## **Supplementary Information**

## The Transmembrane Conformation of the Influenza B Virus M2 Protein in Lipid Bilayers

Venkata S. Mandala, Shu-Yu Liao, Martin D. Gelenter, and Mei Hong \*

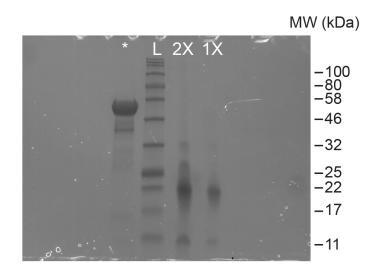
Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139

\* Corresponding author, email: meihong@mit.edu

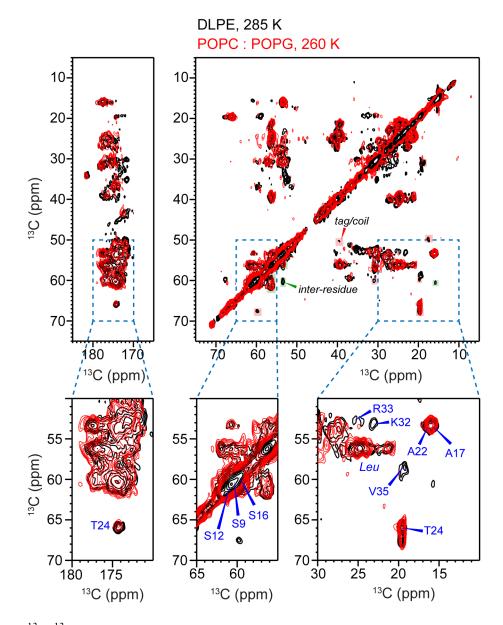
| Residue | Са    | Сβ    | C'    | Ν     | <b>C</b> γ/γ1 | <b>C</b> γ2 | <b>C</b> δ/δ1 | Cδ2/ε/ε2 | Сζ    | Νδ2/Νε/<br>Νε2 | Νζ/Νη1 |
|---------|-------|-------|-------|-------|---------------|-------------|---------------|----------|-------|----------------|--------|
| Met1    | 52.3  | 35.2  | 171.7 | 123.9 | 30.2          |             | 19.3          |          |       |                |        |
| Phe2    | 56.4  | 37.1  |       |       |               |             |               |          |       |                |        |
| Glu3    | 54.7  | 28.1  |       |       | 34.2          |             | 181.6         |          |       |                |        |
| Pro4    | 60.9  | 30.6  |       |       | 25.1          |             | 48.2          |          |       |                |        |
| Phe5    | 55.9  | 35.3  | 173.0 | 117.5 |               |             | 129.5         |          | 128.3 |                |        |
| Gln6    | 56.1  | 24.0  | 176.1 | 116.2 | 29.6          |             |               |          |       |                |        |
| Ile7    |       |       |       |       |               |             |               |          |       |                |        |
| Leu8    | 56.2  | 39.6  | 175.7 | 118.6 | 24.4          |             | 23.9          | 21.2     |       |                |        |
| Ser9    | 60.1  | 60.9  | 174.3 | 116.0 |               |             |               |          |       |                |        |
| Ile10   |       |       |       |       |               |             |               |          |       |                |        |
| Cys11   | 57.3  | 24.8  | 176.6 | 118.3 |               |             |               |          |       |                |        |
| Ser12   | 60.3  | 60.3  | 175.9 | 115.3 |               |             |               |          |       |                |        |
| Phe13   | 59.1  | 37.2  | 175.5 | 120.4 |               |             | 128.9         |          | 128.9 |                |        |
| Ile14   |       |       |       |       |               |             |               |          |       |                |        |
| Leu15   | 56.3  | 39.2  | 176.7 | 120.1 | 24.9          |             | 23.8          | 22.7     |       |                |        |
| Ser16   | 60.0  | 60.7  | 174.5 | 115.6 |               |             |               |          |       |                |        |
| Ala17   | 53.3  | 15.8  | 177.4 | 125.2 |               |             |               |          |       |                |        |
| Leu18   | 56.3  | 38.4  | 176.7 | 119.0 | 24.7          |             | 24.2          | 21.4     |       |                |        |
| His19   | 57.1  | 27.0  |       | 120.0 |               |             |               | 116.9    |       |                |        |
| Phe20   | 59.3  | 36.6  | 175.9 | 121.6 |               |             | 129.3         |          | 129.3 |                |        |
| Met21   | 57.3  | 32.6  | 176.1 | 122.1 | 30.8          |             | 19.5          |          |       |                |        |
| Ala22   | 53.6  | 16.4  | 177.6 | 122.3 |               |             |               |          |       |                |        |
| Trp23   | 59.7  | 27.8  | 177.3 | 120.5 | 109.8         |             |               |          |       |                |        |
| Thr24   | 65.6  | 66.1  | 174.3 | 118.7 |               | 19.6        |               |          |       |                |        |
| Ile25   |       |       |       |       |               |             |               |          |       |                |        |
| Gly26   | 45.2  |       | 173.9 | 107.0 |               |             |               |          |       |                |        |
| His27   | 54.5  | 25.6  | 174.2 | 117.0 |               |             |               | 117.9    |       |                |        |
| Leu28   | 56.4  | 39.1  |       |       |               |             |               |          |       |                |        |
| Asn29   | 51.3  | 37.0  |       |       |               |             |               |          |       |                |        |
| Gln30   |       |       |       |       |               |             |               |          |       |                |        |
| Ile31   |       |       |       |       |               |             |               |          |       |                |        |
| Lys32   | 52.91 | 32.93 | 172.2 | 126.2 | 23.1          |             | 27.3          | 40.3     |       |                | 32.8   |
| Arg33   | 52.55 | 31.28 | 173.3 | 128.3 | 25.5          |             | 41.7          | 157.5    |       | 72.2           | 85.0   |
| Val35   | 58.65 | 32.55 |       |       | 19.3          |             | 19.3          |          |       |                |        |
| Pro44   | 64.48 | 31.63 |       |       | 26.1          |             | 48.3          |          |       |                |        |

