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1 Non-dimensionalisation

1.1 Non-dimensionalisation of the WP model
The full dimension-carrying WP model is given by:

∂u

∂t
= bv + γ

un

Kn + un
v − δu+Du∇2u

∂v

∂t
= −bv − γ un

Kn + un
v + δu+Dv∇2v,

(1)

where u and v are the concentrations of active and inactive GTPase, respectively, t is the time,
b is a constant activation rate, δ is a constant inactivation rate, γ determines the strength of the
feedback activation,K is the concentration of active GTPase at which the feedback activation is
half its maximum, exponent n is a hill coefficient, and Du and Dv are the diffusion coefficients
of active and inactive GTPase, respectively. Due to mass conservation, the average total GTPase
concentration T is constant:

T =
1

A

∫∫
A

(u+ v)dxdy =
Total GTPase

A
, (2)

where A is the domain area and x and y are the spatial coordinates. Non-dimensionalisation
was performed as previously described (Holmes and Edelstein-Keshet, 2016). GTPase concen-
trations were scaled withK, time with δ, and space withDu and δ. The resulting dimensionless
variables are:

ũ =
u

K
, ṽ =

v

K
, t̃ = δt, x̃ =

x
√
δ√

Du

, ỹ =
y
√
δ√

Du

, (3)

and the dimensionless parameters:

T̃ =
T

K
, b̃ =

b

δ
, γ̃ =

γ

δ
, D̃v =

Dv

Du

, Ã = A
δ

Du

. (4)

This makes the dimensionless total amount of GTPase:

˜Total GTPase =
Total GTPase · δ

DuK
. (5)

Dropping the tildes, we obtain the dimensionless WP model:

∂u

∂t
= bv + γ

un

1 + un
v − u+∇2u

∂v

∂t
= −bv − γ un

1 + un
v + u+Dv∇2v,

(6)

with dimensionless average total GTPase concentration:

T =
1

A

∫∫
A

(u+ v)dxdy =
Total GTPase

A
. (7)
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1.2 Non-dimensionalisation of the MI model
The full dimension-carrying MI model is given by:

∂u1
∂t

= b1v1 + γ1
Kn

2

Kn
2 + un2

v1 − δu1 +Du∇2u1

∂v1
∂t

= −b1v1 − γ1
Kn

2

Kn
2 + un2

v1 + δu1 +Dv∇2v1

∂u2
∂t

= b2v2 + γ2
Kn

1

Kn
1 + un1

v2 − δu2 +Du∇2u2

∂v2
∂t

= −b2v2 − γ2
Kn

1

Kn
1 + un1

v2 + δu2 +Dv∇2v2,

(8)

where ui and vi are the concentrations of active and inactive GTPase i respectively, γi is the
activation rate of GTPase i that can be inhibited by the other GTPase, Ki is the active GTPase i
concentration at which the γ of the other GTPase is halved. Other parameters are as in the WP
model. For convenience, inactivation rate constant δ is assumed equal for both GTPases. The
average concentrations T1 and T2 of GTPase1 and GTPase2 are as in Eq 2. The dimensionless
variables are:

ũ1 =
u1
K1

, ũ2 =
u2
K2

, ṽ1 =
v1
K1

, ṽ2 =
v2
K2

, t̃ = δt, x̃ =
x
√
δ√

Du

, ỹ =
y
√
δ√

Du

, (9)

and the scaled parameters:

T̃1 =
T1
K1

, T̃2 =
T2
K2

, b̃1 =
b1
δ
, b̃2 =

b2
δ
, γ̃1 =

γ1
δ
, γ̃2 =

γ2
δ
,

D̃v =
Dv

Du

, Ã = A
δ

Du

.
(10)

This results in a dimensionless total amount of GTPase as in Eq 5. Dropping the tildes, we
obtain the dimensionless MI model:

∂u1
∂t

= b1v1 + γ1
1

1 + un2
v1 − u1 +∇2u1

∂v1
∂t

= −b1v1 − γ1
1

1 + un2
v1 + u1 +Dv∇2v1

∂u2
∂t

= b2v2 + γ2
1

1 + un1
v2 − u2 +∇2u2

∂v2
∂t

= −b2v2 − γ2
1

1 + un1
v2 + u2 +Dv∇2v2.

(11)

1.3 Non-dimensionalisation of the WPT model
The full dimension-carrying WPT model is given by:

∂u

∂t
= bv + γ

un

Kn + un
v − δu− ξu+Du∇2u

∂v

∂t
= −bv − γ un

Kn + un
v + δu+ σ +Dv∇2v,

(12)
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where ξ is the degradation rate of active GTPase and σ is a constant production term for inactive
GTPase. Other symbols are as in previous models. The dimensionless variables are:

ũ =
u

K
, ṽ =

v

K
, t̃ = δt, x̃ =

x
√
δ√

Du

, ỹ =
y
√
δ√

Du

, (13)

and the scaled parameters:

b̃ =
b

δ
, γ̃ =

γ

δ
, ξ̃ =

ξ

δ
, σ̃ =

σ

δK
, D̃v =

Dv

Du

. (14)

Dropping the tildes, we obtain the dimensionless WPT model:

∂u

∂t
= bv + γ

un

1 + un
v − u− ξu+∇2u

∂v

∂t
= −bv − γ un

1 + un
v + u+ σ +Dv∇2v.

(15)

1.4 Non-dimensionalisation of the MIT model
The full dimension-carrying system is given by:

∂u1
∂t

= b1v1 + γ1
Kn

2

Kn
2 + un2

v1 − δu1 − ξ1u1 +Du∇2u1

∂v1
∂t

= −b1v1 − γ1
Kn

2

Kn
2 + un2

v1 + δu1 + σ1 +Dv∇2v1

∂u2
∂t

= b2v2 + γ2
Kn

1

Kn
1 + un1

v2 − δu2 − ξ2u2 +Du∇2u2

∂v2
∂t

= −b2v2 − γ2
Kn

1

Kn
1 + un1

v2 + δu2 + σ2 +Dv∇2v2,

(16)

with variables and parameters as in the previous models. The dimensionless variables are:

ũ1 =
u1
K1

, ũ2 =
u2
K2

, ṽ1 =
v1
K1

, ṽ2 =
v2
K2

, t̃ = δt, x̃ =
x
√
δ√

Du

, ỹ =
y
√
δ√

Du

, (17)

and the scaled parameters:

b̃1 =
b1
δ
, b̃2 =

b2
δ
, γ̃1 =

γ1
δ
, γ̃2 =

γ2
δ
, ξ̃1 =

ξ1
δ
, ξ̃2 =

ξ2
δ
,

σ̃1 =
σ1
δK1

, σ̃2 =
σ2
δK2

, D̃v =
Dv

Du

.
(18)

Dropping the tildes, we obtain the dimensionless MIT model:

∂u1
∂t

= b1v1 + γ1
1

1 + un2
v1 − u1 − ξ1u1 +∇2u1

∂v1
∂t

= −b1v1 − γ1
1

1 + un2
v1 + u1 + σ1 +Dv∇2v1

∂u2
∂t

= b2v2 + γ2
1

1 + un1
v2 − u2 − ξ2u2 +∇2u2

∂v2
∂t

= −b2v2 − γ2
1

1 + un1
v2 + u2 + σ2 +Dv∇2v2.

