# **APPENDIX**

| Manuscript title:         | Targeting miR-34a/ <i>Pdgfra</i> interaction partially corrects alveologenesis in experimental bronchopulmonary dysplasia                                                                                                                                                                                                                                 |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First author:             | Jordi Ruiz-Camp                                                                                                                                                                                                                                                                                                                                           |
| Supplementary Item Number | Title or Caption                                                                                                                                                                                                                                                                                                                                          |
| Appendix Table S1         | Stereological analysis of lungs from P14 miR-34a <sup>-/-</sup> mice exposed either to normoxia or hyperoxia compared to wild-type controls.                                                                                                                                                                                                              |
| Appendix Table S2         | Stereological analysis of lungs from P14 miR-34bc <sup>-/-</sup> mice exposed either to normoxia or hyperoxia compared to wild-type controls.                                                                                                                                                                                                             |
| Appendix Table S3         | Stereological analysis of lungs from P14 tamoxifen-treated <i>Pdgfra</i> -CreER <sup>T2</sup> /miR-34a <sup>fl/fl</sup> (to generate <i>Pdgfra</i> -CreER <sup>T2</sup> /miR-34a <sup>iΔPC/iΔPC</sup> ) mice exposed either to normoxia or hyperoxia compared to tamoxifen-treated <i>Pdgfra</i> -CreER <sup>T2</sup> /miR-34a <sup>wt/wt</sup> controls. |
| Appendix Table S4         | Stereological analysis of lungs from P14 wild-type mice treated with a target site blocker cocktail targeting the miR-34a/ <i>Pdgfra</i> interaction exposed to hyperoxia, compared to scrambled target site blocker-treated controls                                                                                                                     |
| Appendix Table S5         | Stereological analysis of lungs from P14 wild-type mice treated with antimiR-34a exposed either to normoxia or hyperoxia, compared to scrambled antimiR-treated controls.                                                                                                                                                                                 |
| Appendix Table S6         | Summary of the gene expression microarray data examining changes in mRNA levels after antimiR-34a or scrambled antimiR treatment of mice with concomitant normoxia or hyperoxia exposure.                                                                                                                                                                 |
| Appendix Table S7         | Real-time RT-PCR primers employed in this study.                                                                                                                                                                                                                                                                                                          |
| Appendix Table S8         | PCR primers employed for genotyping in this study.                                                                                                                                                                                                                                                                                                        |
| Appendix Table S9         | Antibodies employed in this study.                                                                                                                                                                                                                                                                                                                        |
| Appendix Figure S1        | Loss of one member of the miR-34 family does not lead to compensatory upregulation of expression of other miR-34 family members.                                                                                                                                                                                                                          |
| Appendix Figure S2        | Expression of miR-34a was detected in the developing septa and airway epithelium in mouse pups.                                                                                                                                                                                                                                                           |
| Appendix Figure S3        | Exposure of the MLg mouse lung fibroblast cell line to $85\%$ O <sub>2</sub> results in pronounced downregulation of expression of <i>Pdgfra</i> and <i>Acta2</i> .                                                                                                                                                                                       |
| Appendix Figure S4        | Exposure of mice to 85% $O_2$ downregulates <i>Pdgfra</i> and <i>Acta2</i> expression in PDGFRa <sup>+</sup> cells isolated from mouse lungs by flow cytometry.                                                                                                                                                                                           |
| Appendix Figure S5        | Repetition of the experiment presented in Fig. 2F.                                                                                                                                                                                                                                                                                                        |
| Appendix Figure S6        | Validation of a target site blocker cocktail.                                                                                                                                                                                                                                                                                                             |
| Appendix Figure S7        | Gating strategy for the quantification of PDGFR $\alpha$ + and PDGFR $\alpha^+/\alpha$ SMA <sup>+</sup> cells by flow cytometry in mouse lungs after target site blocker application.                                                                                                                                                                     |
| Appendix Figure S8        | Administration of an antimiR directed against miR-34a predominantly impacts miR-34a expression in mice on day five of life.                                                                                                                                                                                                                               |
| Appendix Figure S9        | The abundance of $\alpha$ smooth muscle actin (SMA)-positive cells and total abundance of $\alpha$ SMA in mouse lung is not impacted by exposure of newborn mice to hyperoxia.                                                                                                                                                                            |
| Appendix Figure S10       | Gating strategy for the quantification of PDGFR $\alpha^+$ and PDGFR $\alpha^+/\alpha$ SMA <sup>+</sup> cells by flow cytometry in mouse lungs after antimiR-34a application.                                                                                                                                                                             |
| Appendix Figure S11       | Administration of an antimiR directed against miR-34a impacts elastin deposition and remodeling during exposure of newborn mice to hyperoxia.                                                                                                                                                                                                             |
| Appendix Figure S12       | Determination of the apoptosis status of PDGFR $\alpha^+$ cells in developing mouse lungs.                                                                                                                                                                                                                                                                |
| Appendix Figure S13       | Attempt at the determination of the proliferation of status of PDGFR $\alpha^+$ cells<br>in developing mouse lungs by S-phase analysis.                                                                                                                                                                                                                   |
| Appendix Figure S14       | Determination of the impact of hyperoxia and miR-34a on apoptosis and proliferation of primary mouse lung fibroblasts.                                                                                                                                                                                                                                    |
| Appendix Figure S15       | Neither hyperoxia exposure nor antimiR-34a treatment impacts total number<br>of apoptotic status of alveolar type I cells.                                                                                                                                                                                                                                |
| Appendix Figure S16       | Administration of an antimiR directed against miR-34a does not have a detectable impact on mRNA expression in developing mouse lungs exposed to hyperoxia.                                                                                                                                                                                                |