**Table S1**. <sup>13</sup>C and <sup>15</sup>N chemical shifts (ppm) of BM2(1-51) bound to DLPE bilayers. <sup>15</sup>N chemical shifts are referenced to liquid ammonia and <sup>13</sup>C chemical shifts are referenced to TMS. Ile residues are not labeled and therefore their chemical shifts are unassigned.

**Table S2**. Comparison of <sup>15</sup>N chemical shifts (ppm) of BM2(1-51) bound to DLPE bilayers and of BM2(1-33) in DHPC micelles. Only residues where <sup>15</sup>N chemical shifts are available for comparison in both studies are given. The construct in DHPC micelles included two mutations to the native sequence, C11S and M21I, thus these residues are excluded from the comparison. <sup>15</sup>N chemical shifts are referenced on the liquid ammonia scale.


| Residue | $\delta N_{DLPE}$ | $\delta N_{DHPC}$ | $\delta N_{DLPE} - \delta N_{DHPC}$ |
|---------|-------------------|-------------------|-------------------------------------|
| Residue | (ppm)             | (ppm)             | (ppm)                               |
| Phe5    | 117.5             | 116.1             | 1.4                                 |
| Gln6    | 116.2             | 120.8             | -4.6                                |
| Leu8    | 118.6             | 122.5             | -3.9                                |
| Ser9    | 116.0             | 117.0             | -1.0                                |
| Ser12   | 115.3             | 117.4             | -2.1                                |
| Phe13   | 120.4             | 123.7             | -3.3                                |
| Leu15   | 120.1             | 119.2             | 0.9                                 |
| Ser16   | 115.6             | 116.1             | -0.5                                |
| Ala17   | 125.2             | 124.9             | 0.3                                 |
| Leu18   | 119.0             | 117.7             | 1.3                                 |
| His19   | 120.0             | 119.3             | 0.7                                 |
| Phe20   | 121.6             | 120.3             | 1.3                                 |
| Ala22   | 122.3             | 122.6             | -0.3                                |
| Trp23   | 120.5             | 120.3             | 0.2                                 |
| Thr24   | 118.7             | 117.1             | 1.6                                 |
| Gly26   | 107.0             | 107.1             | -0.1                                |
| His27   | 117.0             | 120.0             | -3.0                                |
| Lys32   | 126.2             | 124.2             | 2.0                                 |