(19)
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1.5 Non-dimensionalisation of the WPGAP model
The full dimension-carrying WPGAP model is given by:

∂u

∂t
= bv + γ

un

Kn + un
v − δu− eGu+Du∇2u

∂v

∂t
= −bv − γ un

Kn + un
v + δu+ eGu+Dv∇2v

∂G

∂t
= cug − dG+DG∇2G

∂g

∂t
= −cug + dG+Dg∇2g,

(20)

where G and g are the concentrations of active and inactive GAP respectively, DG and Dg

are the diffusion coefficients of active and inactive GAP respectively, c is a GTPase dependent
GAP activation rate constant, d is the GAP inactivation rate constant, and e is a GAP dependent
GTPase inactivation constant. This model has conservation parameter T as in Eq 2 and an
average total GAP concentration:

Tg =
1

A

∫∫
A

(G+ g)dxdy =
Total GAP

A
. (21)

The dimensionless variables are:

ũ =
u

K
, ṽ =

v

K
, G̃ =

e

δ
G, g̃ =

e

δ
g, t̃ = δt, x̃ =

x
√
δ√

Du

, ỹ =
y
√
δ√

Du

, (22)

and the scaled parameters:

T̃ =
T

K
, T̃g =

eTg
δ
, b̃ =

b

δ
, γ̃ =

γ

δ
, c̃ =

cK

δ
, d̃ =

d

δ
,

D̃v =
Dv

Du

, D̃G =
DG

Du

, D̃g =
Dg

Du

, Ã = A
δ

Du

.
(23)

This makes the dimensionless total amount of GTPase:

˜Total GAP =
Total GAP · e

Du

. (24)

Dropping the tildes, we obtain the dimensionless WPGAP model:

∂u

∂t
= bv + γ

un

1 + un
v − u−Gu+Du∇2u

∂v

∂t
= −bv − γ un

1 + un
v + u+Gu+Dv∇2v

∂G

∂t
= cug − dG+DG∇2G

∂g

∂t
= −cug + dG+Dg∇2g,

(25)

with a dimensionless total average GAP concentration:

Tg =
1

A

∫∫
A

(G+ g)dxdy =
Total GAP

A
. (26)
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1.6 Non-dimensionalisation of the MIGAP1 model
The full dimension-carrying system is given by:

∂u1
∂t

= b1v1 + γ1
Kn

2

Kn
2 + un2

v1 − δu1 − e1G1u1 +Du∇2u1

∂v1
∂t

= −b1v1 − γ1
Kn

2

Kn
2 + un2

v1 + δu1 + e1G1u1 +Dv∇2v1

∂u2
∂t

= b2v2 + γ2
Kn

1

Kn
1 + un1

v2 − δu2 +Du∇2u2

∂v2
∂t

= −b2v2 − γ2
Kn

1

Kn
1 + un1

v2 + δu2 +Dv∇2v2

∂G1

∂t
= c1u1g1 − d1G1 +DG∇2G1

∂g1
∂t

= −c1u1g1 + d1G1 +Dg∇2g1,

(27)

with variables and parameters as in previous models. This system has two average total GTPase
concentrations as in Eq 2 and one average total GAP concentration as in Eq 21. The dimen-
sionless variables are:

ũ1 =
u1
K1

, ũ2 =
u2
K2

, ṽ1 =
v1
K1

, ṽ2 =
v2
K2

, G̃1 =
e1
δ
G1, g̃1 =

e1
δ
g1,

t̃ = δt, x̃ =
x
√
δ√

Du

, ỹ =
y
√
δ√

Du

,
(28)

and the scaled parameters:

T̃1 =
T1
K1

, T̃2 =
T2
K2

, T̃g,1 =
e1Tg,1
δ

, b̃1 =
b1
δ
, b̃2 =

b2
δ
, γ̃1 =

γ1
δ
, γ̃2 =

γ2
δ
,

c̃1 =
c1K1

δ
, d̃1 =

d1
δ
, D̃v =

Dv

Du

, D̃G =
DG

Du

, D̃g =
Dg

Du

, Ã = A
δ

Du

.

(29)
Dropping the tildes, we obtain the dimensionless MIGAP1 model:

∂u1
∂t

= b1v1 + γ1
1

1 + un2
v1 − u1 −G1u1 +∇2u1

∂v1
∂t

= −b1v1 − γ1
1

1 + un2
v1 + u1 +G1u1 +Dv∇2v1

∂u2
∂t

= b2v2 + γ2
1

1 + un1
v2 − u2 +∇2u2

∂v2
∂t

= −b2v2 − γ2
1

1 + un1
v2 + u2 +Dv∇2v2

∂G1

∂t
= c1u1g1 − d1G1 +DG∇2G1

∂g1
∂t

= −c1u1g1 + d1G1 +Dg∇2g1.

(30)
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1.7 Non-dimensionalisation of the MIGAP2 model
The full dimension-carrying MIGAP2 system is given by:

∂u1
∂t

= b1v1 + γ1
Kn

2

Kn
2 + un2

v1 − δu1 − e1G1u1 +Du∇2u1

∂v1
∂t

= −b1v1 − γ1
Kn

2

Kn
2 + un2

v1 + δu1 + e1G1u1 +Dv∇2v1

∂u2
∂t

= b2v2 + γ2
Kn

1

Kn
1 + un1

v2 − δu2 − e2G2u2 +Du∇2u2

∂v2
∂t

= −b2v2 − γ2
Kn

1

Kn
1 + un1

v2 + δu2 + e2G2u2 +Dv∇2v2

∂G1

∂t
= c1u1g1 − d1G1 +DG∇2G1

∂g1
∂t

= −c1u1g1 + d1G1 +Dg∇2g1

∂G2

∂t
= c2u2g2 − d2G2 +DG∇2G2

∂g2
∂t

= −c2u2g2 + d2G2 +Dg∇2g2,

(31)

with variables and parameters as in previous models. This model has two average total GTP-
ase concentrations as in Eq 2 and two average total GAP concentrations as in Eq 21. The
dimensionless variables are:

ũ1 =
u1
K1

, ũ2 =
u2
K2

, ṽ1 =
v1
K1

, ṽ2 =
v2
K2

,

G̃1 =
e1
δ
G1, g̃1 =

e1
δ
g1, G̃2 =

e2
δ
G2, g̃2 =

e2
δ
g2, t̃ = δt, x̃ =

x
√
δ√

Du

, ỹ =
y
√
δ√

Du

,

(32)
and the scaled parameters:

T̃1 =
T1
K1

, T̃2 =
T2
K2

, T̃g,1 =
e1Tg,1
δ

, T̃g,2 =
e2Tg,2
δ

, b̃1 =
b1
δ
, b̃2 =

b2
δ
,

γ̃1 =
γ1
δ
, γ̃2 =

γ2
δ
, c̃1 =

c1K1

δ
, d̃1 =

d1
δ
, c̃2 =

c2K2

δ
, d̃2 =

d2
δ
,

D̃v =
Dv

Du

, D̃G =
DG

Du

, D̃g =
Dg

Du

, Ã = A
δ

Du

.

(33)
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Dropping the tildes, we obtain the dimensionless MIGAP2 model:

∂u1
∂t

= b1v1 + γ1
1

1 + un2
v1 − u1 −G1u1 +∇2u1

∂v1
∂t

= −b1v1 − γ1
1

1 + un2
v1 + u1 +G1u1 +Dv∇2v1

∂u2
∂t

= b2v2 + γ2
1

1 + un1
v2 − u2 −G2u2 +∇2u2

∂v2
∂t

= −b2v2 − γ2
1

1 + un1
v2 + u2 +G2u2 +Dv∇2v2

∂G1

∂t
= c1u1g1 − d1G1 +DG∇2G1

∂g1
∂t

= −c1u1g1 + d1G1 +Dg∇2g1

∂G2

∂t
= c2u2g2 − d2G2 +DG∇2G2

∂g2
∂t

= −c2u2g2 + d2G2 +Dg∇2g2.

