
 

 

 

Supplementary Information 

 

A fine-grained time course investigation of brain dynamics during conflict 

monitoring 

 

 

Paolo Ruggeri*1, Hadj Boumediene Meziane1, Thomas Koenig 2 and Catherine Brandner1 

 

 

1 Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of 

Lausanne, Switzerland. 

2 Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland 

 

SI METHODS 

SI.1 Topographic consistency test 

The TCT is based on the argument that the GFP of the grand mean ERP across subjects at one 

moment in time depends on both the GFP of the individual ERPs and on the consistency of the 

topography over subjects. Indeed, a low consistency of the topography across subjects will result in 

a GFP of the grand mean that is consistently lower than the mean of the individual GFP values. On 

the contrary, a high consistency of the topography across subjects will result in a GFP of the grand 

mean that is slightly lower than the mean of the individual GFP values. Thus, the TCT uses the GFP 



of the grand mean as a measure of effect size (i.e., a measure of consistency of the topography 

across subjects).  

 For a given dataset, to test whether a given effect size may also have been observed by 

chance, the assumed structure of the data is destroyed by shuffling the measured potentials across 

electrodes in each individual ERP map. This procedure destroys the consistency of topography 

across subjects but preserves the GFP of the individual map. The null hypothesis is thus that the 

GFP of the grand mean before shuffling is about equally large as after shuffling. The null 

hypothesis can be rejected if the GFP of the grand mean is consistently larger when the channels are 

in correct order as opposed to when they are in randomized order. In other words, the probability of 

the null hypothesis is defined as the number of randomization runs yielding a GFP larger than or 

equal to the GFP obtained with the correct channel order. This procedure can be repeated for each 

ERP time point and separately for each experimental condition, resulting in a moment by moment 

test of map consistency.  

 

SI.2 Topographic analysis of variance  

The TANOVA tests for significant differences in topography between conditions. As a measure of 

effect size, the TANOVA uses the strength of the difference maps between conditions (i.e., the GFP 

of the difference maps). For simplicity, we describe in the following the randomization tests for 

topographical differences for the case of comparing two conditions (e.g., the congruent and 

incongruent conditions in our study): first, the scalp field maps are averaged separately for both 

conditions yielding two condition-wise grand mean maps. The GFP of the difference between the 

condition-wise maps is used as indicator of the strength of the difference and serves as a measure of 

effect size. For the creation of instances of effect size under the null hypothesis, the underlying 

structure of the data is eliminated by randomly permuting the ERP data of each subject between 

conditions. Once this randomization has been done, the (random-)condition specific grand means 

ERPs can be re-computed, and the GFP of the difference map between the two grand means can be 



computed again. This represents one observation of the effect size under the null hypothesis. In 

order to estimate how compatible the observed GFP of the difference map is with the null 

hypothesis, the computation of the GFP values under the null hypothesis is repeated many times. 

Finally, the GFP of the difference map obtained in the measured data is compared to the distribution 

of the GFP of the difference map under the null hypothesis. The probability that the observed GFP 

difference was obtained by chance is then defined as the percentage of observations where this GFP 

was smaller than or equal to the GFP of the randomly obtained difference maps. Such a test can be 

applied to each time point of the ERP trace.  

 

SI.3 Global duration statistics   

Time-point by time-point tests, such as the TCT and TANOVA, require methods of accounting for 

multiple testing over time. As described in the previous paragraphs, a test for significance can be 

computed for every time point for both the TCT and TANOVA, yielding a distribution of p-values: 

a subset of these will be below a chosen threshold by chance, and thus constitute false positive if 

this is the only criterion for significance. One approach to minimize this problem is to perform 

additional testing by quantifying the duration of contiguous periods with sub-threshold p-values. To 

estimate how likely it is that a given duration of sub-threshold p-values are present under the null-

hypothesis, the previously obtained results from the randomization procedure are re-used. For every 

randomization run computed during the TCT (or the TANOVA), p-values can be computed by 

comparing the obtained random differences with those obtained in all other randomization runs. 

This enables extraction of the duration of periods of sub-threshold p-values that are expected under 

the null-hypothesis, yielding a distribution of the duration of false-positives under the null-

hypothesis. Finally, the duration of contiguous sub-threshold p-values in the measured data can be 

compared to this distribution of duration of contiguous false positives in the randomized data. If, for 

example, a 1% p-threshold for the overall significance is chosen, then the output of the global 

duration statistics indicates the duration of periods of contiguous p-values that is larger than 99% of 



the false positive duration of contiguous p-values obtained in the random data, and thus produces an 

overall 1% false positive rate.  

