

Deciphering host-parasitoid interactions and parasitism rates of crop pests

using DNA metabarcoding.

Ahmadou Sowa,b,*, Thierry Brévaultb,c,d, Laure Benoite,f, Marie-Pierre Chapuise,f, Maxime Galang, Armelle Cœur

d’Acierg, Gérard Delvaree,f, Mbacké Sembènea,b
, Julien Harane,f

a Département de Biologie Animale, FST-UCAD, Senegal

b BIOPASS, CIRAD-IRD-ISRA-UCAD, Dakar, Senegal

c CIRAD, UPR AIDA, F-34398 Montpellier, France

d AIDA, Univ Montpellier, CIRAD, Montpellier, France

eCIRAD, CBGP, Montpellier, France

fCBGP, CIRAD, INRA, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France

gCBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France

Supplementary information

Table S1. List of the main parasitoid species identified for the millet head miner Heliocheilus

albipunctella in Sow et al. (2018) and used to assess the DNA metabarcoding detection threshold.

File S1. Bash script for read preparation before FROGS processing

(preprocess_2steps_forFrogs_v0.2.sh).

File S2. and its parameter file (preprocess_2steps_forFrogs_parameters_file.txt) set for the

minibarcode from Gillet et al. (2015).

Table S1. List of the main parasitoid species identified on the head miner Heliocheilus

albipunctella and used for the DNA metabarcoding calibration. This list was established

thanks to the study of Sow et al. 2018.

Order Species Parasitized stage
GenBank

accenssion numbers

 Diptera

Tachinidae Tachinidae sp1 (Unidentified) Larval parasitoid MF673591

Tachinidae sp2 (Unidentified) Larval parasitoid MF673593

 Hymenoptera

Braconidae Bracon brevicornis (Wesmael, 1838) Larval parasitoid MF673597

Meteorus sp Larval parasitoid MF673599

 Protapanteles sp Larval parasitoid MF673608

 Schoenlandella sahelensis (Huddleston & Walker, 1988) Larval parasitoid MF673609

 Schoenlandella sp Larval parasitoid MF673613

Encyrtidae Copidosoma primulum (Mercet, 1921) Egg parasitoid MF673617

Ichneumonidae Pristomerus pallidus (Kriechbaumer, 1884) Larval parasitoid MF673618

Trichogrammatidae Trichogrammatoïdea armigera (Manjunath, 1972) Eggs parasitoid MF673622

File S1. Bash script for read preparation before FROGS processing

#!/bin/bash

on error exit flag

set -e

#debug flags

#set -xv

date : 20170214

version : 0.01

authors : MP Chapuis

licence : GPL

########################

Illumina MiSeq Dataset analysis by FROGS

Short description:

From demultiplexed fastq.gz files produced from an Illumina MiSeq amplicon library, this script

merges read 1 and read 2 (with flash, cuts contigs from both forward and reverse primers (with

cutadapt) and collects processed fastq.gz files with a sufficient number of sequences in an archive.

USAGE: bash preprocess_2steps_forFrogs_v0.2.sh <parameter file>

Long Description:

This script is designed for two steps-PCR protocols. This script was originally devised for performing

the primer removal and merging of reads instead of the pre-process step of FROGS that fails under

certain circumstances. The final output gz.tar of this script can be uploaded in FROGS to be used in

the pre-process step using Custom protocol (i.e. without PCR primers) for de-replicating sequences

and filtering them on size and quality. This script is particularly useful when using FROGS on data

produced with primers that vary in size between reads. For example, when spacers are added in

adapters during the library construction to shift the reading frame.

Size variation in primers is not allowed in the pre-process step of FROGS. This script is also

particularly useful when using FROGS on data of poor quality that affects primarily the end of reads

that can be used in bioinformatics analyses.

In such a case, the merging of reads does not work with an overlap computed from expected read

length and expected amplicon length.

Indeed, FROGS computes the overlap values (overlap in flash) from the information provided by the

user on read size, expected amplicon size, minimum amplicon size and maximum amplicon size.

Since some of these parameters (minimum and maximum amplicon size) are also used for the filtering

on size, a conflict appears in setting these parameters in FROGS (between success of merging and

success of filtering).