(34)

2 Homogeneous steady states
The WP model has the following homogeneous steady state (HSS):

uHSS = u0

vHSS =
u0(1 + un0 )

(b+ γ)un0 + b
,

(35)

where u0 is the concentration of u at the homogeneous steady state for a specific average
GTPase concentration T = uHSS + vHSS .

The MI model has the following homogeneous steady state:

u1,HSS = u1,0

v1,HSS = u1,0

1 +

(
T2

b2u
n
1,0 + b2 + γ2

1 + b2un1,0 + un1,0 + b2 + γ2

)n
b1 + γ1 + b1

(
T2

b2u
n
1,0 + b2 + γ2

1 + b2un1,0 + un1,0 + b2 + γ2

)n
u2,HSS = T2

b2u
n
1,0 + b2 + γ2

b2un1,0 + un1,0 + b2 + γ2 + 1

v2,HSS = T2 − u2,HSS ,

(36)

where u1,0 is the concentration of u at the homogeneous steady state for a specific average GTP-
ase 1 concentration T1 = u1,HSS + v1,HSS . For the second GTPase, the average concentration
T2 = u2,HSS + v2,HSS was used as an extra parameter.
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For the WPT model, the homogeneous steady state is:

uHSS =
σ

ξ

vHSS =

σ

((
σ

ξ

)n
+ 1

)
(ξ + 1)

ξ

(
(b+ γ)

(
σ

ξ

)n
+ b

) .
(37)

The MIT model has the following homogeneous steady state:

u1,HSS =
σ1
ξ1

v1,HSS =

σ1

((
σ2
ξ2

)n
+ 1

)
(ξ1 + 1)

ξ1

(
b1

(
σ2
ξ2

)n
+ b1 + γ1

)
u2,HSS =

σ2
ξ2

v2,HSS =

σ2

((
σ1
ξ1

)n
+ 1

)
(ξ2 + 1)

ξ2

(
b2

(
σ1
ξ1

)n
+ b2 + γ2

) .

(38)

The homogeneous steady state of the WPGAP model is:

uHSS = u0

vHSS = u0
c(Tg + 1)un+1

0 + d · un0 + c · u0(Tg + 1) + d

((b+ γ)un0 + b) (c · u0 + d)

GHSS =
c · u0 · Tg
c · u0 + d

gHSS = Tg −GHSS ,

(39)

where Tg = GHSS + gHSS is the average concentration of GAP.
The homogeneous steady state of the MIGAP1 model is:

u1,HSS = u1,0

v1,HSS = u1,0

(
1 +

(
T2

b2u
n
1,0 + b2 + γ2

1 + b2un1,0 + un1,0 + b2 + γ2

)n)
(c(Tg + 1)u1,0 + d)(

b1 + γ1 + b1

(
T2

b2u
n
1,0 + b2 + γ2

1 + b2un1,0 + un1,0 + b2 + γ2

)n)
(c · u1,0 + d)

u2,HSS = T2
b2u

n
1,0 + b2 + γ2

b2un1,0 + un1,0 + b2 + γ2 + 1

v2,HSS = T2 − u2,HSS

G1,HSS =
c · u1,0 · Tg
c · u1,0 + d

g1,HSS = Tg −G1,HSS ,

(40)
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The MIGAP2 model has the following homogeneous steady state:

u1,HSS = u1,0

v1,HSS = u1,0
(1 + un2,HSS)(c1(Tg,1 + 1)u1,0 + d1)

(b1un2,HSS + b1 + γ1)(c1u1,0 + d1)

u2,HSS =
−B ±

√
B2 − 4AC

2A
A = (c2Tg,2 + b2c2 + c2)u

n
1,0 + c2Tg,2 + b2c2 + c2γ2 + c2

B = (b2d2 + d2 − c2b2T2)un1,0 + b2d2 + d2γ2 + d2 − c2b2T2 − c2γ2T2
C = −d2T2(un1,0b2 + b2 + γ2)

v2,HSS = T2 − u2,HSS

G1,HSS =
c1 · u1,0 · Tg,1
c1 · u1,0 + d1

g1,HSS = Tg,1 −G1,HSS

G2,HSS =
c2 · u2,0 · Tg,2
c2 · u2,0 + d2

g2,HSS = Tg,2 −G2,HSS .

(41)

There are two possibilities for u2,HSS , resulting as solutions from a quadratic equation. How-
ever, since the term−4AC is always positive, there is always exactly one positive option, which
we used for the simulation.

3 Linear stability analysis for two-component reaction-diffusion
systems in two dimensions

3.1 Linearisation and growth modes
Linear stability analysis (LSA) can be used to determine under what conditions arbitrarily small
spatial perturbations in a homogeneous state can grow, leading to a heterogeneous state. LSA
was performed as previously described (Murray, 2001) for reaction-diffusion systems of the
following (dimensionless) structure:

∂u

∂t
= ∇2u+ f(u, v)

∂v

∂t
= Dv∇2v + g(u, v),

(42)

where u is the concentration of the slow-diffusing activator, v is the concentration of the
fast-diffusing substrate, Dv the diffusion coefficient of v relative to that of u, ∇2 the two-
dimensional Laplace operator, and f and g are (non-linear) functions describing the interaction
between u and v. Linearisation of this system about the homogeneous steady state gives (in
matrix-vector form):

∂w

∂t
= D∇2w + Jw

w =

[
∆u
∆v

]
D =

[
1 0
0 Dv

]
J =

[
fu fv
gu gv

]
∆u = u− uHSS ∆v = v − vHSS ,

(43)
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where uHSS and vHSS are the concentrations of u and v at the homogeneous steady state re-
spectively, and J is the Jacobian matrix with partial derivatives of f and g with respect to u and
v evaluated at the homogeneous steady state. This linear system has solutions of the form:

w(x, y, t) =
∑
k

cke
λktWk(x, y). (44)

Here, ck is a constant (determined by initial conditions) belonging to wave number k, λk is a
the growth mode belonging to wave number k and Wk(x, y) is the time-independent solution
of the following eigenvalue problem:

∇2W (x, y) = −k2W (x, y). (45)

On finite domains only discrete wave numbers are admissible. Which wave numbers are al-
lowed is determined by the size of the domain and the boundary conditions.

The growth modes λk as a function of the wave number can be determined by substituting
Eq 44 and Eq 45 into Eq 43:

λw = −k2Dw + Jw

(J − k2D)w = λw.
(46)

These growth modes are then given by the roots of the following equation:

det
(
J − k2D − λkI

)
= 0. (47)

This leads to the following solutions for λk:

λk = −1

2
k2(1 +Dv) +

1

2
(fu + gv)±

1

2

√
(1−Dv)2k4 − 2(fu − gv)(1−Dv)k2 + f 2

u − 2fugv + 4fvgu + g2v .
(48)

If the real part of any λk belonging to an admissible wave number is greater than zero, the
homogeneous steady state is unstable, small perturbations will drive spontaneous pattern for-
mation.

3.2 Wave numbers
Admissible wave numbers can be determined by solving Eq 45. To this end we split Wk(x, y)
into an x-dependent and a y-dependent part:

Wk(x, y) = v̄X(x)Y (y), (49)

where X(x) is a scalar function of x, Y (y) is a scalar function of y, and v̄ is a constant vector
containing the coefficients for components u and v. Substituting this into Eq 45 results in:

v̄X ′′(x)Y (y) + v̄X(x)Y ′′(y) = −k2v̄X(x)Y (y). (50)

Division by X(x)Y (y) gives: (
X ′′(x)

X(x)
+
Y ′′(y)

Y (y)

)
v̄ = −k2v̄. (51)
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This equation can be separated into an x-dependent and a y-dependent part that both need to be
constant:

X ′′(x)

X(x)
= a

Y ′′(y)

Y (y)
= b

a+ b = −k2,

(52)

where a and b are constants to be solved from their respective one-dimensional boundary value
problems. The results depend on the boundary conditions and the domain size. We will con-
sider a rectangular domain with periodic boundary conditions in the x-direction and homoge-
neous Neumann boundary conditions in the y-direction. This results in a geometry resembling
an open cylinder.