|                                                     | 21% O <sub>2</sub> |                        | 85% O <sub>2</sub> |                                      |                  |                                                     |  |
|-----------------------------------------------------|--------------------|------------------------|--------------------|--------------------------------------|------------------|-----------------------------------------------------|--|
| Parameter                                           | WT                 | miR-34a <sup>-/-</sup> | W                  | Т                                    | miR-             | 34a <sup>-/-</sup>                                  |  |
| i araniceri                                         | mean $\pm$ SD      | mean $\pm$ SD          | mean ± SD          | P value vs.<br>WT/21% O <sub>2</sub> | mean ± SD        | <i>P</i> value <i>vs</i> .<br>WT/85% O <sub>2</sub> |  |
| $V(\text{lung}) [\text{cm}^3]$                      | $0.24\pm0.02$      | $0.23\pm0.02$          | $0.21\pm0.02$      | 0.119                                | $0.23\pm0.02$    | 0.301                                               |  |
| CV [V (lung)]                                       | 0.074              | 0.083                  | 0.0                | 89                                   | 0.1              | ).102                                               |  |
| $V_V$ (par/lung) [%]                                | $94.19 \pm 1.44$   | $91.08\pm5.60$         | $91.86 \pm 1.14$   | 0.715                                | $92.10\pm3.65$   | 0.999                                               |  |
| $V_V$ (non-par/lung) [%]                            | $5.81 \pm 1.44$    | $8.92\pm5.60$          | $8.14 \pm 1.14$    | 0.715                                | $7.90\pm3.65$    | 0.999                                               |  |
| $N$ (alv, lung) $10^6$                              | $4.52\pm0.48$      | $4.23\pm0.33$          | $1.35\pm0.15$      | < 0.0001                             | $2.03\pm0.17$    | 0.021                                               |  |
| $N_V$ (alv/par) 10 <sup>7</sup> [cm <sup>-3</sup> ] | $1.98\pm0.14$      | $2.00\pm0.17$          | $0.70\pm0.12$      | < 0.0001                             | $0.94\pm0.06$    | 0.047                                               |  |
| CV [N (alv/lung)]                                   | 0.10               | 0.08                   | 0.11               |                                      | 0.12             |                                                     |  |
| $S_V [\mathrm{cm}^{-1}]$                            | $872.60 \pm 19.17$ | $872.10\pm31.63$       | $502.70\pm60.11$   | < 0.0001                             | $522.30\pm26.75$ | 0.844                                               |  |
| S (alv epi, lung) [cm <sup>2</sup> ]                | $199.30\pm16.20$   | $180.60 \pm 10.79$     | $97.49 \pm 12.50$  | < 0.0001                             | $112.50\pm13.60$ | 0.323                                               |  |
| CV [S (alv epi, lung)]                              | 0.08               | 0.06                   | 0.1                | 13                                   | 0.12             |                                                     |  |
| $V_V$ (alv air) [%]                                 | $47.78 \pm 5.32$   | $49.34 \pm 10.11$      | $70.55\pm4.16$     | 0.0002                               | $77.08 \pm 2.76$ | 0.378                                               |  |
| V (alv air, lung) [cm <sup>3</sup> ]                | $0.11\pm0.02$      | $0.10\pm0.02$          | $0.14\pm0.02$      | 0.055                                | $0.17\pm0.01$    | 0.051                                               |  |
| CV[V(alv air, lung)]                                | 0.15               | 0.16                   | 0.1                | 12                                   | 0.               | 08                                                  |  |
| V (sep, lung) [cm <sup>3</sup> ]                    | $0.12\pm0.01$      | $0.11\pm0.03$          | $0.06\pm0.01$      | 0.0001                               | $0.05\pm0.01$    | 0.891                                               |  |
| CV[V(sep, lung)]                                    | 0.12               | 0.25                   | 0.1                | 14                                   | 0.1              | 20                                                  |  |
| τ (sep) [μm]                                        | $10.73\pm0.51$     | $10.21\pm0.62$         | $12.17\pm0.23$     | 0.0024                               | $8.69 \pm 1.14$  | < 0.0001                                            |  |
| <i>CV</i> [τ (sep) ]                                | 0.05               | 0.06                   | 0.0                | )2                                   | 0.               | 13                                                  |  |
| MLI [µm]                                            | $21.91\pm2.57$     | $22.59 \pm 4.34$       | $57.05 \pm 9.67$   | < 0.0001                             | $59.13 \pm 3.01$ | 0.936                                               |  |
| CV [MLI]                                            | 0.08               | 0.14                   | 0.1                | 16                                   | 0.               | 05                                                  |  |

Appendix Table S1. Stereological analysis of lungs from P14 miR-34a<sup>-/-</sup> mice exposed either to normoxia or hyperoxia compared to wild-type controls.

Abbreviations: *alv*, alveoli; *alv air*, alveolar airspaces; *alv epi*, alveolar epithelium; *CV*, coefficient of variation; MLI, mean linear intercept; *N*, number; *N<sub>V</sub>*, numerical density; *non-par*, non-parenchyma; *par*, parenchyma; *S*, surface area; *S<sub>V</sub>*, surface density;  $\tau$  (sep), arithmetic mean septal thickness; *V*, volume; *V<sub>V</sub>*, volume density; WT, wild-type. Values are presented as mean ± SD, *n* = 5 lungs for each group. A one-way ANOVA with Tukey's *post-hoc* analysis was used to determine *P* values.

|                                                     | 21% O <sub>2</sub> |                            | 85% O <sub>2</sub>        |                                      |                   |                                                     |  |
|-----------------------------------------------------|--------------------|----------------------------|---------------------------|--------------------------------------|-------------------|-----------------------------------------------------|--|
| Parameter                                           | WT                 | miR-34b/c <sup>-/-</sup>   | W                         | Τ                                    | miR-3             | 4b/c <sup>-/-</sup>                                 |  |
| i arameter                                          | mean $\pm$ SD      | mean $\pm$ SD              | $\text{mean}\pm\text{SD}$ | P value vs.<br>WT/21% O <sub>2</sub> | mean $\pm$ SD     | <i>P</i> value <i>vs</i> .<br>WT/85% O <sub>2</sub> |  |
| V (lung) [cm <sup>3</sup> ]                         | $0.24\pm0.01$      | $0.24\pm0.02$              | $0.21\pm0.01$             | 0.991                                | $0.21\pm0.01$     | 0.995                                               |  |
| CV[V(lung)]                                         | 0.07               | 0.09                       | 0.0                       | 07                                   | 0.0               | ).03                                                |  |
| $V_V$ (par/lung) [%]                                | $92.73 \pm 1.45$   | $93.93 \pm 6.46$           | $89.50 \pm 1.86$          | > 0.996                              | $87.96 \pm 6.73$  | 0.964                                               |  |
| $V_V$ (non-par/lung) [%]                            | $7.27 \pm 1.45$    | $7.07\pm 6.46$             | $10.50\pm1.86$            | > 0.996                              | $1.20\pm6.73$     | 0.964                                               |  |
| $N$ (alv, lung) $10^6$                              | $4.34\pm0.48$      | $4.24\pm0.13$              | $1.33\pm0.13$             | 0.948                                | $1.37\pm0.09$     | 0.963                                               |  |
| $N_V$ (alv/par) 10 <sup>7</sup> [cm <sup>-3</sup> ] | $1.97\pm0.26$      | $1.95\pm0.14$              | $0.71\pm0.14$             | 0.992                                | $0.74\pm0.55$     | 0.988                                               |  |
| CV [N (alv/lung)]                                   | 0.11               | 0.03                       | 0.                        | 10                                   | 0.07              |                                                     |  |
| $S_V [\mathrm{cm}^{-1}]$                            | $896.44 \pm 51.35$ | $924.42\pm94.76$           | $559.06\pm64.74$          | 0.893                                | $566.77 \pm 21.3$ | 0.994                                               |  |
| S (alv epi, lung) [cm <sup>2</sup> ]                | $197.35\pm8.71$    | 97.35 ± 8.71 200.53 ± 5.21 |                           | 0.949                                | $105.26\pm9.94$   | 0.996                                               |  |
| <i>CV</i> [S (alv epi, lung)]                       | 0.04               | 0.02                       | 0.0                       | 07                                   | 0.10              |                                                     |  |
| $V_V$ (alv air) [%]                                 | $49.98 \pm 5.12$   | $50.71 \pm 4.93$           | $67.04 \pm 6.62$          | 0.992                                | $69.49 \pm 3.27$  | 0.955                                               |  |
| V (alv air, lung) [cm <sup>3</sup> ]                | $0.11\pm0.01$      | $0.11\pm0.01$              | $0.12\pm0.02$             | > 0.995                              | $0.13\pm0.01$     | 0.991                                               |  |
| CV[V(alv air, lung)]                                | 0.12               | 0.15                       | 0.                        | 14                                   | 0.                | 0.13                                                |  |
| V (sep, lung) [cm <sup>3</sup> ]                    | $0.11\pm0.01$      | $0.10\pm0.01$              | $0.06\pm0.01$             | 0.981                                | $0.05\pm0.01$     | 0.917                                               |  |
| CV[V(sep, lung)]                                    | 0.11               | 0.10                       | 0.2                       | 21                                   | 0.2               | 27                                                  |  |
| τ (sep) [μm]                                        | $11.15\pm0.86$     | $10.73 \pm 1.31$           | $11.75 \pm 1.49$          | 0.992                                | $10.78\pm0.91$    | 0.908                                               |  |
| <i>CV</i> [τ (sep) ]                                | 0.07               | 0.12                       | 0.                        | 19                                   | 0.1               | 29                                                  |  |
| MLI [µm]                                            | $22.42 \pm 3.31$   | $22.18 \pm 3.73$           | $48.08 \pm 11.81$         | 0.998                                | $49.10 \pm 4.03$  | 0.997                                               |  |
| CV [MLI]                                            | 0.14               | 0.16                       | 0.                        | 13                                   | 0.                | 13                                                  |  |