| Residue | φ Angle                   | ψ Angle                  |
|---------|---------------------------|--------------------------|
| Pro4    | $-61.4 \pm 6.5^{\circ}$   | $146.3 \pm 5.0^{\circ}$  |
| Phe5    | $-64.6 \pm 12.3^{\circ}$  | $-33.8 \pm 11.2^{\circ}$ |
| Gln6    | $-58.4 \pm 24.1^{\circ}$  | $-32.0 \pm 16.3^{\circ}$ |
| Ile7    | $-70.0 \pm 4.6^{\circ}$   | $-36.8 \pm 5.9^{\circ}$  |
| Leu8    | $-66.9 \pm 4.7^{\circ}$   | $-36.3 \pm 5.7^{\circ}$  |
| Ser9    | $-66.6 \pm 4.9^{\circ}$   | $-38.0 \pm 5.5^{\circ}$  |
| Ile10   | $-66.2 \pm 5.8^{\circ}$   | $-39.0 \pm 6.3^{\circ}$  |
| Cys11   | $-64.6 \pm 3.9^{\circ}$   | $-35.3 \pm 6.3^{\circ}$  |
| Ser12   | $-65.8 \pm 4.9^{\circ}$   | $-36.7 \pm 4.6^{\circ}$  |
| Phe13   | $-66.1 \pm 5.1^{\circ}$   | $-38.8 \pm 6.5^{\circ}$  |
| Ile14   | $-68.9 \pm 4.2^{\circ}$   | $-36.7 \pm 5.3^{\circ}$  |
| Leu15   | $-66.0 \pm 5.5^{\circ}$   | $-35.7 \pm 5.1^{\circ}$  |
| Ser16   | $-66.7 \pm 4.0^{\circ}$   | $-37.5 \pm 6.6^{\circ}$  |
| Ala17   | $-65.0 \pm 6.6^{\circ}$   | $-39.4 \pm 5.0^{\circ}$  |
| Leu18   | $-67.6 \pm 4.5^{\circ}$   | $-38.6 \pm 5.0^{\circ}$  |
| His19   | $-66.4 \pm 3.6^{\circ}$   | $-38.5 \pm 3.9^{\circ}$  |
| Phe20   | $-67.2 \pm 5.4^{\circ}$   | $-37.2 \pm 5.3^{\circ}$  |
| Met21   | $-65.2 \pm 4.3^{\circ}$   | $-40.7 \pm 4.5^{\circ}$  |
| Ala22   | $-65.6 \pm 5.0^{\circ}$   | $-35.4 \pm 6.3^{\circ}$  |
| Trp23   | $-62.9 \pm 4.6^{\circ}$   | $-44.1 \pm 5.4^{\circ}$  |
| Thr24   | $-66.8 \pm 4.2^{\circ}$   | $-38.7 \pm 4.5^{\circ}$  |
| Ile25   | -67.1 ± 4.9°              | $-34.5 \pm 4.9^{\circ}$  |
| Gly26   | $-65.7 \pm 4.0^{\circ}$   | $-35.2 \pm 7.2^{\circ}$  |
| His27   | $-70.7 \pm 10.0^{\circ}$  | -33.1 ± 13.8°            |
| Lys32   | $-98.9 \pm 15.0^{\circ}$  | $134.2 \pm 9.5^{\circ}$  |
| Arg33   | $-116.2 \pm 14.0^{\circ}$ | $137.2 \pm 12.4^{\circ}$ |


**Table S3.** Backbone ( $\phi$ ,  $\psi$ ) torsion angles predicted from measured <sup>13</sup>C and <sup>15</sup>N chemical shifts using TALOS-N. Error bars represent the precision of the TALOS-N prediction.

**Table S4**. Experimental conditions for the 2D and 3D  ${}^{13}C{}^{-13}C$  and  ${}^{15}N{}^{-13}C$  correlation spectra for DLPE-bound BM2(1-51). Typical <sup>1</sup>H decoupling rf field strengths were 71 kHz. The 2D NCA and 2D N(CO)CX were measured at the National High Magnetic Field Laboratory.