3.2.1 Periodic boundary conditions

The periodic boundary conditions in the x-direction result in the following boundary value
problem:

X ′′(x) = aX(x)

X(0) = X(L)

X ′(0) = X ′(L),
(53)

where L is the length of the domain in the x-direction (or the circumference of the open cylin-
der). This problem only has trivial solutions for a > 0. For a = 0, there is a single solution
where X(x) is constant. For a < 0, with a = −µ2, solutions follow:

X(x) = A cos(µx) +B sin(µx)

X ′(x) = −Aµ sin(µx) +Bµ cos(µx),
(54)

where A and B are constants. Substituting these equations into the boundary conditions results
in:

A sin(µL) +B(1− cos(µL)) = 0

A(1− cos(µL))−B sin(µL) = 0,
(55)

which can be rewritten in matrix-vector form:[
sin(µL) 1− cos(µL)

1− cos(µL) − sin(µL)

] [
A
B

]
=

[
0
0

]
. (56)

For non-trivial solutions, the determinant of the matrix should be zero, so:

− sin2(µL)− (1− cos(µL))2 = 0

sin2(µL) + 1− 2 cos(µL) + cos2(µL) = 0

2− 2 cos(µL) = 0

cos(µL) = 1

µn =
2nπ

L
, n ∈ N.

(57)

Therefore, admissible values of a with periodic boundary conditions in the x-direction are:

an = −µ2
n = −4n2π2

L2
, n ∈ N. (58)
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3.2.2 Zero flux boundary conditions

The zero flux boundary conditions in the y-direction determine the following boundary value
problem:

Y ′′(y) = bY (y)

Y ′(0) = 0

Y ′(H) = 0,
(59)

where H is the length of the domain in the y-direction (the height of the open cylinder). For
b > 0 only trivial solutions exist. For b = 0, there is again a single solution where Y (y) is
constant. For b < 0, with b = −ν2, solutions follow:

Y (y) = A cos(νy) +B sin(νy)

Y ′(y) = −Aν sin(νy) +Bν cos(νy),
(60)

where A and B are constants. Substitution into the boundary conditions yields:

Y ′(0) = νB = 0

B = 0

Y ′(H) = −νA sin(νH) = 0

sin(νH) = 0

νm =
mπ

H
, m ∈ N.

(61)

Therefore, with zero flux boundary conditions in the y-direction, the following values of b are
admissible:

bm = −ν2m = −m
2π2

H2
, m ∈ N. (62)

3.2.3 Admissible wave numbers

Combining a and b, the admissible wave numbers for periodic boundary conditions in the x-
direction and zero flux boundary conditions in the y-direction are given by:

k2n,m = −(an + bm) = π2

(
4n2

L2
+
m2

H2

)
. (63)

3.3 One parameter bifurcation analysis
Provided at least one admissible wave number exists, the homogeneous steady state becomes
unstable when max(Re(λk)) > 0, with λk as given by Eq 48. To determine how max(Re(λk))
depends on the parameters, the values of k2 for which Re(λk) is maximal can be determined as
previously described (Miura and Maini, 2004). There are two branches of λk:

λk+ = E +
1

2

√
F

λk− = E − 1

2

√
F

E = −1

2
k2(1 +Dv) +

1

2
(fu + gv)

F = (1−Dv)
2k4 − 2(fu − gv)(1−Dv)k

2 + f 2
u − 2fugv + 4fvgu + g2v .

(64)
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Since Re(λk+) ≥ Re(λk−), only λk+ needs to be considered. To find the maximum we take
the derivative of this branch of λkto k2 and set it equal to zero:

dλk+
dk2

= −1

2
(1 +Dv)+

1

2

(1−Dv)
2k2 − (fu − gv)(1−Dv)√

(1−Dv)2k4 − 2(fu − gv)(1−Dv)k2 + f 2
u − 2fugv + 4fvgu + g2v

= 0.

(65)

Solving this equation results in the following relation for k2:

k2 =
−(fu − gv)Dv ± (1 +Dv)

√
−Dvfvgu

Dv(Dv − 1)
. (66)

Since Dv > 1 and fu − gv > 0 for substrate depletion models, and only positive values of k2

are relevant (wave numbers should be real), this relation can be reduced to:

k2 =
−(fu − gv)Dv + (1 +Dv)

√
−Dvfvgu

Dv(Dv − 1)
. (67)

Using Eq 67 and Eq 48, the maximum value of λk can be determined as a function of model
parameters if the Jacobian matrix of the system at the homogeneous steady state is known.
Homogeneous steady states are given in section 2. For the WP model the Jacobian matrix at
the homogeneous steady state is given by:

J =


((n− 2)γ − 3b)u2n0 + (−b− γ)u3n0 + ((n− 1)γ − 3b)un0 − b

((b+ γ)un0 + b)(1 + un0 )2
b+

γun0
1 + un0

((−n+ 2)γ + 3b)u2n0 + (b+ γ)u3n0 + ((−n+ 1)γ + 3b)un0 + b

((b+ γ)un0 + b)(1 + un0 )2
−b− γun0

1 + un0

 .

(68)
The WPT model has the following Jacobian matrix at this steady state:

J =



−

(
((2− n)γ + 3b)

(
σ

ξ

)2n

+ (b+ γ)

(
σ

ξ

)3n

+ ((1− n)γ + 3b)

(
σ

ξ

)n
+ b

)
(ξ + 1)((

σ

ξ

)n
+ 1

)2(
(b+ γ)

(
σ

ξ

)n
+ b

) b+

γ

(
σ

ξ

)n
(
σ

ξ

)n
+ 1

((2− (ξ + 1)n)γ + 3b)

(
σ

ξ

)2n

+ (b+ γ)

(
σ

ξ

)3n

+ ((1− (ξ + 1)n)γ + 3b)

(
σ

ξ

)n
+ b((

σ

ξ

)n
+ 1

)2(
(b+ γ)

(
σ

ξ

)n
+ b

) −b−
γ

(
σ

ξ

)n
(
σ

ξ

)n
+ 1


(69)

3.4 Hopf bifurcations
Hopf bifurcations occur when complex eigenvalues with real parts greater than zero appear. In
this case the real part of the eigenvalues is given by:

Re(λk) = −1

2
k2(1 +Dv) +

1

2
(fu + gv). (70)
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The value of this real part will keep increasing as k2 decreases. Since negative values for k2

don’t make sense, the real part will be maximal for k2 = 0 as long as the complex branch exists
for this value. Therefore, the maximum real part of λk is given by:

max(Re(λk)) =
1

2
(fu + gv). (71)

This expression can be used to make one parameter Hopf bifurcation plots, with max(Re(λk))
plotted against a parameter.

3.5 Two parameter bifurcation analysis
Two parameter bifurcation analysis was performed by repeating a one parameter bifurcation
many times for different values of the second parameter and numerically determining at which
value(s) of the first parameter max(Re(λk)) = 0. To have sufficient sampling points for both
parameters, this process was repeated with the two parameters inverted. This process is the
same for both Turing and Hopf regimes.

