pixel class is independent of other pixels, and that it follows a binomial

distribution. For convolutional networks that assumption is not necessarily accurate, but it

is sufficient for determining error bounds.

We can calculate an explicit upper bound for how many worms the network missed –

let us assume a worst case scenario where the network has identified zero worms, therefore

there are N = 2562 pixels labeled as dense domains. The probability that the network will

miss a worm is p = 0.02. The probability that the network missed more than 3000 pixels

who should have been labeled as worms is thus negligible. From Supp. Fig. 17(a), ≈ 3000

pixels were labeled as worms, and this was the lowest density we measured. We therefore

conclude that the density which can be attributed to worms the network missed is negligible

for our data.
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Applying the above calculation to pixels marked as worms, we note that there is a 0.95

probability that the fraction of pixels falsely marked as worms is ≈ 0.25. The lower bound

for scans where the network was used to identify worms should thus be 0.75 of its fitted

value.

Supplementary Note 8. ESTIMATE OF THE ORDINARY HALL COEFFICIENT

To get a rough estimate for the ordinary Hall coefficient in the absence of compensation

resulting from electron and holes, we can assume a single charge carrier per unit cell [27].

Assuming a bulk value for the density (n ≈ nFe ≈ nCo ≈ 4 · 1022 cm−3) we obtain: R′0 ≈

(ne)−1 ≈ 15 nΩ · cm/T. This is about 10×R0(5K).
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APPENDIX –

MFM IMAGES AS A FUNCTION OF FIELD AND TEMPERATURE

-0.5 T(a) (b) -0.3 T (c) -0.25 T

(e) -0.2 T

 

-0.15 T(f)

 

-0.1 T(g)

 

-0.05 T(h)

 

0.0 T(i)

 

0.05 T(j)

 

0.1 T(k)

 

0.15 T(l)

 

0.2 T(m)

 

0.25 T(n)

 

0.3 T(o)

 

0.35 T(p)
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 -.225 T(d)

 0.37 T(q)

Δf

SUPP. FIG. 16. MFM scans at T = 5 K. The applied field is indicated

on each panel. The scale bar is 1µm. Scan heights for panels (a-r) are:

60, 76, 60, 40, 60, 65, 63, 60, 50, 58, 50, 90, 50, 50, 60, 50, 45, 60 nm respectively. The

color-bar indicates the range of ∆f values. The for each scan the range was:

0.3, 0.7, 1.8, 6, 2.3, 1, 0.9, 0.7, 1.2, 1, 1.6, 2.4, 1.8, 2.5, 2.5, 1.2, 1.5, 1 Hz. White frames in panels

(d,q) indicate the areas from which panels (a,b) and (c,d) in Supp. Fig. 9 where taken from.
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SUPP. FIG. 17. MFM scans at T = 50 K. The applied field is indicated on each panel. The scale

bar is 1µm. Scan heights for panels (a-o) are: 40, 50, 35, 40, 45, 50, 45, 35, 38, 35, 32, 32, 33, 36, 35 nm

respectively. The color-bar indicates the range of ∆f values. For each scan the range was:

6, 11, 10, 11, 8, 5, 2.5, 2.25, 2.5, 5, 3, 10, 3 Hz.
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SUPP. FIG. 18. MFM scans at T = 100 K. The applied field is indi-

cated on each panel. The scale bar is 1µm. Scan heights for panels (a-

p) are: 37, 32, 36, 36, 34, 34, 33, 33, 33, 32, 32, 33, 45, 36, 35, 35 nm respectively. The

color-bar indicates the range of ∆f values. For each scan the range was:

1, 7, 10, 9, 9, 6, 4.2, 2.4, 2.25, 5, 7.2, 11, 9, 7, 4.5, 4.5 Hz
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SUPP. FIG. 19. MFM scans at T = 150 K. The applied field is indicated on each panel. The scale

bar is 1µm. Scan heights for panels (a-e) are: 50, 50, 35, 36, 50 nm respectively.
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SUPP. FIG. 20. MFM scans at T = 200 K. The applied field is indicated on each panel. The scale

bar is 1µm. Scan heights for panels (a-e) are: 40, 30, 36, 40, 40 nm respectively.
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