 

SI.4 Selection of microstate maps number 

The microstate clustering implemented in RAGU aims at identifying a microstate model that is 

sufficiently complex to accommodate the part of the data variance that is common across subjects, 

but not overly complex such that particularities of subsets of the sample are accounted for. This 

problem is addressed by the implementation of a microstate model selection through the following 

cross-validation procedure: 

1. Subjects are divided into a training and test dataset.  

2. Grand mean ERPs are computed in each dataset as a function of condition. 

3. Microstate models with a different number of microstate maps are computed from the grand 

means of the training dataset. Each model contains both the topographies of the microstate 

maps and an index that assigns each time frame of the data to one of these microstate maps.   

4. The mean spatial correlation of the test dataset with each microstate model is computed for 

each condition and time-point and averaged. The mean correlation corresponds to the 

explained variance of each microstate model with the test dataset. 

5. Since the mean correlation of the test dataset with each microstate model depends on the 

division of the data into training and test datasets, steps 1-4 are repeated several times and 

the mean correlations from each run are retained.  

6. The obtained mean correlations for each microstate model are averaged across repetitions. 

The mean correlation increases with increasing number of microstate maps and reaches a 

plateau after a certain number of microstate maps are considered in the microstate model. 

The chosen fitting number of microstate maps for the data is marked by the beginning of the 

plateau, because adding more microstate maps beyond this point does not add generalizable 

features to the microstate model and would results in an over-fitting of the data.  



7. The microstate templates with the selected number of microstate maps are computed using 

the grand mean ERPs of all available subjects and conditions and used for the remainder of 

the analyses.  

The microstate templates with the selected number of microstate maps can be therefore considered 

as a maximally complex representation of the generalizable features of the given dataset.   

 

SI.5 Statistical analysis of microstate parameters 

The goal of the microstate statistics is to evaluate ERP microstate features (e.g., onset, offset, 

duration, AUC) by comparing an effect (e.g., a difference in the onset of a given microstate map in 

the ERPs of two conditions) against the distribution of this effect under the null hypothesis. To this 

purpose, randomization statistics is used to determine this distribution based on simulations of the 

effect under the null hypothesis. To quantify an effect of interest in the measured data, microstate 

features are first obtained after the microstate maps have been assigned to the condition specific 

grand mean data. The quantifier of the effect of interest is then defined by the variance of the 

feature extracted from the different conditions. In the case of our dataset, for example, the quantifier 

of the effect of interest for the duration of a microstate map in the congruent and incongruent 

condition, could be defined as the difference in duration of the microstate map between the two 

conditions (the same logic can be used for the onset, offset and the AUC). In this case, for the 

creation of instances of the chosen quantifier under the null hypothesis, the underlying structure of 

the data is eliminated by randomly permuting the ERP data of each subject between congruent and 

incongruent conditions. Once this randomization has been done, the (random-) condition specific 

grand means ERPs can be computed, and the quantifier of interest (i.e. the variance of an ERP 

microstate feature across conditions) can again be computed as above. This represents one 

observation of the quantifier of interest under the null hypothesis. By performing multiple runs of 

the randomization procedure, a distribution of the quantifier of interest under the null hypothesis 

can be obtained. Finally, the quantifier obtained in the measured data is compared to the distribution 



of the quantifier under the null hypothesis. This is done by rank statistics, where the probability of 

the data being compatible with the null hypothesis is defined by the proportion of quantifiers 

obtained under the null hypothesis that were larger or equal to the quantifier obtained from the 

measured data. Importantly, the distribution of the quantifier under the null hypothesis depends on 

the number of number of randomization runs. For a reliable rejection of the null-hypothesis on a 1% 

level, more than 5’000 randomization runs are recommended.  

 

SI FIGURES 



 

 

Fig. S1: ERP dynamics of frontal-central electrodes Fz, FCz and Cz for the congruent (blue line) 

and incongruent (red line) condition, respectively. The blue and red shadowed areas represent the 

surface that encloses the Mean ± SE of the congruent and incongruent conditions, respectively. The 

time period of significant differences between the congruent and incongruent conditions revealed 

by the TANOVA analysis (from 538 to 939 ms) is highlighted in green.  



 

 

 