4 Local perturbation analysis
LPA is a relatively new technique for investigating the stability of the homogeneous steady
state with respect to an arbitrarily large local perturbation. We will briefly explain it here.
A more detailed overview (Edelstein-Keshet et al., 2013), a practical guide (Holmes et al.,
2015), and a rigorous mathematical analysis (Holmes, 2014) are available elsewhere. LPA
relies on an asymptotic approximation where all rapidly diffusing components are assumed to
be infinitely fast (D → ∞) and all slowly diffusing components are assumed to be immobile
(D → 0). This way, the evolution of a local pulse in a slowly diffusing activator so narrow
that it does not affect global concentrations can be modelled separately from the global level of
that activator and any fast components. This reduces the system of PDEs to a system of ODEs,
with equations for the local concentration of slow components, the global concentration of slow
components and the global concentration of fast components. This system of ODEs can then be
analysed using existing bifurcation software to determine the stability of homogeneous (local
concentration same as global) and heterogeneous (different local and global concentrations)
steady states. Therefore, this method provides similar information to classical LSA (stability
of homogeneous states), in addition to information on where a stable homogeneous state could
be disrupted by a sufficiently large perturbation.

4.1 LPA of the WP model
The LPA system has ODEs for the local (uL) and global concentration (uG) of active GTPase
and the global concentration of inactive GTPase (vG). Since the local perturbation is assumed
narrow enough that it does not affect background levels, the global average GTPase concen-
tration T = uG + vG is conserved. Using this conservation, we eliminated vG, leaving the
following system:

duL
dt

= b(T − uG) + γ
unL

1 + unL
(T − uG)− uL

duG
dt

= b(T − uG) + γ
unG

1 + unG
(T − uG)− uG.

(72)
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Using continuation software from matlab package matcont, we performed a bifurcation
analysis on this system with T as bifurcation parameter (Figure 1). The results revealed three
parameter regimes (disregarding Hopf regimes): (1) a regime outside the outermost fold bifur-
cations of the heterogeneous branch where only a homogeneous state exists, (2) a regime where
stable homogeneous and heterogeneous states coexist and a sufficiently large perturbation could
switch the system from the homogeneous to the heterogeneous state, and (3) a regime within
the two transcritical bifurcations where the homogeneous state is linearly unstable (a Turing
regime). To generate the two-parameter bifurcation plots, we performed further continuations
of the transcritical bifurcations (black crosses) and outermost fold bifurcations (black dots).

Figure 1 also shows a pair of Hopf bifurcations. Stability does not change in these points
and they do not seem to have any effect on the outcome of the simulations of the full PDE
system, so we did not consider them any further. For some of the other models (WPT and WP-
GAP), Hopf bifurcations were found that changed the stability of the heterogeneous curve from
stable to unstable in the region with an unstable homogeneous state. These Hopf bifurcations
correspond to those found with LSA and we performed continuations on them to determine the
Hopf regimes in the two parameter bifurcation plots.

Figure 1: Single parameter bifurcation analysis of the WP LPA system with T as bifurcation parameter and
other parameters at default values. The blue curve represents the homogeneous (global) steady state and the red
curve the heterogeneous (local) steady state. In regime I, only a homogeneous state exists. In regime II, both a
stable homogeneous and heterogeneous steady state exist, so that a sufficiently large perturbation can change the
system from a homogeneous to a heterogeneous state. In regime III (Turing regime), the homogeneous state is
unstable, so that any small perturbation will result in pattern formation. Solid lines: stable states. Dashed lines:
unstable states. Dots: fold bifurcations delimiting the borders of the regime with heterogeneous states. Crosses:
transcritical bifurcations delimiting the unstable part of the homogeneous branch (Turing regime). Stars: Hopf
bifurcations.

4.2 LPA of the MI model
The LPA method was performed on the MI model as previously described (Holmes and Edelstein-
Keshet, 2016). The full LPA ODE system has local and global concentrations for active GTP-
ase 1 and 2 (u1,L, u1,G, u2,L, and u2,G) and global concentrations for inactive GTPase 1 and
2 (v1,G, and v2,G). The global average concentration of GTPase 1 (T1 = u1,G + v1,G) and 2
(T2 = u2,G + v2,G) are conserved, allowing us to eliminate v1,G, and v2,G. This leads to the
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following system of ODEs:

du1,L
dt

= b1(T1 − u1,G) + γ1
1

1 + un2,L
(T1 − u1,G)− u1,L

du1,G
dt

= b1(T1 − u1,G) + γ1
1

1 + un2,G
(T1 − u1,G)− u1,G

du2,L
dt

= b2(T2 − u2,G) + γ2
1

1 + un1,L
(T2 − u2,G)− u2,L

du2,G
dt

= b2(T2 − u2,G) + γ2
1

1 + un1,G
(T2 − u2,G)− u2,G.

(73)

A one parameter bifurcation analysis with T1 as bifurcation parameter and T2 = 5, has a
similar result as for the WP model with the same three regimes as for the WP model (Figure 2).
We made two parameter bifurcation plots as before by continuation of the bifurcation points
delimiting these regimes.

Figure 2: Single parameter bifurcation analysis of the MI LPA system with T1 as bifurcation parameter, T2 = 5,
and other parameters at default values. The blue curve represents the homogeneous (global) steady state and the
red curve the heterogeneous (local) steady state. Solid lines: stable states. Dashed lines: unstable states. Dots:
fold bifurcations delimiting the borders of the regime with heterogeneous states. Crosses: transcritical bifurcations
delimiting the unstable part of the homogeneous branch (Turing regime).

4.3 LPA of the WPT model
The full LPA ODE system of the WPT model has equations for local and global concentra-
tions of active GTPase (u1,L and u1,G respectively) and for the global concentration of inactive
GTPase (v1,G):

duL
dt

= bvG + γ
unL

1 + unL
vG − uL − ξuL

duG
dt

= bvG + γ
unG

1 + unG
vG − uG − ξuG

dvG
dt

= −bvG − γ
unG

1 + unG
vG + uG + σ.

(74)

Since this model is not mass conserved, none of these equations can be eliminated. A one
parameter bifurcation analysis with σ as bifurcation parameter again reveals the same three
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regimes as for the WP model (Figure 3). We made two parameter bifurcation plots in the same
way as before.

Figure 3: Single parameter bifurcation analysis of the WPT LPA system with σ as bifurcation parameter and
other parameters at default values. The blue curve represents the homogeneous (global) steady state and the red
curve the heterogeneous (local) steady state. Solid lines: stable states. Dashed lines: unstable states. Dots: fold
bifurcations delimiting the borders of the regime with heterogeneous states. Crosses: transcritical bifurcations
delimiting the unstable part of the homogeneous branch (Turing regime). Stars: Hopf bifurcations.

4.4 LPA of the MIT model
The full LPA ODE system of the MIT has equations for local and global concentrations of
active GTPase 1 and 2 (u1,L, u1,G, u2,L, and u2,G) and global concentrations of inactive GTPase
1 and 2 (v1,G, and v2,G):

du1,L
dt

= b1v1,G + γ1
1

1 + un2,L
v1,G − u1,L − ξ1u1,L

du1,G
dt

= b1v1,G + γ1
1

1 + un2,G
v1,G − u1,G − ξ1u1,G

dv1,G
dt

= −b1v1,G − γ1
1

1 + un2,G
v1,G + u1,G + σ1

du2,L
dt

= b2v2,G + γ2
1

1 + un1,L
v2,G − u2,L − ξ2u2,L

du2,G
dt

= b2v2,G + γ2
1

1 + un1,G
v2,G − u2,G − ξ2u2,G

dv2,G
dt

= −b2v2,G − γ2
1

1 + un1,G
v2,G + u2,G + σ2.

