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SUMMARY

Complement-mediated cytotoxicity may act as a
selective pressure for tumor overexpression of com-
plement regulators. We hypothesize that the same
selective pressure could lead to complement alter-
ations at the genetic level. We find that, when
analyzed as a pathway, mutations in complement
genes occur at a relatively high frequency and are
associated with changes in overall survival across a
number of cancer types. Analysis of pathways ex-
pressed in patients with complement mutations
that are associated with poor overall survival reveals
crosstalk between complement and hypoxia in colo-
rectal cancer. The importance of this crosstalk is
highlighted by two key findings: hypoxic signaling
is increased in tumors harboring complement muta-
tions, and hypoxic tumor cells are resistant to com-
plement-mediated cytotoxicity due, in part, to hyp-
oxia-induced expression of complement regulator
CD55. The range of strategies employed by tumors
to dysregulate the complement system testifies to
the importance of this pathway in tumor progression.

INTRODUCTION

The complement system is composed of soluble and cell surface

proteins (Reis et al., 2018). In the extracellular space, activation

of complement components by proteolytic cleavage leads to

the formation of downstream effectors that act as a first line of

defense against pathogenic microorganisms or ‘‘altered’’ host

cells (Ricklin et al., 2010). Since uncontrolled activation of the

complement system is associated with cell lysis/cytotoxicity

and can result in normal tissue toxicity, the pathway is tightly

controlled by membrane-bound regulators such as CD35 (com-

plement receptor type 1), CD46 (membrane cofactor protein),

CD55 (complement decay accelerating factor), and CD59 (pro-

tectin) (Schmidt et al., 2016).
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With respect to cancer, complement has been hypothesized

to play a role in immunosurveillance through complement-medi-

ated attack of incipient tumors (Pio et al., 2013). Indeed, the use

of complement-evasion strategies such as increased tumor

expression of complement regulators has been proposed as in-

direct evidence supporting an anti-tumor role for complement

during tumorigenesis (Gorter and Meri, 1999). Elevated expres-

sion of complement regulators suggests a selective pressure in

favor of protection against complement-mediated cytotoxicity

(CMC) (Spiller et al., 2000). The detailed mechanisms underlying

both global dysregulation of the complement system as well as

altered tumor expression of specific complement regulators,

however, have largely remained unexplored to date (Pio et al.,

2013).

The existence of complement mutations across cancer types

could provide additional evidence to support a role for comple-

ment in tumor progression. In cancer, the study of individual

genes or even mutations in individual genes, has been sug-

gested to be less important than the action of gene combinations

(Leiserson et al., 2015). These gene combinations can work

together to provide a survival advantage by converging on

particular ‘‘molecular networks’’ (Hofree et al., 2013). As the

complement system is a complex set of over 50 proteins

converging on functional networks, interrogation of mutations

across cancer types and within the whole pathway is likely to

yield the most insights about the relevance of any potential alter-

ations (Ricklin et al., 2010).

The Cancer GenomeAtlas (TCGA) was developedwith the aim

to understand cancer by acquiring genome-wide information on

thousands of patients (Hoadley et al., 2018). Exome sequencing

efforts, including TCGA datasets, have also recently proved use-

ful in finding patient-specific tumor-derived antigens (neoanti-

gens) arising as a consequence of tumor-specific mutations

(Rooney et al., 2015). Tumor neoantigens have gained increasing

attention due to the realization that they likely contribute to

the clinical activity observed for emerging immunotherapies.

Neoantigen load is therefore considered both as a biomarker

for cancer immunotherapies as well as a means to develop ther-

apies that enhance neoantigen T cell reactivity (Schumacher and

Schreiber, 2015).
ts 25, 3721–3732, December 26, 2018 ª 2018 The Author(s). 3721
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Figure 1. Complement System Mutations

Are Prevalent across Multiple Cancer Types

See also Figure S1.

(A) Frequency of mutations, deletions, amplifica-

tions, and multiple alterations in any complement

gene are shown for all of 32 cancers analyzed by

TCGA. Figure was adapted from http://www.

cBioportal.org (Cerami et al., 2012; Gao et al.,

2013). Cancer type abbreviations are found in

STAR Methods.