Appendix Table S2. Stereological analysis of lungs from P14 miR-34bc<sup>-/-</sup> mice exposed either to normoxia or hyperoxia compared to wild-type controls.

Abbreviations: *alv*, alveoli; *alv air*, alveolar airspaces; *alv epi*, alveolar epithelium; *CV*, coefficient of variation; MLI, mean linear intercept; *N*, number; *N<sub>V</sub>*, numerical density; *non-par*, non-parenchyma; *par*, parenchyma; *S*, surface area; *S<sub>V</sub>*, surface density;  $\tau$  (sep), arithmetic mean septal thickness; *V*, volume; *V<sub>V</sub>*, volume density; WT, wild-type. Values are presented as mean ± SD, *n* = 5 lungs for each group. A one-way ANOVA with Tukey's *post-hoc* analysis was used to determine *P* values.

|                                                     | 21% O <sub>2</sub>                                   |                  | 85%                                                          | 6 O <sub>2</sub> |                                                                                              |  |
|-----------------------------------------------------|------------------------------------------------------|------------------|--------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------|--|
| Parameter                                           | Pdgfra-CreER <sup>T2</sup> /miR-34a <sup>wt/wt</sup> | Pdgfra-CreER     | Pdgfra-CreER <sup>T2</sup> /miR-34a <sup>wt/wt</sup>         |                  | /miR-34a <sup>i∆PC/i∆PC</sup>                                                                |  |
|                                                     | mean $\pm$ SD                                        | mean $\pm$ SD    | $P \text{ value } vs.$ $34a^{\text{wt/wt}}/21\% \text{ O}_2$ | mean $\pm$ SD    | $\begin{array}{c} P \text{ value } vs. \\ 34a^{\text{wt/wt}} / 85\% \text{ O}_2 \end{array}$ |  |
| $V(\text{lung}) [\text{cm}^3]$                      | $0.23\pm0.01$                                        | $0.20\pm0.01$    | 0.0272                                                       | $0.23\pm0.02$    | 0.0498                                                                                       |  |
| CV [V (lung)]                                       | 0.07                                                 | 0.               | .07                                                          | 0.               | 0.09                                                                                         |  |
| $V_V$ (par/lung) [%]                                | $90.75 \pm 3.44$                                     | $90.17\pm2.34$   | 0.941                                                        | $91.18\pm2.41$   | 0.835                                                                                        |  |
| $V_V$ (non-par/lung) [%]                            | $9.25 \pm 3.44$                                      | $9.83 \pm 2.34$  | 0.941                                                        | $8.82\pm2.41$    | 0.835                                                                                        |  |
| $N$ (alv, lung) $10^6$                              | $4.46\pm0.55$                                        | $1.22 \pm 0.13$  | < 0.0001                                                     | $2.11 \pm 0.12$  | 0.0032                                                                                       |  |
| $N_V$ (alv/par) 10 <sup>7</sup> [cm <sup>-3</sup> ] | 2.15 ± 0.31                                          | $0.70\pm0.13$    | < 0.0001                                                     | $1.03 \pm 0.08$  | 0.0492                                                                                       |  |
| CV [N (alv/lung)]                                   | 0.12                                                 | 0.               | .11                                                          | 0.06             |                                                                                              |  |
| $S_V [\text{cm}^{-1}]$                              | $780.10 \pm 91.01$                                   | $512.50\pm41.80$ | < 0.0001                                                     | $561.80\pm48.21$ | 0.467                                                                                        |  |
| S (alv epi, lung) [cm <sup>2</sup> ]                | $162.70 \pm 23.58$                                   | $90.57 \pm 6.25$ | < 0.0001                                                     | $115.83\pm16.26$ | 0.085                                                                                        |  |
| CV [S (alv epi, lung)]                              | 0.14                                                 | 0.               | .07                                                          | 0.14             |                                                                                              |  |
| $V_V$ (alv air) [%]                                 | $66.12 \pm 6.94$                                     | $73.24\pm2.81$   | 0.166                                                        | $70.18\pm6.58$   | 0.688                                                                                        |  |
| V (alv air, lung) [cm <sup>3</sup> ]                | $0.14 \pm 0.02$                                      | $0.13\pm0.01$    | 0.625                                                        | $0.14\pm0.01$    | 0.266                                                                                        |  |
| CV [V (alv air, lung)]                              | 0.14                                                 | 0.               | .05                                                          | 0.09             |                                                                                              |  |
| V (sep, lung) [cm <sup>3</sup> ]                    | $0.07\pm0.02$                                        | $0.05\pm0.01$    | 0.063                                                        | $0.06 \pm 0.01$  | 0.302                                                                                        |  |
| CV[V(sep, lung)]                                    | 0.23                                                 | 0.               | .17                                                          | 0.               | 27                                                                                           |  |
| τ (sep) [µm]                                        | $8.66 \pm 1.06$                                      | $10.55 \pm 1.84$ | 0.315                                                        | $10.68 \pm 2.65$ | 0.994                                                                                        |  |
| <i>CV</i> [τ (sep) ]                                | 0.12                                                 | 0.               | .17                                                          | 0.               | 25                                                                                           |  |
| MLI [µm]                                            | $34.56 \pm 7.17$                                     | $57.39 \pm 3.82$ | 0.0001                                                       | $50.25\pm6.01$   | 0.172                                                                                        |  |
| CV [MLI]                                            | 0.21                                                 | 0.               | .07                                                          | 0.               | 12                                                                                           |  |