(75)

Since this model is not mass conserved, none of these equations can be eliminated. A one
parameter bifurcation analysis with σ1 as bifurcation parameter and σ2 = 0.2 again reveals the
same three regimes as for the WP model (Figure 4). We made two parameter bifurcation plots
in the same way as before.
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Figure 4: Single parameter bifurcation analysis of the MIT LPA system with σ1 as bifurcation parameter, σ2 =
0.2, and other parameters at default values. The blue curve represents the homogeneous (global) steady state and
the red curve the heterogeneous (local) steady state. Solid lines: stable states. Dashed lines: unstable states. Dots:
fold bifurcations delimiting the borders of the regime with heterogeneous states. Crosses: transcritical bifurcations
delimiting the unstable part of the homogeneous branch (Turing regime). Stars: Hopf bifurcations.

4.5 LPA of the WPGAP model
We performed LPA both with fast diffusing and slowly diffusing active GAP. For fast diffusing
active GAP, the LPA system has ODEs for the local and global concentration of active GTPase
(uL and uG respectively) and the global concentration of inactive GTPase, active GAP, and
inactive GAP (vG, GG, and gG respectively). The global average GTPase concentration T =
uG + vG and GAP concentration Tg = GG + gG are conserved. Using these conservations, we
eliminated vG and gG, leaving the following system:

duL
dt

= b(T − uG) + γ
unL

1 + unL
(T − uG)− uL −GG · uL

duG
dt

= b(T − uG) + γ
unG

1 + unG
(T − uG)− uG −GG · uG

dGG

dt
= cuG(Tg −GG)− dGG.

(76)

For slowly diffusing active GAP, an additional local concentration of active GAP (GL) has to
be added to the LPA system:

duL
dt

= b(T − uG) + γ
unL

1 + unL
(T − uG)− uL −GL · uL

duG
dt

= b(T − uG) + γ
unG

1 + unG
(T − uG)− uG −GG · uG

dGL

dt
= cuL(Tg −GG)− dGL

dGG

dt
= cuG(Tg −GG)− dGG.

(77)

A one parameter bifurcation analysis with T as bifurcation parameter again reveals the same
three regimes for the system with fast active GAP as for the WP model (Figure 5). For the
system with slow active GAP there is no heterogeneous state at default Tg. For lower values
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of Tg, the three regimes can still be found for this system (Figure 5). We made two parameter
bifurcation plots in the same way as before.

Figure 5: Single parameter bifurcation analysis of the WPGAP LPA system with T as bifurcation parameter and
other parameters at default values. Left: LPA system for fast active GAP. Right: LPA system for slow active
GAP (with Tg = 0.5). The blue curve represents the homogeneous (global) steady state and the red curve the
heterogeneous (local) steady state. Solid lines: stable states. Dashed lines: unstable states. Dots: fold bifurcations
delimiting the borders of the regime with heterogeneous states. Crosses: transcritical bifurcations delimiting the
unstable part of the homogeneous branch (Turing regime).

4.6 LPA of the MIGAP1 model
Based on our results for the WPGAP model, we performed LPA on the MI models with GAPs
only for fast diffusing GAPs. The full LPA ODE system has local and global concentrations
for active GTPase 1 and 2 (u1,L, u1,G, u2,L, and u2,G) and global concentrations for inactive
GTPase 1 and 2 (v1,G, and v2,G) and active and inactive GAP (G1,G and g1,G). The global
average concentration of GTPase 1 (T1 = u1,G + v1,G) and 2 (T2 = u2,G + v2,G) and GAP
(Tg,1 = G1,G + g1,G) are conserved, allowing us to eliminate v1,G, v2,G, and g1,G. This leads to
the following system of ODEs:

du1,L
dt

= b1(T1 − u1,G) + γ1
1

1 + un2,L
(T1 − u1,G)− u1,L −G1,G · u1,L

du1,G
dt

= b1(T1 − u1,G) + γ1
1

1 + un2,G
(T1 − u1,G)− u1,G −G1,G · u1,G

du2,L
dt

= b2(T2 − u2,G) + γ2
1

1 + un1,L
(T2 − u2,G)− u2,L

du2,G
dt

= b2(T2 − u2,G) + γ2
1

1 + un1,G
(T2 − u2,G)− u2,G

dG1,G

dt
= c1u1,G(Tg,1 − g1,G)− d1G1,G.

(78)

A one parameter bifurcation analysis with T1 as bifurcation parameter and T2 = 5 again reveals
the same three regimes as for the WP model (Figure 6). We made two parameter bifurcation
plots in the same way as before.
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Figure 6: Single parameter bifurcation analysis of the MIGAP1 LPA system with T1 as bifurcation parameter,
T2 = 5, and other parameters at default values. The blue curve represents the homogeneous (global) steady state
and the red curve the heterogeneous (local) steady state. Solid lines: stable states. Dashed lines: unstable states.
Dots: fold bifurcations delimiting the borders of the regime with heterogeneous states. Crosses: transcritical
bifurcations delimiting the unstable part of the homogeneous branch (Turing regime). Stars: Hopf bifurcations.

4.7 LPA of the MIGAP2 model
The full LPA ODE system has local and global concentrations for active GTPase 1 and 2 (u1,L,
u1,G, u2,L, and u2,G) and global concentrations for inactive GTPase 1 and 2 (v1,G, and v2,G) and
acitve and inactive GAP 1 and 2 (G1,G, g1,G, G2,G, and g2,G). The global average concentration
of GTPase 1 (T1 = u1,G + v1,G) and 2 (T2 = u2,G + v2,G) and GAP 1 (Tg,1 = G1,G + g1,G) and
2 (Tg,2 = G2,G + g2,G) are conserved, allowing us to eliminate v1,G, v2,G, g1,G, and g2,G. This
leads to the following system of ODEs:

du1,L
dt

= b1(T1 − u1,G) + γ1
1

1 + un2,L
(T1 − u1,G)− u1,L −G1,G · u1,L

du1,G
dt

= b1(T1 − u1,G) + γ1
1

1 + un2,G
(T1 − u1,G)− u1,G −G1,G · u1,G

du2,L
dt

= b2(T2 − u2,G) + γ2
1

1 + un1,L
(T2 − u2,G)− u2,L −G2,G · u2,L

du2,G
dt

= b2(T2 − u2,G) + γ2
1

1 + un1,G
(T2 − u2,G)− u2,G −G2,G · u2,G

dG1,G

dt
= c1u1,G(Tg,1 −G1,G)− d1G1,G

dG2,G

dt
= c2u2,G(Tg,2 −G2,G)− d2G2,G.

(79)

A one parameter bifurcation analysis with T1 as bifurcation parameter and T2 = 20 again
reveals the same three regimes as for the WP model (Figure 7). We made two parameter
bifurcation plots in the same way as before.
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Figure 7: Single parameter bifurcation analysis of the MIGAP2 LPA system with T1 as bifurcation parameter,
T2 = 20, and other parameters at default values. The blue curve represents the homogeneous (global) steady state
and the red curve the heterogeneous (local) steady state. Solid lines: stable states. Dashed lines: unstable states.
Dots: fold bifurcations delimiting the borders of the regime with heterogeneous states. Crosses: transcritical
bifurcations delimiting the unstable part of the homogeneous branch (Turing regime).

5 WPT model with degradation of inactive GTPase
If the degradation term from the WPT model is changed from degradation of active GTPase to
degradation of inactive GTPase, the full dimension-carrying system is given by:

∂ũ

∂t̃
= b̃ṽ + γ̃

ũn

Kn + ũn
ṽ − δũ+Du∇2ũ

∂ṽ

∂t̃
= −b̃ṽ − γ̃ ũn

Kn + ũn
ṽ + δũ+ σ̃ − ξ̃ṽ + D̃v∇2ṽ.