The log files are gathered into a file named from the input parameter OUTPUT_FILE with the

extension ".preprocess.log.tar".

The final files are gathered into a file named from the input parameter OUTPUT_FILE with the

extension ".preprocess.gz.tar".

The script will work on all fastq.gz files located in the directory DIR.

Merging of reads 1 and 2 with flash: 2 input parameters controls for the min and max lengths of the

overlap tolerated (MIN_FLASH and MAX_FLASH in min overlap and max overlap, respectively).

Removal of primers with cut-adapt: 2 input parameters define the sequences of forward and reverse

primers (PRIMER_F and PRIMER_R).

The parameter overlap is set as the length of the primer - 1 (as in FROGS). Note that by default the

value of the overlap is 3. Note that it is still possible to use an overlap length between adapters and

read shorter than the adapter length by modifying the values of the parameters OVERLAP_F and

OVERLAP_R in the core code.

The error rate between adapter and read is set to 0.1 (default value). Processed files with less than

THRESHOLD sequences are deleted. Processed files are gathered in a tar file named

OUTPUT_FILE.preprocessed.tar.gz.

########################

Known problems and caveats

-

########################

Developer's todo list

-

####################################@

FUNCTIONS

usage(){

 echo -e "$SCRIPT_NAME script:"

 echo -e "\t\tPreprocess of Illumina 2 steps PCR amplicon data.\n\t\tMerging, primer removal and

filtering on seq number."

 echo -e "\t\tPlease read full information in the script first part.\n"

 echo -e "$SCRIPT_NAME usage:"

 echo -e "\t\t$SCRIPT_NAME <parameter file>"

 echo -e "\t\t(parameter file must be in the bin directory)\n"

 echo -e "\t\t#1 parameter = input directory where the fastq.gz files are stored"

 echo -e "\t\t#2 parameter = output file name without extension"

 echo -e "\t\t#3 parameter = forward target-specific primer"

 echo -e "\t\t#4 parameter = reverse target-specific primer"

 echo -e "\t\t#5 parameter = minimum length of expected overlap in flash"

 echo -e "\t\t#6 parameter = maximum length of expected overlap in flash"

 echo -e "\t\t#7 parameter = minimum number of sequences to keep the file"

}

######################################

SCRIPT PARAMETERS

SCRIPT_NAME=$(basename "$0")

PARAMETER_FILE="$1"

######################################

PARAMETERS TESTS

chmod +x "$PARAMETER_FILE"

dos2unix "$PARAMETER_FILE" 2>/dev/null

source "$PARAMETER_FILE"

testing the first parameter : the directory

[-e "$DIR"] || { (usage ; echo -e "ERROR : directory $DIR does not exist!";) >&2; exit 2;}

[-r "$DIR"] || { (usage ; echo -e "ERROR : read permission error in directory $DIR\n";) >&2; exit 2;}

[-w "$DIR"] || { (usage ; echo -e "ERROR : write permission error in directory $DIR\n";) >&2; exit 2;}

testing the second parameter : the output file name

[-n "$OUTPUT_FILE"] || { (usage ; echo -e "ERROR : output file name not informed \n";) >&2 ; exit 2;}

testing the 3rd and 4th parameter : primer sequences

[-z "$(echo "$PRIMER_F" | grep [^ATGCUatgcuNnYyRrSsWwKkMmBbDdHhVv])"] || { (usage ; echo -e

"ERROR : #3 parameter should be a DNA sequence (degenerated bases tolerated), '$PRIMER_F' provided \n";)

>&2; exit 2;}

[-z "$(echo "$PRIMER_R" | grep [^ATGCUatgcuNnYyRrSsWwKkMmBbDdHhVv])"] || { (usage ; echo -e

"ERROR : #4 parameter should be a DNA sequence (degenerated bases tolerated), '$PRIMER_R' provided \n";)