(B) A modified KS test was performed on TCGA

data to interrogate whether mutations in comple-

ment genes as a whole occur at a higher rate than

mutations on any other gene in the genome. KS

enrichment �log10 q-value for different cancer

types is shown in the bar graph. The dotted line

represents significance limit. The asterisk (*) rep-

resents significant at q < 0.1, �log10 q > 1.

(C) Graph shows Stouffer combined p value for all

cancers analyzed by KS test as in Figure 1B above

(referred to as PANCAN) and PANCAN without

including SKCM.

(D) Table showing the complement genes shown

to be significantly mutated by MutSig2CV analysis

(q < 0.1) when cancers significant by KS test were

queried.
By taking advantage of expanded TCGA datasets, we have un-

covered previously unappreciated mutations in the complement

system. These include a number of potential ‘‘driver’’ mutations

aswell as neoantigens derived from thesemutations. Our analysis

of pathways expressed in patients with complement mutations

associated with poor prognostic outcomes reveals crosstalk be-

tween the complement systemand hypoxia. In the context of can-

cer biology, hypoxia refers to the low oxygen tensions frequently

found in solid tumors (Hammond et al., 2014). Hypoxia typically

arises as a consequence of poor perfusion coupled with high tu-

mor proliferation rates, leading to an imbalance in oxygen supply

and demand (Bussink et al., 2003). Importantly, hypoxia corre-

lates with negative patient prognosis and reduced efficacy of

various forms of cancer treatment (Bussink et al., 2003). The

negative prognostic outcome associated with hypoxia stems, at

least in part, from hypoxia-induced pro-survival gene expression

changes, including those driven by transcription factors known as
3722 Cell Reports 25, 3721–3732, December 26, 2018
hypoxia-inducible factors (HIFs) (Pugh

and Ratcliffe, 2003). The importance of

hypoxia-related gene expression changes

is illustrated by the extensive interest in

the development of hypoxia signatures

derived from analyzing gene expression

changes either in cancer cell lines

exposed to normoxia and hypoxia in vitro

and/or validated in clinical samples (Harris

et al., 2015). These hypoxia signatures

have been used to identify new hypoxia-

induced genes and pathways associated

with hypoxic signaling. Furthermore, these

hypoxia signatures could be used clini-

cally for patient stratification and to assess
patient prognosis (Buffa et al., 2010; Chi et al., 2006; Harris et al.,

2015; Winter et al., 2007). We have used the analysis of a number

of hypoxia signatures to reveal associations between comple-

ment dysregulation and hypoxia in colorectal cancer. Importantly,

those tumors with dysregulated complement through either pro-

tein or genetic alterations are associated with the worse prog-

nostic outcome, highlighting the clinical relevance of these

findings.

RESULTS

Complement Mutations Are Prevalent across Multiple
Cancer Types
Using TCGA, we found that mutations and copy number alter-

ations (CNAs) in complement system genes occurred in all tumor

types queried (Figure 1A). We noted that the majority of cancer

types not only presented dysregulation at the genetic level but

http://www.cBioportal.org
http://www.cBioportal.org
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Figure 2. Complement System Mutations Are Associated with Changes in Overall Survival

(A) Pie chart representing the number of significant (p < 0.05) Hotnet2 networks obtained per dataset queried. 79.7% of datasets have at least one network. An

example of a network is shown to the right of the pie chart.

(B) Heatmap showing TCGA cancers with mutations in any gene in the subsets shown and their association with overall survival. q-value < 0.1.

(C) Kaplan-Meier (KM) curve for overall survival of COADREAD patients with mutations in any component gene versus patients without mutations in any of these

genes (q = 0.00996).

(D) Heatmap showing TCGA cancers with amplifications in any gene in the subsets shown and their association with overall survival. q-value < 0.1.