(80)

After non-dimensionalisation, the following system is obtained:

∂u

∂t
= bv + γ

un

1 + un
v − u+∇2u

∂v

∂t
= −bv − γ un

1 + un
v + u+ σ − ξv +Dv∇2v,

(81)

with dimensionless variables:

u =
ũ

K
, v =

ṽ

K
, t = δt̃, x =

x̃
√
δ√

Du

, y =
ỹ
√
δ√

Du

, (82)

and scaled parameters:

b =
b̃

δ
, γ =

γ̃

δ
, ξ =

ξ̃

δ
, σ =

σ̃

δK
, Dv =

D̃v

Du

. (83)

The corresponding LPA system is:

duL
dt

= bvG + γ
unL

1 + unL
vG − uL

duG
dt

= bvG + γ
unG

1 + unG
vG − uG

dvG
dt

= −bvG − γ
unG

1 + unG
vG + uG + σ − ξvG.

(84)
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A one parameter bifurcation analysis with σ as bifurcation parameter reveals a bistable regime
with an unstable homogeneous state surrounded by two stable homogeneous steady states
(Fig 8). The heterogeneous steady states follow the homogeneous ones so closely that the
order of the curves could not be resolved numerically. Therefore, we further studied the be-
haviour of this system with a numerical simulation starting somewhere in the middle of the
unstable part of the homogeneous branch. In this simulation, many clusters of active GTPase
initially appear and start growing. However, they keep growing until they fill the domain and a
new homogeneous state is reached (Fig 9), indicating that the unusual heterogeneous branch in
the LPA plot does not represent a reachable heterogeneous state.

Figure 8: Single parameter bifurcation analysis of the WPT LPA system with degradation of inactive GTPase with
σ as bifurcation parameter and other parameters at default values. The blue curve represents the homogeneous
(global) steady state and the red curve the heterogeneous (local) steady state. Inset shows details around uL = 0.5.
Solid lines: stable states. Dashed lines: unstable states. Dots: fold bifurcations delimiting the borders of the regime
with heterogeneous states. Crosses: transcritical bifurcations delimiting the unstable part of the homogeneous
branch (Turing regime). Stars: Hopf bifurcations.

Figure 9: Transient active GTPase concentrations ([GTPase]) from simulations of the WPT model with degrada-
tion of the inactive form of GTPase. Simulation conditions were as described in the main text for the WPT model,
with σ = 0.1.

Attempts with different parameters in the LPA system did not yield any bifurcation plots
with clearly reachable heterogeneous states, indicating that it is at the vary least easier to obtain
spontaneous pattern formation when degradation of the active form occurs. This suggests some
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removal of active GTPase (e.g. by membrane recycling) is important for pattern formation
mechanisms with broken mass conservation.

6 Derivation of ODE models

6.1 Basic ODE model
The homogeneous WP system is bistable, with points within the cluster being in the high steady
state and points outside the cluster in the low steady sate (Mori et al., 2008). Similarly, for the
MI model, the area outside a cluster of GTPase 1 is dominated by GTPase 2 which promotes
inactivation of GTPase 1. This property results in a relatively flat concentration profile inside
clusters. We approximate this by a single, constant (high) concentration inside clusters and a
single, constant (low) concentration outside clusters (Fig 10).

Figure 10: Cartoon of cluster representation used in the ODE model. The solid black line represents a profile of
the active GTPase concentration (u) as obtained with the PDE model along a 1D cross-section in direction x. The
dashed green line indicates a discrete cluster approximation based on this profile.

Under this approximation, cluster area is proportional to the amount of (active) GTPase
hc,n in cluster n and cluster circumference is proportional to hηc,n with 0 < η < 1, depending
on cluster shape (and system dimensionality). For circular clusters, η = 1

2
because the area is

directly proportional to the square root of the circumference. In addition, we assume diffusion
of the inactive form is sufficiently fast that all clusters effectively draw from a single pool of
inactive GTPase. Due to the constant area of the membrane, the constant inactive GTPase
concentration v is directly proportional to the total amount of inactive GTPase hp. Since the
concentration of active GTPase in the clusters is assumed constant (u = uc), the interaction
function f of the WP model can be simplified:

f(u, v) = bv + γ
un

1 + un
v − u =

(
b+ γ

unc
1 + unc

)
v − uc = c1hp − c2, (85)

where c1 and c2 are constants. Similarly, interaction function f of the MI model can be simpli-
fied to obtain the same expression if we assume levels of active GTPase outside clusters to also
be approximately constant:

f(ui, vi, uj) = bivi + γi
1

1 + unj
vi − ui =

(
bi + γi

1

1 + unj,c

)
vi − ui,c = c1hp,i − c2. (86)
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Since these functions describe the change of concentrations and we are interested in cluster size,
we have to integrate this expression across the area Ac,n of the cluster, which is proportional to
hc,n. Because inactive GTPase concentration v is homogeneous, this integral is easily solved:∫∫

Ac,n

(c1hp − c2)dAc,n = (c1hp − c2)
∫∫

Ac,n

dAc,n = c1Ac,nhp − c2Ac,n = αhc,nhp − δhc,n,

(87)
where α and δ are constants. These terms describe changes in cluster sizes due to the interaction
functions.

In addition to these terms, we consider loss of active GTPase through diffusion across the
boundary of the cluster, where we assume it is immediately converted into the inactive form
because of the low steady state of the active form outside the cluster. This results in an extra
inactivation term proportional to the circumference of the cluster hηc,n. Combining this term
(using proportionality constant β) with the terms derived from the interaction function results
in the basic ODE model:

dhc,n(t)

dt
= αhc,n(t)hp(t)− βhc,n(t)η − δhc,n(t)

dhp(t)

dt
= −αhp(t)

N∑
j=1

hc,j(t) + β
N∑
j=1

hc,j(t)
η + δ

N∑
j=1

hc,j(t).
(88)

6.2 Compartmentalised ODE model
We account for the fact that a cluster can only incorporate inactive GTPase from its vicinity
by giving each cluster its own local compartment containing an amount of inactive GTPase
hp,n. We can greatly simplify computations by assuming that all compartments have equal size
and are connected to all other compartments with equally large interfaces. This is a reasonable
approximation for the question we are most interested in: do small differences in cluster size
increase (polarisation) or decrease (stable coexistence)? Under this approximation, diffusive
fluxes of inactive GTPase become constant rates of exchange between compartments.

Upon adding a production term to the inactive form and degradation terms to both the active
and inactive forms, the system of PDEs reads:

∂u

∂t
= f(u, v)− ξu

∂v

∂t
= −f(u, v) + σ − ξpv.

(89)

To obtain the terms of the ODE approximation, the extra terms can be treated as done before
for function f . Since compartments have a constant size, concentration v in each compartment
is proportional to hp,n. In clusters, concentration u is still constant. Dropping function f for
the moment, we get:

∂u

∂t
= −ξuc = −c3

∂v

∂t
= σ − c4hp,n,

(90)

where c3 and c4 are constants. To obtain expressions for hc,n and hp,n, we integrate across the
cluster area Ac,n (for degradation of active form), or the compartment area Ap,n (for production
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and degradation of inactive form):

dhc,n
dt

=

∫∫
Ac,n

−c3dAc,n = −c3Ac,n = −ξ̃hc,n

dhp,n
dt

=

∫∫
Ap,n

(σ − c4hp,n)dAp,n = σAp,n − c4Ap,nhp,n = σ̃ − ξ̃php,n,
(91)

where ξ̃, σ̃, and ξ̃p are constants. Adding these terms and a constant exchange rate φ to the
expression we already found in the previous section (and dropping the tildes) we obtain the
compartmentalised ODE system:

dhc,n(t)

dt
= αhc,n(t)hp,n(t)− βhc,n(t)η − δhc,n(t)− ξhc,n(t)

dhp,n(t)

dt
= σ − αhp,n(t)hc,n(t) + βhc,n(t)η + δhc,n(t)− ξphp,n(t) + φ

N∑
j=1

(hp,j − hp,n).