>&2; exit 2;}

testing the 5th and 6th parameter : overlaps for flash (positive numbers)

echo "$MIN_FLASH" | grep -w -e "^[1-9]+$" && { (usage ; echo -e "ERROR : #5 parameter should be a

positive integer, '$MIN_FLASH' provided \n";) >&2; exit 2;}

echo "$MAX_FLASH" | grep -w -e "^[1-9]+$" && { (usage ; echo -e "ERROR : #6 parameter should be a

positive integer, '$MAN_FLASH' provided \n";) >&2; exit 2;}

testing the 7th parameter : the threshold (positive or null number)

echo "$THRESHOLD" | grep -w -e "^[0-9]+$" && { (usage ; echo -e "ERROR : #7 parameter should be a null

or positive integer, '$THRESHOLD' provided \n";) >&2; exit 2;}

######################################

SCRIPT VARIABLES

PRIMER_R_rev=$(echo "$PRIMER_R" | tr "[ATGCUatgcuNnYyRrSsWwKkMmBbDdHhVv]"

"[TACGAtacgaNnRrYySsWwMmKkVvHhDdBb]" | rev)

let "OVERLAP_F=$(echo "$PRIMER_F" | tr -d '[:space:]' | wc -m | tr -d '[:space:]')-1"

let "OVERLAP_R=$(echo "$PRIMER_R" | tr -d '[:space:]' | wc -m | tr -d '[:space:]')-1"

######################################

CORE CODE

cd ${DIR}

log=$OUTPUT_FILE".general.log"

[-e "$log"] && rm "$log"

usage > "$log"

echo -e "\n$SCRIPT_NAME parameters:" | tee -a "$log"

echo -e "\t\t#parameter file:\t$PARAMETER_FILE" | tee -a "$log"

echo -e "\t\t#input directory:\t$DIR" | tee -a "$log"

echo -e "\t\t#output file name:\t$OUTPUT_FILE" | tee -a "$log"

echo -e "\t\t#forward target-specific primer:\t$PRIMER_F" | tee -a "$log"

echo -e "\t\t#reverse target-specific primer:\t$PRIMER_R" | tee -a "$log"

echo -e "\t\t#minimum length of expected overlap:\t$MIN_FLASH" | tee -a "$log"

echo -e "\t\t#maximum length of expected overlap:\t$MAX_FLASH" | tee -a "$log"

echo -e "\t\t#minimum number of sequences to keep the file:\t$THRESHOLD" | tee -a "$log"

echo -e "\n$(ls *R1_001.fastq.gz | wc -l) files to analyse:" | tee -a "$log"

for i in *R1_001.fastq.gz

do

 r1="$(basename $i)"

 #read1 file name

 r2="$(echo $r1|/bin/sed 's/R1/R2/g')"

 #read2 file name

 s="$(echo $r1|/bin/sed 's/_.*//')"

 #core sample name

 echo -e "\t\t#processing file $s"

 f=$s".flash.fastq.gz"

 #flash output file name

 c3=$s".cut3.flash.fastq"

 #cutadapt 3adapter output file name

 c35=$s".cut35.flash.fastq"

 #cutadapt 5adapter output file name

 e=$s".log.txt"

 #error file name

 [-e "$e"] && rm "$e"

 echo -e "#1 analysis = flash analysis:\n" > "$e"

 [-s "$r1"] && /home/bin/FLASh/1.2.11/x64/flash --threads 4 --min-overlap "$MIN_FLASH" --max-overlap

"$MAX_FLASH" --max-mismatch-density 0.1 --compress "$r1" "$r2" --to-stdout > "$f" 2>> "$e" || { echo -e

"$s is empty\n" >> "$e";}

 [-s "$f"] && (echo -e "\n#2 analysis = cutadapt analysis with reverse primer:\n" >>

"$e";/home/bin/Cutadapt/1.9.1/x64/bin/cutadapt -a "$PRIMER_R_rev" "$f" --error-rate 0.1 --discard-untrimmed

--match-read-wildcards --overlap "$OVERLAP_R" > "$c3" 2>> "$e";)

 [-e "$f"] && rm "$f"

 [-s "$c3"] && (echo -e "\n#3 analysis = cutadapt analysis with forward primer:\n" >>

"$e";/home/bin/Cutadapt/1.9.1/x64/bin/cutadapt -g "$PRIMER_F" "$c3" --error-rate 0.1 --discard-untrimmed --

match-read-wildcards --overlap "$OVERLAP_F" > "$c35" 2>> "$e" && gzip -f "$c35";)