| Experiment | <sup>1</sup> H Larmor | Mixing scheme and time, rf field                                       | Number of scans, Recycle delays,                                     | Expt.  |  |
|------------|-----------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|--------|--|
|            | frequency, MAS        | strengths                                                              | Digitization                                                         | time   |  |
|            | rate, Temperature     |                                                                        |                                                                      |        |  |
| 2D CC      | 800 MHz, 14 kHz,      | 55 ms CORD                                                             | NS = 64, D1 = 1.8 s, TD1 = 500, SW1                                  | 17 hrs |  |
|            | 285 K                 |                                                                        | = 198.8 ppm, IN1 = 25 μs                                             |        |  |
| 2D CC      | 900 MHz,              | 100 ms CORD                                                            | NS = 192, D1 = 1.5 s, TD1 = 200,                                     | 18 hrs |  |
|            | 15.75 kHz, 270 K      |                                                                        | SW1 = 200 ppm, $IN1 = 22.1 \ \mu s$                                  |        |  |
| 2D CC      | 800 MHz, 14 kHz,      | 300 ms CORD                                                            | NS = 128, $D1 = 2.2$ s, $TD1 = 450$ ,                                | 40 hrs |  |
|            | 285 K                 |                                                                        | SW1 = 198.8 ppm, $IN1 = 25 \ \mu s$                                  |        |  |
| 2D NCA     | 800 MHz, 14 kHz,      | 4 ms <sup>SPECIFIC</sup> CP, <sup>15</sup> N @ 35 kHz, <sup>13</sup> C | NS = 256, D1 = 1.5 s, TD1 = 60, SW1                                  | 7 hrs  |  |
|            | 260 K                 | @ 21 kHz, <sup>1</sup> H @ 100 kHz                                     | $= 49.3 \text{ ppm}, \text{IN1} = 250 \mu\text{s}$                   |        |  |
| 2D N(CA)CX | 800 MHz, 14 kHz,      | 1.43 ms TEDOR, <sup>15</sup> N @ 33 kHz,                               | NS = 288, D1 = 2.0  s, TD1 = 220,                                    | 38 hrs |  |
|            | 285 K                 | <sup>13</sup> C @ 50 kHz, <sup>1</sup> H @ 71 kHz, 110                 | SW1 = $172.7$ ppm, IN1 = $71.4 \mu s$                                |        |  |
|            |                       | ms CORD                                                                |                                                                      |        |  |
| 2D N(CO)CX | 800 MHz, 14 kHz,      | 4 ms <sup>SPECIFIC</sup> CP, <sup>15</sup> N @ 35 kHz, <sup>13</sup> C | NS = 760, D1 = 1.5 s, TD1 = 40, SW1                                  | 14 hrs |  |
|            | 260 K                 | @ 49 kHz, <sup>1</sup> H @ 100 kHz, 150 ms                             | $= 49.3 \text{ ppm}, \text{IN1} = 250 \mu\text{s}$                   |        |  |
|            |                       | DARR                                                                   |                                                                      |        |  |
| 3D NCACX   | 900 MHz,              | 4 ms $^{\text{SPECIFIC}}$ CP, $^{15}$ N @ 28 kHz, $^{13}$ C            | NS = 224, $D1 = 1.8$ s, $TD1 = 32$ , $SW1$                           | 93 hrs |  |
|            | 15.75 kHz, 270 K      | @ 12 kHz, <sup>1</sup> H @ 90 kHz, 110 ms                              | $= 35.1 \text{ ppm}, \text{IN1} = 126 \mu\text{s}, \text{TD2} = 24,$ |        |  |
|            | ,                     | CORD                                                                   | $SW2 = 40.3 \text{ ppm}, IN2 = 272 \mu\text{s}$                      |        |  |
| 3D NCOCX   | 900 MHz,              | 4 ms <sup>SPECIFIC</sup> CP, <sup>15</sup> N @ 24 kHz, <sup>13</sup> C | NS = 352, D1 = 1.9 s, TD1 = 18, SW1                                  | 87 hrs |  |
|            | 15.75 kHz, 270 K      | @ 40 kHz, <sup>1</sup> H $@$ 90 kHz, 110 ms                            | $= 20.1 \text{ ppm}, \text{IN1} = 220 \mu\text{s}, \text{TD2} = 24,$ |        |  |
|            | , , ,                 | CORD                                                                   | $SW2 = 40.3 \text{ ppm}, IN2 = 272 \mu\text{s}$                      |        |  |



**Figure S1.** Full view of SDS-PAGE gel in main text Figure 2. Lanes marked with 2X and 1X are the BM2-containing lanes. The lane marked L is the ladder, and the lane marked with an asterisk (\*) is a different protein.



**Figure S2.** 2D <sup>13</sup>C-<sup>13</sup>C correlation spectra of BM2 in DLPE (*black*) and 4:1 POPC : POPG (*red*) bilayers, indicating that the conformation of core TM residues is the same in the two membranes. The spectrum of the DLPE sample was measured using 55 ms CORD mixing, 14 kHz MAS at 285 K on the 800 MHz spectrometer in a 3.2 mm rotor. The spectrum of the POPC : POPG sample was measured using 52 ms CORD mixing, 12 kHz MAS at 260 K on a 600 MHz spectrometer in a 1.9 mm rotor. The DLPE sample shows more peaks, likely because the DLPC membrane is more rigid than the POPC : POPG membrane at the experimental temperature. But the chemical shifts of the TM residues are the same, as shown in the enlarged areas in the insets.