Appendix Table S3. Stereological analysis of lungs from P14 tamoxifen-treated Pdgfra-CreER<sup>T2</sup>/miR-34a<sup>fl/fl</sup> (to generate Pdgfra-CreER<sup>T2</sup>/miR-34a<sup>idPC/idPC</sup>) mice exposed either to normoxia or hyperoxia compared to tamoxifen-treated Pdgfra-CreER<sup>T2</sup>/miR-34a<sup>wt/wt</sup> controls.

Abbreviations: *alv*, alveoli; *alv air*, alveolar airspaces; *alv epi*, alveolar epithelium; *CV*, coefficient of variation; *MLI*, mean linear intercept; *N*, number; *N<sub>V</sub>*, numerical density; *non-par*, non-parenchyma; *par*, parenchyma; *S*, surface area; *S<sub>V</sub>*, surface density  $\tau$  (sep), arithmetic mean septal thickness; *V*, volume; *V<sub>V</sub>*, volume density. Values are presented as mean  $\pm$  SD, *n* = 5 lungs for each group. A one-way ANOVA with Tukey's *post-hoc* analysis was used to determine *P* values.

|                                                     | 85% O <sub>2</sub> |                    |                                  |  |  |
|-----------------------------------------------------|--------------------|--------------------|----------------------------------|--|--|
|                                                     | S                  | T                  | SB1,2                            |  |  |
| Parameter                                           | mean $\pm$ SD      | mean ± SD          | P value vs. S/85% O <sub>2</sub> |  |  |
| V (lung) [cm <sup>3</sup> ]                         | $0.24 \pm 0.01$    | $0.22 \pm 0.02$    | 0.096                            |  |  |
| CV[V(lung)]                                         | 0.044              | 0                  | .111                             |  |  |
| $V_V$ (par/lung) [%]                                | $92.35\pm4.62$     | $90.66 \pm 2.78$   | 0.502                            |  |  |
| $V_V$ (non-par/lung) [%]                            | $7.65 \pm 4.62$    | $9.34\pm2.78$      | 0.502                            |  |  |
| $N$ (alv, lung) $10^6$                              | $1.32 \pm 0.17$    | $1.77\pm0.27$      | 0.017                            |  |  |
| $N_V$ (alv/par) 10 <sup>7</sup> [cm <sup>-3</sup> ] | $0.60 \pm 0.07$    | $0.90\pm0.09$      | 0.0001                           |  |  |
| CV [N (alv/lung)]                                   | 0.116              | 0                  | .102                             |  |  |
| $Sf_V [\text{cm}^{-1}]$                             | $498.71 \pm 49.86$ | 536.89 ± 32.61     | 0.189                            |  |  |
| Sf (alv epi, lung) [cm <sup>2</sup> ]               | $110.37 \pm 12.89$ | $105.28 \pm 14.41$ | 0.572                            |  |  |
| CV [S (alv epi, lung)]                              | 0.11               | 0                  | .136                             |  |  |
| $V_V$ (alv air) [%]                                 | $65.31 \pm 3.46$   | $68.75 \pm 1.63$   | 0.079                            |  |  |
| V (alv air, lung) [cm <sup>3</sup> ]                | $0.14 \pm 0.01$    | $0.13 \pm 0.01$    | 0.167                            |  |  |
| CV[V(alv air, lung)]                                | 0.04               | 0                  | .098                             |  |  |
| $V(\text{sep, lung}) [\text{cm}^3]$                 | $0.07 \pm 0.01$    | $0.06 \pm 0.01$    | 0.012                            |  |  |
| CV[V(sep, lung)]                                    | 0.12               | 0                  | .095                             |  |  |
| $\tau$ (sep) [µm]                                   | $13.97 \pm 1.41$   | $11.69 \pm 1.23$   | 0.026                            |  |  |
| <i>CV</i> [τ (sep) ]                                | 0.100              | 0                  | .105                             |  |  |
| MLI [µm]                                            | 52.91 ± 7.04       | 51.32 ± 2.39       | 0.646                            |  |  |
| CV [MLI]                                            | 0.13               | 0                  | .046                             |  |  |

Appendix Table S4. Stereological analysis of lungs from P14 wild-type mice treated with a target site blocker cocktail targeting the miR-34a/*Pdgfra* interaction exposed to hyperoxia, compared to scrambled target site blocker-treated controls.

Abbreviations: *alv*, alveoli; *alv air*, alveolar airspaces; *alv epi*, alveolar epithelium; *CV*, coefficient of variation; MLI, mean linear intercept; *N*, number; *N<sub>V</sub>*, numerical density; *non-par*, non-parenchyma; *par*, parenchyma; S, antimiR-scrambled; *Sf*, surface area; *Sf<sub>V</sub>*, surface density; TSB1,2, mixture of target site blockers 1 and 2;  $\tau$  (sep), arithmetic mean septal thickness; *V*, volume; *V<sub>V</sub>*, volume density. Values are presented as mean  $\pm$  SD, *n* = 5 lungs for each group. An unpaired Student's *t*-test was used to determine *P* values.