 [-e "$c3"] && rm "$c3"

 ["$THRESHOLD" -ne 0 -a -e "$c35.gz"] && { echo -e "#4 analysis = removal of denoised files with less

than $THRESHOLD sequences:\n" >> "$e"; a=$(echo "$(zcat "$c35.gz" | wc -l)/4" | bc); ["$a" -lt

"$THRESHOLD"] && { echo -e "file removed: $a sequences only\n" >> "$e" ;rm "$c35.gz";} || { echo -e "file

kept: $a sequences\n" >> "$e";};}

 ["$THRESHOLD" -eq 0 -a -s "$c35.gz"] && { echo -e "\n#4 analysis = removal of denoised files with less

than $THRESHOLD sequences:\n\nNA" >> "$e"; }

done

[-e $OUTPUT_FILE.preprocess.gz.tar] && rm $OUTPUT_FILE.preprocess.gz.tar

nf=$(ls *cut35.flash.fastq.gz 2>/dev/null | wc -l)

echo -e "\n$nf files passed all steps with success!\n" | tee -a "$log"

["$nf" -eq 0] || (echo -e "list of files processed with success:" >> "$log"; tar -cvf

$OUTPUT_FILE".preprocess.gz.tar" *cut35.flash.fastq.gz >> "$log";chmod a+r

$OUTPUT_FILE".preprocess.gz.tar";rm *cut35.flash.fastq.gz;)

tar -cvf $OUTPUT_FILE".preprocess.log.tar" *log.txt >/dev/null; rm *log.txt #use tar -xf if you want to check a

log file

######################################

END

exit 0

File S2. Parameter file for bash script set for the minibarcode from Gillet et al. (2015).

######################################
BEFORE FIRST USE, the paths of the cutadapt and flash programs need to be appropriately set up
lines 158, 159 and 161 of the Bash file
#######################################
SCRIPT PARAMETERS
DIR="/home/chapuism/coi1/" #input directory where the fastq.gz files are stored
OUTPUT_FILE="coi1run1" #output file name without extension
PRIMER_F="ATTCHACDAAYCAYAARGAYATYGG" # forward target-specific primer
PRIMER_R="ACTATAAAARAAAYTATDAYAAADGCRTG" # reverse target-specific primer
MIN_FLASH=10 # minimum length of expected overlap (to contig reads)
MAX_FLASH=300 # maximum length of expected overlap (to contig reads)
example 1 => in a case of a amplicon length<read length (e.g. minibarcode): expected amplicon
length + or - x bases of variation
example 2 => in a case of a amplicon length>read length and of a run of high quality: 2 * expected
read length - expected amplicon length + or - x bases of variation
example 3 => in a case of a amplicon length>read length and of a run of bad quality: minimum
acceptable (ex: 10) for MIN and maximum possible (length of reads; ex: 300) for MAX
THRESHOLD=0 # an entire value - the files with lower number of sequences (contigs) than the
threshold will be put aside in a internal folder named 'neg'
######################################
Details of the library construction (useful to understand parametrization)
Minibarcode from Gillet et al. (2015) Mammalian Biology 80: 505–509
Target length=133b
Forward target-specific primer=EPT-MG=ATTCHACDAAYCAYAARGAYATYGG
Reverse target-specific primer=LepF1=ACTATAAAARAAAYTATDAYAAADGCRTG
Construction = Adapter Flowcell + Index + Sequencing Primer + Spacer + Target-specific Forward
Primer + Target + Target-specific Reverse Primer + Spacer + Sequencing Primer + Index + Adapter
Flowcell
PCR1 = Sequencing Primer + Spacer + Target-specific Primer
PCR2 = Adapter Flowcell + Index + Sequencing Primer
After demultiplexing:
Read1 = Spacer + Target-specific Forward Primer + Target + Target-specific Reverse Primer + Spacer
Read2 = Spacer + Target-specific Reverse Primer + Target + Target-specific Forward Primer + Spacer
From 0 à 5 bases + 25 bases for LepF1 + 133 bases of target + 29 bases for EPT-MG + 0 à 5 bases

(total=from 187 to 197 bases)