(legend continued on next page)
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alsopresented ‘‘multiple alterations’’ includingmRNAexpression

changes (shown in gray in Figure 1A). We decided to assess

the importance of these alterations with respect to changes

known to have an impact on mRNA expression such as CNA

and DNA methylation. We extracted information on correlation

analysis betweenmRNAexpression andCNAandmRNAexpres-

sion and DNA methylation changes in complement genes in

COADREAD (provided as an example in Tables S1A and S1B).

Thesedata indicate thatCNAsof 7 complement genes are indeed

correlated with mRNA expression changes (correlation coeffi-

cients ranging from 0.1767 to 0.4998). Furthermore, methylation

changes of 40 complement genes are also significantly corre-

lated with mRNA expression changes (correlation coefficients

ranging from �0.5562 to 0.3180), suggesting that methylation

and CNA could alter complement pathway activation through

mechanisms independent of alterations in protein structure.

To assess whether mutations (single-nucleotide variants

[SNVs]) were occurring at a rate above background, we per-

formed a modified Kolmogorov-Smirnov (KS) test on TCGA

data across cancer types. KS test analysis revealed that muta-

tions in complement system genes, as a group, occurred at a

rate above background in 8 of the cancers analyzed (Figure 1B;

Table S1C). A pan-cancer meta-analysis of the KS test results

maintained significance even without melanoma, which had

an individually high rate of complement mutations (Figure 1C;

Table S1C).

In order to evaluate the potential functional impact of comple-

ment mutations, we extracted MutSig2CV analysis for cancer

drivers on the significant tumor types by KS test analysis. Drivers

promote tumor progression rather than just being a by-product

of the high genomic instability found in tumors (Babur et al.,

2015). Interestingly, we found that, across a number of cancer

types, several complement mutations scored as significant

(Figure 1D; Table S1D).

Predicted Driver Complement Mutations Give Rise to
Neoantigens and Are Associated with Altered Immune
Infiltration Profiles
Given the rising interest in the role of T cell-mediated responses

mounted to tumor-derived antigens, we asked whether any of

the mutations predicted to be drivers by MutSig2CV analysis

could also give rise to neoantigens with sufficiently strong

predicted binding affinities (<500 nM) by NetMHCpan (Schu-

macher and Schreiber, 2015). Interestingly, we found 43 out of

the 68 peptides tested were found to be predicted true neoanti-

gens (Table S1E).We collapsedmutations by amino acid change

and counted them as a single event if they were predicted to bind

the same allele and still found 64.10% predicted true neoanti-

gens (Table S1E). To assess the relevance of the predicted bind-

ing affinities for complement mutation-derived neoantigens in

comparison with frequently mutated cancer drivers, we analyzed

an equivalent number of peptides derived from mutations in

three driver genes in colorectal cancer as assessed by Mut-
(E) KM curve for overall survival of SKCM patients with amplifications in any

(q = 0.07377).

(F) Heatmap showing TCGA cancers with deletions in any gene in the subsets sh

(G) KM curve for overall survival of LGG patients with deletions in any regulator g
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Sig2CV (APC, TP53, and ARID1A). We found no predicted

neoantigens from APC, TP53, and ARID1A with binding affin-

ity <500 nM in colorectal cancer even when an expanded list

of peptides (equivalent to the total number of complement muta-

tion-derived peptides) was analyzed (Figure S1A; Tables S1F–

S1H). The low binding affinity occurred despite the fact that

the majority of peptides were actually predicted as true neoanti-

gens. We further extended these analyses to include LDH1,

the most significant MutSig2CV gene identified for lower-grade

glioma (LGG) (another cancer type with MutSig2CV significant

complement mutations). These analyses indicated that no

significant predicted neoantigens (50–500 nM) were derived

from LDH1 mutations (Figure S1B; Table S1I). Furthermore,

average percentile binding affinity rank for complement muta-

tion-derived neoantigens was much lower than that of top signif-

icant MutSig2CV genes (0.72 versus 44.45) (Tables S1E–S1I).

These data suggest a selection for neoantigens with predicted

binding affinities <500 nM derived from complement mutations.