|                                                     | 21% O <sub>2</sub> |                    | 85% O <sub>2</sub> |                                                    |                  |                                                    |  |
|-----------------------------------------------------|--------------------|--------------------|--------------------|----------------------------------------------------|------------------|----------------------------------------------------|--|
| Parameter                                           | S                  | A34a               | 1                  | S                                                  | A3               | A34a                                               |  |
|                                                     | mean $\pm$ SD      | mean $\pm$ SD      | mean $\pm$ SD      | <i>P</i> value <i>vs</i> .<br>S/21% O <sub>2</sub> | mean $\pm$ SD    | <i>P</i> value <i>vs</i> .<br>S/85% O <sub>2</sub> |  |
| $V(\text{lung}) [\text{cm}^3]$                      | $0.23\pm0.04$      | $0.23 \pm 0.04$    | $0.24 \pm 0.01$    | 0.952                                              | $0.27\pm0.02$    | 0.448                                              |  |
| CV [V (lung)]                                       | 0.19               | 0.19               | 0.0                | )44                                                | 0.0              | 79                                                 |  |
| $V_V$ (par/lung) [%]                                | $89.54 \pm 2.36$   | $93.65\pm3.91$     | 89.30 ± 7.11       | 0.486                                              | 91.11 ± 3.46     | 0.932                                              |  |
| $V_V$ (non-par/lung) [%]                            | $11.10 \pm 2.36$   | $6.39\pm3.91$      | $10.74 \pm 7.11$   | 0.486                                              | $1.60 \pm 3.46$  | 0.926                                              |  |
| $N$ (alv, lung) $10^6$                              | $4.57\pm0.79$      | $3.83 \pm 0.54$    | $1.22\pm0.21$      | < 0.0001                                           | $2.03 \pm 0.4$   | 0.041                                              |  |
| $N_V$ (alv/par) 10 <sup>7</sup> [cm <sup>-3</sup> ] | $1.94\pm0.39$      | $1.51 \pm 0.31$    | $0.57\pm0.03$      | 0.640                                              | $0.87\pm0.08$    | 0.901                                              |  |
| CV [N (alv/lung)]                                   | 0.173              | 0.14               | 0.1                | 172                                                | 0.203            |                                                    |  |
| $Sf_V$ [cm <sup>-1</sup> ]                          | $940.40 \pm 53.44$ | $849.86 \pm 72.18$ | $450.66\pm9.98$    | 0.056                                              | $501.24\pm48.1$  | 0.426                                              |  |
| Sf (alv epi, lung) [cm <sup>2</sup> ]               | $193.48 \pm 42.09$ | $179.51 \pm 22.96$ | $96.15 \pm 4.84$   | 0.805                                              | $123.24\pm9.61$  | 0.335                                              |  |
| CV [S (alv epi, lung)]                              | 0.22               | 0.13               | 0.0                | )50                                                | 0.078            |                                                    |  |
| $V_V$ (alv air) [%]                                 | $47.80 \pm 4.51$   | $52.89 \pm 3.37$   | $59.85 \pm 8.93$   | 0.501                                              | $74.93 \pm 4.01$ | 0.003                                              |  |
| V (alv air, lung) [cm <sup>3</sup> ]                | $0.1 \pm 0.02$     | $0.11 \pm 0.02$    | $0.13\pm0.01$      | 0.751                                              | $0.184 \pm 0.01$ | 0.003                                              |  |
| CV [V (alv air, lung)]                              | 0.27               | 0.12               | 0.1                | 136                                                | 0.0              | 0.087                                              |  |
| V (sep, lung) [cm <sup>3</sup> ]                    | $0.10 \pm 0.01$    | $0.10 \pm 0.01$    | $0.08\pm0.02$      | 0.951                                              | $0.06 \pm 0.01$  | 0.205                                              |  |
| CV [V (sep, lung)]                                  | 0.17               | 0.19               | 0.2                | 263                                                | 0.1              | 90                                                 |  |
| τ (sep) [μm]                                        | $11.10\pm0.72$     | $11.15 \pm 1.3$    | $17.81 \pm 3.97$   | 0.0001                                             | $10.15\pm2.32$   | 0.0007                                             |  |
| <i>CV</i> [τ (sep) ]                                | 0.064              | 0.12               | 0.2                | 223                                                | 0.2              | 29                                                 |  |
| MLI [µm]                                            | $20.44 \pm 2.84$   | $25.01 \pm 2.35$   | $53.15\pm8.26$     | 0.474                                              | $60.03 \pm 3.74$ | 0.159                                              |  |
| CV [MLI]                                            | 0.13               | 0.09               | 0.                 | 15                                                 | 0.0              | 0.06                                               |  |

Appendix Table S5. Stereological analysis of lungs from P14 wild-type mice treated with antimiR-34a exposed either to normoxia or hyperoxia, compared to scrambled antimiR-treated controls.

Abbreviations: A34a, antimiR-34a; *alv*, alveoli; *alv air*, alveolar airspaces; *alv epi*, alveolar epithelium; *CV*, coefficient of variation; *MLI*, mean linear intercept; *N*, number;  $N_v$ , numerical density; *non-par*, non-parenchyma; *par*, parenchyma; S, scrambled-antimiR; *Sf*, surface area; *Sf<sub>v</sub>*, surface density;  $\tau$  (sep), arithmetic mean septal thickness; *V*, volume;  $V_v$ , volume density. Values are presented as mean  $\pm$  SD, n = 5 lungs for each group. A one-way ANOVA with Tukey's *post-hoc* analysis was used to determine *P* values.

Appendix Table S6. Summary of the gene expression microarray data examining changes in mRNA levels after antimiR-34a or scrambled antimiR treatment of mice with concomitant normoxia or hyperoxia exposure.

| Time point | Comparison                                         | FC> 2.0    <i>P</i> (corr)<0.05 |       |  |  |
|------------|----------------------------------------------------|---------------------------------|-------|--|--|
| Time-point | Comparison                                         | Up                              | Down  |  |  |
|            | 21% O <sub>2</sub> /S vs. 21% O <sub>2</sub> /A34a | 0                               | 0     |  |  |
| P5         | 21% O <sub>2</sub> /S vs. 85% O <sub>2</sub> /S    | 622                             | 612   |  |  |
|            | 85% O <sub>2</sub> /S vs. 85% O <sub>2</sub> /A34a | 0                               | 0     |  |  |
|            | 21% O <sub>2</sub> /S vs. 21% O <sub>2</sub> /A34a | 0                               | 0     |  |  |
| P14        | 21% O <sub>2</sub> /S vs. 85% O <sub>2</sub> /S    | 2,972                           | 3,093 |  |  |
|            | 85% O <sub>2</sub> /S vs. 85% O <sub>2</sub> /A34a | 0                               | 0     |  |  |

Abbreviations: A34a, antimiR-34a; FC, fold-change; P, post-natal day; P(corr), corrected P-value; S, scrambled antimiR. n = 4 lungs per group. A Welch's approximate *t*-test was used to determine P values which were corrected using the algorithm of Benjamini and Hochberg, to generate P(corr).

| Gene    | Forward                       | Reverse                          |
|---------|-------------------------------|----------------------------------|
| Acta2   | 5'-GCACCACTATGTACCCTGGCA-3'   | 5'- TTAGAAGCATTTGCGGTGGACAATG-3' |
| Ankrd37 | 5'-GGCCAGTGTTGCCTCTCTG-3'     | 5'-AGGTCAGCACCTGTTTGCAG-3'       |
| Ccl1    | 5'-CTGGGATTCACCTCAAGAACATC-3' | 5'-CAGGGTCAAGGCAAGCCTC-3'        |
| Ccl5    | 5'-TCAAGCTCGCCATTCATGC-3'     | 5'-TTGCGGCTATGACTGAGGAAG-3'      |
| Pdgfra  | 5'-AGAGTTACACGTTTGAGCTGTC-3'  | 5'-GTCCCTCCACGGTACTCCT-3'        |
| Polr2a  | 5'-CTAAGGGGCAGCCAAAGAAAC-3'   | 5'-CCATTCAGCATACAACTCTAGGC-3'    |