(92)

6.3 ODE model with GAP feedback
If we write Gc,n for the total amount of active GAP in cluster n, then the concentration of
active GAP in that cluster is proportional to Gc,n/hc,n. Since hc,n is proportional to both the
area of and the total amount of GTPase in cluster n, the GTPase concentration in that cluster is
proportional to hc,n/hc,n (constant). Since we modelled GAP-based GTPase inactivation pro-
portional to the product of GAP and GTPase concentrations, the rate at which GAPs reduce
the total amount of GTPase in cluster n is proportional to Gc,n/hc,n · hc,n/hc,n · hc,n = Gc,n.
Loss of GAPs from the cluster by diffusion is proportional to the GAP concentration and the
circumference of the cluster and therefore to Gc,n/hc,n · hηc,n = hη−1c,n Gc,n. GAPs lost by dif-
fusion are assumed to be inactivated outside the cluster. In addition, GAPs are inactivated
inside the cluster at a constant rate, so proportional to the GAP concentration Gc,n/hc,n. This
makes the change in the amount of active GAP due to constant inactivation proportional to
Gc,n/hc,n · hc,n = Gc,n. GTPase-dependent GAP activation was modelled proportional to the
active GTPase and inactive GAP concentrations in the PDE model. Therefore, the rate at which
GTPase inactivates GAP in a cluster is proportional to the (constant) GTPase concentration and
the non-cluster inactive GAP concentration Gp (in a constant area). This results in a total GAP
activation proportional to hc,n/hc,n · Gp · hc,n = hc,nGp. Combining these relations with the
relevant rate constants results in the system of the ODE model with GAP feedback:

dhc,n(t)

dt
= αhc,n(t)hp(t)− βhc,n(t)η − δhc,n(t)− εGc,n(t)

dhp(t)

dt
= −αhp(t)

N∑
j=1

hc,j(t) + β
N∑
j=1

hc,j(t)
η + δ

N∑
j=1

hc,j(t) + ε
N∑
j=1

Gc,j(t)

dGc,n(t)

dt
= γhc,n(t)Gp(t)− δgGc,n(t)− ζhc,n(t)η−1Gc,n

dGp(t)

dt
= −γGp(t)

N∑
j=1

hc,j(t) + δg

N∑
j=1

Gc,j(t) + ζ
N∑
j=1

hc,j(t)
η−1Gc,j(t).

(93)
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7 WPT model with degradation of both active and inactive
GTPase

Since degradation of inactive GTPase only does not seem to yield any stable patterns, we ask if
some degree of degradation of inactive GTPase can be tolerated as long as there is also degrada-
tion of active GTPase. Simulations with the compartmentalised ODE model with degradation
of both active and inactive forms suggests that patterns of stably coexisting GTPase clusters are
indeed possible (Fig 11A). To confirm this, we consider the WPT model is with degradation of
both active and inactive GTPase. The full dimension-carrying system is given by:

∂ũ

∂t̃
= b̃ṽ + γ̃

ũn

Kn + ũn
ṽ − δũ− ξ̃ũ+Du∇2ũ

∂ṽ

∂t̃
= −b̃ṽ − γ̃ ũn

Kn + ũn
ṽ + δũ+ σ̃ − ξ̃pṽ + D̃v∇2ṽ.

(94)

After non-dimensionalisation, the following system is obtained:

∂u

∂t
= bv + γ

un

1 + un
v − u− ξu+∇2u

∂v

∂t
= −bv − γ un

1 + un
v + u+ σ − ξpv +Dv∇2v,

(95)

with dimensionless variables:

u =
ũ

K
, v =

ṽ

K
, t = δt̃, x =

x̃
√
δ√

Du

, y =
ỹ
√
δ√

Du

, (96)

and scaled parameters:

b =
b̃

δ
, γ =

γ̃

δ
, ξ =

ξ̃

δ
, ξp =

ξ̃p
δ
, σ =

σ̃

δK
, Dv =

D̃v

Du

. (97)

The corresponding LPA system is:

duL
dt

= bvG + γ
unL

1 + unL
vG − uL − ξuL

duG
dt

= bvG + γ
unG

1 + unG
vG − uG − ξuG

dvG
dt

= −bvG − γ
unG

1 + unG
vG + uG + σ − ξpvG.

(98)

A one parameter bifurcation analysis with σ as bifurcation parameter reveals three parameter
regimes: a homogeneous regime, a Turing regime, and a regime where patterning may be in-
duced by a sufficiently strong perturbation (Fig 11B). A simulation in the Turing regime reveals
that this model can indeed yield a pattern of multiple stably coexisting clusters (Fig 11C).

8 Quasi steady state approximation for GAPs in ODE model
Due to mass conservation, the equation for the amount of (inactive) GAP Gp outside the cluster
is redundant. Using the conservation relation Tg = Gp +

∑N
j=1Gc,j , this equation can be
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Figure 11: Coexistence can be found even with degradation of both active and inactive forms. A: Simulation of
compartmentalised ODE model with production and degradation. Parameters were as in main text, with φ = 1
and ξ = ξp = 0.1. B: Single parameter bifurcation analysis of the WPT model with an additional degradation
of inactive form at the same rate as the active form. Colours and symbols are as in Fig 8. C: Profile of steady
active GTPase concentrations ([GTPase]) from simulations of the WPT model with degradation of both the active
and inactive form of GTPase. Simulation conditions were as described in the main text for the WPT model, with
σ = 0.155 and a degradation rate of 0.1 for both active and inactive forms.

removed from the ODE system, leaving for GAP dynamics only the equations for Gc,n:

dGc,n(t)

dt
= γhc,n(t)

(
Tg −

N∑
j=1

Gc,j(t)

)
− ζGc,n(t)hc,n(t)η−1 − δgGc,n(t). (99)

In the case where GAP dynamics is fast compared to GTPase dynamics, we can take a quasi
steady state approximation for the amounts of GAP. This results in:

Gc,n =
γhc,n(t)

ζhc,n(t)η−1 + δg

(
Tg −

N∑
j=1

Gc,j

)
. (100)

To obtain an expression for
∑N

j=1Gc,j , we sum Gc,n over all clusters:

N∑
j=1

Gc,j =
N∑
n=1

Gc,n =
N∑
n=1

γhc,n(t)

ζhc,n(t)η−1 + δg

(
Tg −

N∑
j=1

Gc,j

)

=

(
Tg −

N∑
j=1

Gc,j

)
N∑
n=1

γhc,n(t)

ζhc,n(t)η−1 + δg
.

(101)

Solving for
∑N

j=1Gc,j and (trivially) changing summation indices gives:

N∑
j=1

Gc,j = Tg

∑N
j=1

hc,j(t)

hc,j(t)η−1 + δg/ζ

ζ/γ +
∑N

j=1

hc,j(t)

hc,j(t)η−1 + δg/ζ

(102)
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Substituting this expression into Eq 100 gives:

Gc,n =
γhc,n(t)

ζhc,n(t)η−1 + δg

Tg − Tg
∑N

j=1

hc,j(t)

hc,j(t)η−1 + δg/ζ

ζ/γ +
∑N

j=1

hc,j(t)

hc,j(t)η−1 + δg/ζ


= Tg

γhc,n(t)

ζhc,n(t)η−1 + δg
· ζ/γ

ζ/γ +
∑N

j=1

hc,j(t)

hc,j(t)η−1 + δg/ζ

= Tg

hc,n(t)

hc,n(t)η−1 + δg/ζ

ζ/γ +
∑N

j=1

hc,j(t)

hc,j(t)η−1 + δg/ζ

.

(103)

We now have an expression for Gc,n that only depends on hc,n and other hc,i. With this we can
close the equations for hc,n in terms of hc.
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