Given the prevalence of complementmutation-derived neoan-

tigens with high binding affinities, we asked whether any of the

complement mutations predicted to be drivers would also be

expected to result in changes in immune infiltrates. Interestingly,

several of these mutations were associated with significant

increased cytolytic activity, CD8+ T cells, and cytotoxic lympho-

cyte infiltration (Figures S1C–S1I).

Complement Mutations Are Associated with Significant
Changes in Overall Survival
Most individual complement genes are mutated at rates below

those of known canonical driver genes; thus, they may be part

of the ‘‘long tail’’ of mutations (cancers being characterized by

a large number of infrequently mutated genes and a small num-

ber of frequently mutated ones) (Ding et al., 2010). To investigate

this possibility, a pathway-level analysis was performed at the

‘‘pan-cancer’’ level using Hotnet2 on TCGA and Genentech

datasets (Seshagiri et al., 2012). This analysis confirmed that

complement mutations occur at a global level, with 79.7% of

datasets analyzed (including 34 different cancer types) contain-

ing at least one complement network and several datasets con-

taining more than one mutated complement network (Figure 2A;

Table S2A).

These data support the hypothesis that mutations in comple-

ment genes may be cooperative in nature, with genes working

within functional networks.Wehypothesized that groupingmuta-

tions into subsets based on known gene function, and then per-

forming downstream analysis, could provide information about

the functional relevance of these mutations and their possible

cooperation in cancer. We therefore decided to analyze the

association between complement alterations within previously

defined functional subgroups and overall survival (Table S2B)

(Ricklin et al., 2010). Interestingly, when performing these ana-

lyses, we found that several groups of mutations and CNAs

were associated with changes in overall survival outcome across
component gene versus patients without mutations in any of these genes

own and their association with overall survival. qvalue < 0.1.

ene versus patients without mutations in any of these genes (q = 0.07102).



different cancer types (Figures 2B–2G; TablesS2C–S2N). Theas-

sociation between component mutations in colorectal cancer

and poor overall survival outcome is noteworthy (Figures 2B

and 2C). Components are the main ‘‘effectors’’ of the comple-

ment pathway (Ricklin et al., 2010). In addition, there is a strong

association between poor overall survival and amplifications in

components in skin cutaneous melanoma (SKCM) and deletions

in regulators in LGG (Figures 2D–2G). Interestingly, mutations in

components in SKCM as well as mutations in regulators in LGG

are also associated with poor overall survival, suggesting that

component mutations in SKCM could be gain of function while

mutations in regulators in LGGcouldbe lossof functionmutations

(Figure 2B). In addition, analyseswere carried out on an individual

gene basis (Tables S2I–S2N). For univariate analysis, several of

these groups of genes contained only a few patients with alter-

ations, resulting in an imbalance between the two compared

arms. We therefore used the VALORATE algorithm rather than

traditional log-rank to assess survival outcome p values (Tables

S2U–S2W). Similarly to what we had observed from ourmultivar-

iate analysis, we found that multiple complement genemutations

and CNA were significantly associated with poor overall survival

outcomes (e.g., mutations in components in COADREAD, p

value = 0.00273). Furthermore, we performed pan-cancer ana-

lyses to assess whether complement gene mutations and

CNAs were associated with overall survival outcomes when all

cancer types were analyzed together, or when grouping only

epithelial cancers together (Tables S2O–S2T). Pan-cancer ana-

lyses were carried out either for the five gene subsets previously

analyzed or on an individual gene basis. These analyses showed

significant correlations with overall survival for certain groups of

genes (e.g., protease and receptor mutations, q < 0.05), as well

as for individual genes (e.g., mutations and deletions in C1QA,

p < 0.05), evenwhenperforming stage, age, andcancer-typecor-

rections (Tables S2O–S2T). Overall, these analyses demonstrate

that certain complement mutations and CNAs (either analyzed at

the individual gene level or in gene subsets) are associated with

changes in overall survival, both in specific cancer types as well

as when analyzed at the pan-cancer level.