Appendix Table S7. Real-time RT-PCR primers employed in this study for mRNA expression analyses.

| Allele                                      | Amplicon size  | Forward                       | Reverse                                 |
|---------------------------------------------|----------------|-------------------------------|-----------------------------------------|
| Mir34a <sup>tm1.2Aven</sup>                 | Mutant: 318 bp | 5'-GGTCACAAGACCCTCACCTG-3'    | 5'-TCACAGCAGACCCTTGATGT-3'              |
|                                             | WT: 198 bp     |                               |                                         |
| Mir34b/Mir34c <sup>tm1.1Aven</sup>          | WT: 377 bp     | 5'-AAATTCCTCCGACTGAGCCT-3'    | 5'-ATGACTTTACGGGGTTGACAG-3'             |
|                                             | Mutant: 249 bp | 5'-TTGCGGGAAGAAGGACTC-3'      | 5'-ATGACTTTACGGGGTTGACAG-3'             |
| Mir34a <sup>tm1.1Lhe</sup>                  | WT: 471 bp     | 5'-ACTGCTGTACCCTGCTGCTT-3'    | 5'-GTACCCCGACATGCAAACTT-3'              |
|                                             | Mutant: 180 bp | 5'-ACTGCTGTACCCTGCTGCTT-3'    | 5'-GCAGGACCACTGGATCATTT-3'              |
| Tg(Pdgfra-cre/ERT2)1Wdr                     | Mutant: 500 bp | 5'-GGTGTTATAACGAATCCCCAGAA-3' | 5'-CAGGTCTCAGGAGCTATGTCCAATTTACTGACC-3' |
| B6.129S4-Pdgfra <sup>tm11(EGFP)Sor</sup> /J | WT: 451 bp     | 5'-CCCTTGTGGTCATGCCAAAC-3'    | 5'-CCCTTGTGGTCATGCCAAAC-3'              |
|                                             | Mutant: 242 bp | 5'-CCCTTGTGGTCATGCCAAAC-3'    | 5'-ACGAAGTTATTAGGTCCCTCGAC-3'           |

Appendix Table S8. PCR primers employed for genotyping in this study.

Abbreviations: WT, wild-type.

| Antigen            | Host animal    | Conjugated<br>fluorophore | Supplier          | Catalog Number | Application | Dilution  |
|--------------------|----------------|---------------------------|-------------------|----------------|-------------|-----------|
| Aquaporin5         | Rabbit         | none                      | Abcam             | Ab78486        | IF          | 1:100     |
| αSMA               | Mouse          | FITC                      | Sigma-Aldrich     | F3777          | FACS        | 1:100     |
| βactin             | Rabbit         | none                      | Cell Signalling   | 4967           | IB          | 1:4000    |
| CD140a (PDGFRα)    | Goat           | None                      | R&D Systems       | AF1062         | IB          | 1:1000    |
| CD140a (PDGFRa)    | Rabbit         | none                      | Cell Signalling   | 3174           | IB          | 1:1000    |
| CD140a (PDGFRa)    | Rat            | APC                       | Biolegend         | 135907         | FACS        | 1:100     |
| CD140a (PDGFRa)    | Rat            | PE                        | Biolegend         | 135905         | FACS        | 1:100     |
| CD31               | Rat            | none                      | Biolegend         | 102404         | FACS        | 1:100     |
| CD31               | Rat            | Pacific Blue              | Biolegend         | 102422         | FACS        | 1:100     |
| CD31               | Rat            | PE                        | Biolegend         | 102407         | FACS        | 1:100     |
| CD326              | Rat            | none                      | Biolegend         | 118204         | FACS        | 1:100     |
| CD326              | Rat            | APC/Cy7                   | Biolegend         | 118217         | FACS        | 1:50      |
| CD326              | Rat            | FITC                      | Biolegend         | 118207         | FACS        | 1:100     |
| CD45               | Rat            | none                      | Biolegend         | 103104         | FACS        | 1:100     |
| CD45               | Rat            | APC/Cy7                   | Biolegend         | 103114         | FACS        | 1:100     |
| CD45               | Rat            | FITC                      | Biolegend         | 103108         | FACS        | 1:100     |
| CD71               | Rat            | PE                        | Biolegend         | 113808         | FACS        | 1:100     |
| c-Kit              | Rabbit         | none                      | Cell Signalling   | 3074           | IB          | 1:1000    |
| GAPDH              | Rabbit         | none                      | Cell Signalling   | 2118           | IB          | 1:1000    |
| Ki67               | Mouse          | PE                        | BD Pharmingen     | 556027         | FACS        | undiluted |
| Ki67               | Rat            | none                      | Thermo Scientific | 14-5698-82     | IF          | 1:100     |
| Mouse IgG1ĸ        | Mouse          | FITC                      | Biolegend         | 400109         | FACS        | 1:100     |
| Mouse IgG1ĸ        | Mouse          | Pacific Blue              | Biolegend         | 400131         | FACS        | 1:100     |
| Mouse IgG2aĸ       | Mouse          | FITC                      | Biolegend         | 400207         | FACS        | 1:100     |
| ProSP-C            | Rabbit         | none                      | Abcam             | Ab3786         | IF          | 1:100     |
| Rat IgG2aĸ         | Rat            | none                      | Biolegend         | 400504         | FACS        | 1:100     |
| Rat IgG2aк         | Rat            | none                      | Santa Cruz        | Sc-2026        | IF          | 1:100     |
| Rat IgG2aĸ         | Rat            | PE                        | Biolegend         | 400508         | FACS        | 1:100     |
| Rat IgG2aк         | Rat            | PE/Cy7                    | Biolegend         | 400522         | FACS        | 1:100     |
| Rat IgG2aĸ         | Rat            | APC                       | Biolegend         | 400511         | FACS        | 1:100     |
| Rat IgG2aĸ         | Rat            | APC/Cy7                   | Biolegend         | 400523         | FACS        | 1:50      |
| Rat IgG2bĸ         | Rat            | PE/Cy7                    | Biolegend         | 400617         | FACS        | 1:100     |
| Rabbit IgG isotype | Rabbit         | none                      | Thermo Scientific | PA5-23090      | IF          | 1:100     |
| SIRT1              | Rabbit         | none                      | Cell Signalling   | 2493           | IB          | 1:1000    |
| Syrian Hamster IgG | Syrian hamster | PE/Cy7                    | eBioscience       | 25-4914-82     | FACS        | 1:20      |
| T1α                | Syrian hamster | PE                        | Biolegend         | 127407         | FACS        | 1:20      |

Appendix Table S9. Antibodies employed in this study.

Abbreviations: APC, allophycocyanin; Cy7, cyanine 7; FITC, fluorescein; IF, immunofluorescence; PE, phycoerythrin; IB, immunoblot.