Complement Mutations Are Associated with Hypoxia
Signatures in Colorectal Cancer
To gain further insights into processes that could be occurring in

patients with complement mutations and may account for the

differences in survival, we investigated which genes were differ-

entially expressed in patients with complement mutations and in

patients without. To do so, we performed gene set enrichment

analysis (GSEA) and examined pathways associated with malig-

nant progression. We found that a recently described hypoxia-

related signature (referred to as hypoxia signature) was ranked

as the most differentially expressed pathway between these

two groups of patients (Figure 3A; Tables S3A and S3C) (Li

et al., 2014). ‘‘Graft vs Host Disease’’ and ‘‘Antigen Presenta-

tion,’’ both KEGG pathways containing genes previously associ-

ated with complement activation, were the other two pathways

ranked within the top three (Figures S2A and S2B; Table S3A)

(Thornton et al., 1994; Zhang et al., 2016).

Intrigued by the fact that a hypoxia signature appeared within

the list of pathways differentially expressed in these patients, we
asked whether other hypoxia signatures were also significantly

overrepresented in the patients with complement mutations.

Overall, hypoxia gene sets as a whole were enriched in patients

with complement mutations (p value = 0.0005, GSEA-squared),

with two of the four additional hypoxia signatures nominally en-

riched (p < 0.05) in these two groups of patients (Figures S2C

and S2D; Tables S3A, S3D, and S3E). An additional signature

containing genes known to be downregulated in hypoxia as

anticipated was not enriched in these patients (Figure S2E;

Tables S3A and S3F). We then refined the analysis by asking

whether hypoxia signatures were also enriched specifically

in patients with component mutations in colorectal cancer,

where a strong association between these mutations and

poor overall survival had been observed. Overall, hypoxia

signatures as a whole were enriched in patients with component

mutations (p value = 0.0008, GSEA-squared) with four of

five signatures being nominally enriched (p < 0.05) (Figures

3B–3E; Tables S3B–S3E and S3G–S3I). Once again, the

‘‘Hypoxia_Winter2007_downregulated’’ signature was not en-

riched in these patients (Figure S2F; Table S3B). To assess the

specificity of the association between hypoxia and complement

mutations in colorectal cancer, we asked whether component

mutations were also associated with hypoxia signatures in

SKCM, another cancer type where this group of mutations was

associated with poor outcome. Interestingly, no significant asso-

ciation was found between component mutations in SKCM and

hypoxia signatures in this group (Figure S2G; Table S3J). To

extend these analyses, we also asked whether hypoxia signa-

tures would be enriched in patients with mutations in a different

group of complement genes, the regulators, also associated with

poor overall survival in LGG, and once again observed no signif-

icant association (Figure S2H; Table S3K). These data suggest

certain specificity in the association between component muta-

tions and hypoxia in colorectal cancer, and therefore we decided

to focus on colorectal cancer for our subsequent experiments.

Furthermore, these data suggest that colorectal cancer patients

with component mutations have tumors associated with high

expression of hypoxia signatures, and therefore may have

more hypoxic tumors, providing one potential explanation for

the poor overall survival observed in this patient population.

Hypoxia Inhibits CMC in Colorectal Cancer
Since the terminal consequence of complement activation is

CMC, we asked whether there were any differences in suscepti-

bility to CMC in colorectal cancer cells exposed to hypoxia. We

first compared CMC between normal human colon cells and

colorectal cancer cells, and (as has been previously reported)

we observed that colorectal cancer cells were more resistant

to CMC than normal colon cells (Figure S2I) (Gorter and Meri,

1999). Interestingly, when assessing cytotoxicity levels in hypox-

ia, we found that both human and murine colorectal cancer cells

exposed to hypoxia were less susceptible to CMC than nor-

moxic colorectal cancer cells (Figures 3F and S2J). Notably,

the murine colorectal cancer cells tested, CT26, have a mutation

in central complement componentC3 (pV254I). The human colo-

rectal cancer cells tested, HCT116 also harbor a C3 mutation,

but in this case the C3 mutation is silent, and therefore should

not alter amino acid sequence. These data suggest that the
Cell Reports 25, 3721–3732, December 26, 2018 3725
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See also Figure S2.

(A) GSEA plot for ‘‘Hypoxia_Li2014’’ in COADREAD

patients with any complement mutation.

(B) GSEA plot for ‘‘Hypoxia_Li2014’’ in COADREAD

patients with component mutations.

(C) GSEA plot for ‘‘Hypoxia_ Buffa2010’’ in

COADREAD patients with component mutations.

(D) GSEA plot for ‘‘Hypoxia_Winter2007 upregu-

lated’’ in COADREAD patients with component

mutations.

(E) GSEA plot for ‘‘Hypoxia_Winter2007 from

literature’’ in COADREAD patients with component

mutations.

(F) Graph represents the % of CMC/total lysis in

CT26 cells exposed to normoxia (21% O2) or

hypoxia (1% O2) for 24 hr. % CMC/total lysis was

assessed by calculating calcein release/total lysis

following treatment with either normal mouse

serum or heat-inactivated normal mouse serum

(as control). * = p value < 0.05, unpaired t test. Error

bars represent the SEM for a representative

experiment. n = 3.
crosstalk between hypoxia and complement occurs in two direc-

tions in colorectal cancer. On one hand, complement compo-

nent mutations are highly associated with hypoxia signatures

and therefore hypoxia-induced gene expression changes. On

the other, we note that hypoxia itself can also regulate the termi-

nal consequence of complement system activation by making

cancer cells (including those with complement component mu-

tations) more resistant to CMC.

Hypoxia-Induced Expression of Complement Regulator
CD55 Contributes to Inhibition of CMC
Membrane-bound regulators tightly control CMC (Schmidt et al.,

2016). Intrigued by the increased resistance to CMC observed in

colorectal cancer cells exposed to hypoxia, we asked whether

hypoxia-induced expression of complement regulators could

account for this effect. To address this hypothesis, we first asked
3726 Cell Reports 25, 3721–3732, December 26, 2018
which membrane-bound complement

regulator (CD35, CD46, CD55, or CD59)

was differentially expressed at the

mRNA level between colorectal cancer

and normal tissue using the Oncomine

database. We found that CD46 and

CD55 were significantly overexpressed

in colorectal cancer compared to normal

tissue and CD55 showed the highest in-

crease in fold change (fold change,

3.438) (Figure 4A). We asked whether

increased mRNA levels of either of these

regulators was associated with a hypoxia

signature (same as was used in Figure 3A)

and found that there was a positive and

significant correlation between CD55

mRNA expression and the hypoxia signa-

ture tested in colorectal cancer TCGA pa-
tient samples (Figure 4B). In contrast, a slight negative associa-

tion was observed between CD46 expression and the hypoxia

signature tested (Figure S3A). Since CD35 has been shown to

be induced following hypoxia/reoxygenation, we also performed

in silico analysis to assess the potential hypoxia inducibility of

CD35 in colorectal cancer (Collard et al., 1999). We found that

CD35 mRNA expression is correlated with the hypoxia signature

tested (Figure S3B). However, since mRNA expression changes

of CD35 were not markedly increased in colorectal cancers, we

did not experimentally pursue the hypoxia inducibility of CD35

further. Notably, CD55 mRNA expression in colorectal cancer

correlates with poor patient prognosis (Figure 4C). We therefore

decided to focus on CD55 and tested whether mRNA or protein

levels of CD55 increased under hypoxic conditions in colorectal

cancer cells. Interestingly, we found that mRNA and protein

expression of CD55 was increased under hypoxic conditions
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(1% O2) in several colorectal cancer cells tested in vitro (Figures