Appendix Figure S1. Loss of one member of the miR-34 family does not lead to compensatory upregulation of expression of other miR-34 family members. (A) Expression of miR-34a-5p (34a), miR-34b-5p (34b), and miR-34c-5p (34c) in wild type (WT) mouse lungs and miR-34a<sup>-/-</sup> mice after exposure to 21% O<sub>2</sub> (upper panel) or 85% O<sub>2</sub> (lower panel) from the day of birth up to and including the fifth day of life. (B) Expression of 34a, 34b, and 34c in WT mouse lungs and miR-34bc<sup>-/-</sup> mice after exposure to 21% O<sub>2</sub> (upper panel) or 85% O<sub>2</sub> (lower panel) from the day of birth up to and including the fifth day of life. Data represent mean  $\pm$  SD (n = 4 mice, per group). Expression levels of each microRNA species within each WT/knockout pair were compared by unpaired Student's *t*-test. No significant difference (P < 0.05) in expression level comparisons was detected in any case; hence no *P* values are reported in the figure. No statistical comparison was possible when no amplicons were detected in one of the two experimental groups constituting the pair of data. N.D., no amplicon detected.



Appendix Figure S2. Expression of miR-34a was detected in the developing septa and airway epithelium in mouse pups. (A) Expression of miR-34a was localized using a miR-34a::*lacZ* reporter mouse strain, where  $\beta$ -galactosidase activity was revealed using 5-bromo-4-chloro-3-indolyl- $\beta$ -D-galactopyranoside as substrate. The miR-34a expression is indicated by punctate blue foci in the developing septa (left panel) and in the developing airways (right panel). (B) It is noteworthy that macrophages (indicated by an arrow) stain positive for  $\beta$ -galactosidase activity even in wild-type (WT) mouse lungs. Data are representative of trends observed in two other independently-evaluated mouse lungs. Scale bar, 50 µm. aw, airway, P, post-natal day (as in P5 and P14).



Appendix Figure S3. Exposure of the MLg mouse lung fibroblast cell line to 85% O<sub>2</sub> results in pronounced downregulation of expression of *Pdgfra* and *Acta2*. The MLg mouse lung fibroblast cell line was exposed to 85% O<sub>2</sub> in the incubator headspace for 48 h, after which mRNA levels for (A) *Pdgfra* and (B) *Acta2* were assessed by real-time RT-PCR. Data represent mean  $\pm$  SD (n = 6 cell cultures for each group). *P* values were determined by unpaired Student's *t*-test.



**Appendix Figure S4** 

Appendix Figure S4. Exposure of mice to 85% O<sub>2</sub> downregulates *Pdgfra* and *Acta2* expression in PDGFR $\alpha^+$  cells isolated from mouse lungs by flow cytometry. (A) Schematic illustration of PDGFR $\alpha^+$  cell isolation from single-cell suspensions prepared from mouse lungs harvested from mice at post-natal day 5. The protocol illustrates backgating, doublet exclusion, fractionation of the cell population, and purity assessment. <u>Note</u>: an enrichment step was performed between panel 3 and panel 4, using magnetic bead-coupled anti-APC antibodies to pulldown the anti-PDGFR $\alpha$ -APC conjugate. The FACS-sorted PDGFR $\alpha^+$  cells were assessed for the expression of (B) *Pdgfra* and (C) *Acta2* by real-time RT-PCR. Data represent mean  $\pm$  SD (n = 4 animals for each group). *P* values were determined by unpaired Student's *t*-test. APC, allophycocyanin; DAPI, 4',6-diamidino-2-phenylindole; FSC-A, forward scatter area; FSC-H, forward scatter height; PE, phycoerythrin; SSC-A, side scatter area.



Appendix Figure S5. Repetition of the experiment presented in Fig. 3F. Quantitative RT-PCR detection of miR-34a-5p levels in PDGFR $\alpha^+$  cells, sorted by FACS from the lungs of mouse pups (n = 4 animals for each group) at P5, maintained under 21% O<sub>2</sub> or 85% O<sub>2</sub> from birth. Data represent mean ± SD. *P* values were calculated by unpaired Student's *t*-test.



Appendix Figure S6. Validation of a target site blocker cocktail. Evaluation of the specificity of TSB1 and TSB2 used separately and together as a 1:1 cocktail in MLg cells, using scrambled miR (SCR) and miR-34a (MIM34a) mimics, and probing for PDGFR $\alpha$ . Protein loading equivalence was controlled by  $\beta$  actin levels. Note: PDGFR $\alpha$  and  $\beta$  actin were both probed on the same membrane. Data are representative of trends seen in two other experiments. Source data exists for this figure.



Appendix Figure S7. Gating strategy for the quantification of PDGFR $\alpha^+$  and PDGFR $\alpha^+/\alpha$ SMA<sup>+</sup> cells by flow cytometry in mouse lungs after target site blocker application. Illustration of the gating strategy to assess the impact of target site blocker (TSB)1 and TSB2 administration *vs.* scrambled TSB administration on the abundance of PDGFR $\alpha^+$  and PDGFR $\alpha^+/\alpha$ SMA<sup>+</sup> double-positive cells (myofibroblasts) in the lungs of P5 mice undergoing aberrant (85% O<sub>2</sub>) alveolarization. FSC, forward scatter; PDGFR $\alpha$ , platelet-derived growth factor receptor  $\alpha$ ; SCR, scrambled target site blocker; TSB1,2, cocktail of two target site blockers designed to interrupt in interaction between miR-34a and *Pdgfra* mRNA.



Appendix Figure S8. Administration of an antimiR directed against miR-34a predominantly impacts miR-34a expression in mice on day five of life. The impact of administration of scrambled antimiR (S) or an antimiR directed against miR-34a (A34a) on (A) miR-34a-5p, (B) miR-34b-5p, and (C) miR-34c-5p levels in the lungs of mice at post-natal day 5 (n = 3 animals for each group) undergoing normal (21% O<sub>2</sub>) or aberrant (85% O<sub>2</sub>) alveolarization. Data represent mean  $\pm$  SD. *P* values were calculated by one-way ANOVA with Tukey's *post hoc* test.



Appendix Figure S9. The abundance of  $\alpha$  smooth muscle actin (SMA)-positive cells and total abundance of  $\alpha$ SMA in mouse lung is not impacted by exposure of newborn mice to hyperoxia. Gating strategy for the detection of (A) platelet-derived growth factor receptor (PDGFR) $\alpha^+$  and (B) PDGFR $\alpha^+/\alpha$ SMA<sup>+</sup> cells isolated from the lungs of mice at post-natal day (P)5. (C) The impact of administration of scrambled antimiR (S) or an antimiR directed against miR-34a (A34a) on the abundance of  $\alpha$ SMA<sup>+</sup> cells in the lungs of P5 mice undergoing normal (21% O<sub>2</sub>) or aberrant (85% O<sub>2</sub>) lung alveolarization. Data represent mean  $\pm$  SD. (n = 5 animals/group; each data point represents an individual animal). No statistically significant (P < 0.05) differences in the abundance of  $\alpha$ SMA<sup>+</sup> cells was detected by one-way ANOVA with Tukey's *post hoc* test, comparing all four experimental groups. (D) Protein expression levels of  $\alpha$ SMA in the lung were detected by immunoblot in protein extracts from lungs of P5 mice under the same experimental conditions described in (C). Protein loading equivalence was controlled by GAPDH levels. Source data exists for this figure.



Appendix Figure S10. Gating strategy for the quantification of PDGFR $\alpha^+$  and PDGFR $\alpha^+/\alpha$ SMA<sup>+</sup> cells by flow cytometry in mouse lungs after antimiR-34a application. Illustration of the gating strategy to assess the impact of antimiR-34a (A34a) administration *vs.* scrambled antimiR (S) administration on the abundance of PDGFR $\alpha^+$  and PDGFR $\alpha^+/\alpha$ SMA<sup>+</sup> double-positive cells (myofibroblasts) in the lungs of P5 mice undergoing aberrant (85% O<sub>2</sub>) alveolarization. A34a, antimiR-34a; FSC, forward scatter; PDGFR $\alpha$ , platelet-derived growth factor receptor  $\alpha$ ; S, scrambled antimiR.



Appendix Figure S11. Administration of an antimiR directed against miR-34a impacts elastin deposition and remodeling during exposure of newborn mice to hyperoxia. Wild-type mice were treated with a scrambled (inert) antimiR sequence (S), or an antimiR directed against miR-34a (A34), on the first and third days of life, during continuous exposure to hyperoxia (85%  $O_2$ ) for the first 14 days of life. For reference purposes, scrambled antimiR-treated mouse pups maintained under 21%  $O_2$  for the first 14 days of life are also illustrated. Each of the three panel columns depict samples analyzed from different experimental animal groups (n = three independent experimental groups). Red arrows indicate selected examples of elastin foci. Scale bar, 50 µm.



Appendix Figure S12. Determination of the apoptosis status of PDGFR $\alpha^+$  cells in developing mouse lungs. (A) Protocol for the determination of apoptosis status of PDGFR $\alpha^+$  cells in developing mouse lungs harvested at (B) P5 and (C) P4 was assessed by flow cytometry (P5, *n*=5 mice for each group; P14, *n*=6 mice for 21% O<sub>2</sub>, and *n*=5 mice for 85% O<sub>2</sub>). (D) Individual gating for PDGFR $\alpha^+$  cells for mice exposed to 21% O<sub>2</sub> and 21% O<sub>2</sub> is indicated side-by-side (the 21% O<sub>2</sub> plot is duplicated from the middle row), and both plots are transformed into zebra plots to illustrate cell density. *P* values were determined by unpaired Student's *t*-test. APC, allophycocyanin; Cy7, cyanine 7; DAPI, 4',6-diamidino-2-phenylindole; FITC, Fluorescein isothiocyanate; FSC-A, forward scatter area; FSC-H, forward scatter height; PE, phycoerythrin, SSC-A, side scatter area.



Appendix Figure S13. Attempt at the determination of the proliferation of status of PDGFR $\alpha^+$  cells in developing mouse lungs by S-phase analysis. Protocol for the determination of proliferation status of PDGFR $\alpha^+$  cells in developing mouse lungs by flow cytometry. APC, allophycocyanin; FSC, forward-scatter; FSC-A, forward-scatter area; PE, phycoerythrin; SSC-H, side-scatter height.



Appendix Figure S14. Determination of the impact of hyperoxia and miR-34a on apoptosis and proliferation of primary mouse lung fibroblasts. (A) The impact of hyperoxia exposure on PDGFR $\alpha$  levels in primary mouse lung fibroblasts was assessed my immunoblot, with  $\beta$  actin serving as a control for loading equivalence. (B) The impact of miR-34a-5p mimic (MIM34a) application to primary mouse lung fibroblasts on miR-34a-5p levels was assessed in mock-, scrambled (SCR) mimic- and MIM34a-treated cells by real-time RT-PCR analysis (*n*=4 for mock- and SCR-treatment, and *n*=3 for MIM34a treatment). Both (C) proliferation and (D) apoptosis were assessed in primary lung fibroblasts treated exactly as described in (B). Data reflect mean values  $\pm$  SD (*n*=12 replicates per group, and data presented are representative of the trends observed in at least two independent experiments). R.L.U., relative luminescence units. *P* values were calculated by one-way ANOVA with Tukey's *post hoc* modification. Source data exists for this figure.



Appendix Figure S15. Neither hyperoxia exposure nor antimiR-34a treatment impacts total number of apoptotic status of alveolar type I cells. The impact of administration of scrambled antimiR (S) or an antimiR directed against miR-34a (A34a) on the abundance lung epithelial cells (marked by EpCam), type I alveolar epithelial cells (marked by T1 $\alpha$ ) and apoptotic cells (marked by annexin V) in lungs from P5 mice undergoing normal (21% O<sub>2</sub>) or aberrant (85% O<sub>2</sub>) alveolarization. The gating strategy for (A) EpCam<sup>+</sup> cells, (B) T1 $\alpha^+$  cells, and (C) annexin V<sup>+</sup> cells. Quantitative data are illustrated for (D) epithelial cells, (E) apoptotic epithelial cells, (F) type I alveolar epithelial cells, and (G) apoptotic type I alveolar epithelial cells. Data represent mean  $\pm$  SD (n = 4 animals for each group). Cell percentages were compared by one-way ANOVA with Tukey's *post hoc* test. No significant difference (P < 0.05) in cell abundance comparisons was detected in any case; hence no *P* values are reported in the figure. FSC, forward scatter.



Appendix Figure S16. Administration of an antimiR directed against miR-34a does not have a detectable impact on mRNA expression in developing mouse lungs exposed to hyperoxia. A microarray analysis of the transcriptome of the lungs of mice treated with a scrambled antimiR (S) or an antimiR directed against miR-34a (A34a) that were undergoing normal (exposed to 85%  $O_2$ ) and aberrant lung development (exposed to 85%  $O_2$ ) was undertaken. Selected genes from this microarray are reported in Appendix Table S6 (full data set available at the GEO database under accession number GSE89730). Changes in the gene expression of candidate genes were validated by real-time RT-PCR: (a) *Ankrd37*, (b) *Ccl5*, and (c) *Ccl1*. Data represent mean  $\pm$  SD. Expression levels of each candidate mRNA was compared by unpaired Student's *t*-test. No significant differences (*P* < 0.05) in expression level comparisons were detected in any case; hence no *P* values are reported in the figure.