4D–4F and S3C). Furthermore, in agreement with our in silico

analysis, CD46 mRNA expression levels were not significantly

increased in hypoxia, but instead mRNA levels trended toward

a decrease (Figure S3D). GLUT1 mRNA expression was as-

sessed in these experiments as a control for exposure to hypoxic

conditions (Figures S3E and S3F). Interestingly, CD55 expres-

sion changes appeared to be oxygen dependent, since expo-

sure of cells to reoxygenation (21% O2), following a period of

hypoxia, reduced CD55 mRNA and protein levels back to nor-

moxic baseline (Figures 4D and 4E). We assessed the HIF

dependence of CD55 gene expression using both short hairpin

RNA (shRNA)- and small interfering RNA (siRNA)-mediated

knockdown of HIF members. These data suggested that both

HIF1a and HIF2a contribute to the regulation of CD55 under hyp-

oxic conditions (Figures S3G and S3H). Since the greatest

decrease in CD55 expression was observed following depletion

of the dimerization HIFa partner, HIF1b, these data indicate that

the hypoxia-inducible expression of CD55 is likely dependent on

both HIF1a andHIF2a (since loss of HIF1b leads to loss of HIF1a-

and HIF2a-dependent transcriptional activation) (Pugh and

Ratcliffe, 2003).

Finally, we asked whether the increase in CD55 expression in

colorectal cancer cells could account for the increased resistance

to CMC observed in hypoxia. To do so, we assessed CMC in

HCT116 and CT26 cells treated with a CD55 blocking antibody

or IgG control, and exposed to either normoxia (Figures 4G and

4I) or hypoxia (Figures 4H and 4J). Cells in normoxia showed

increased levels of cytotoxicity compared to cells treated with

hypoxia. Furthermore, blocking CD55 antibody treatment

increased susceptibility to CMC in both normoxia and hypoxia

(Figures 4G–4J). We further confirmed these data by using

C5b-9 staining as a marker for formation of themembrane attack
Figure 4. Hypoxia-Induced Expression of Complement Regulator CD5

See also Figure S3.

(A) mRNA expression fold changes (FC) and p values for complement regulators

versus normal tissue pairs. Data were acquired from https://www.oncomine.org/

(B) Relative expression ofCD55 (log10 conversion) in COADREAD patients is show

tailed p value is shown for the Pearson r (correlation coefficient).

(C) KM curve for colorectal cancer patients with high (red) or low (blue) CD55 m

database (http://dna00.bio.kyutech.ac.jp/PrognoScan/) using the publicly availab

accession number GSE14333 (Freeman et al., 2012; Smith et al., 2010). p = 0.01

(D) mRNA expression of CD55/18S is shown. qPCR was carried out following ex

followed by 1 hr reoxygenation (21% O2). ** = p value < 0.01, 1-way ANOVA with

sentative experiment. n = 3.

(E) HCT116 cells were treated with 0, 6, or 24 hr of hypoxia (1%O2) or 24 hr of hypo

with the antibodies indicated. b-actin, loading control. n = 3.

(F) CT26 cells were treated with 0 or 24 hr of hypoxia (1% O2). WB was carried w

(G) Graph shows the % CMC/total lysis in HCT116 cells treated in 21% O2 (nor

treatment). % CMC/total lysis was assessed by calculating calcein release/total ly

or heat-inactivated normal human serum. **** = p value < 0.0001, unpaired t test, t

(H) Graph shows the%CMC/total lysis in HCT116 cells treated with 24 hr of 1%O

treatment). % CMC/total lysis was assessed by calculating calcein release/total ly

or heat-inactivated normal human serum. **** = p value < 0.0001, unpaired t test,

(I) Graph shows the%CMC/total lysis in CT26 cells treated in 21%O2 (normoxia) a

% CMC/total lysis was assessed by calculating calcein release/total lysis followin

serum. * = p value < 0.05, unpaired t test. Error bars represent the SEM for a rep

(J) Graph shows the % CMC/total lysis in CT26 cells treated with 24 hr of 1% O2

treatment). % CMC/total lysis was assessed by calculating calcein release/total

normal human serum. **** = p value < 0.0001, unpaired t test, two-tailed. Error b
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complex (and therefore a surrogate for CMC). Decreased C5b-9

staining was observed in cells exposed to hypoxia compared to

normoxia (Figure S3I). Furthermore, treatment with CD55 anti-

body increased levels of C5b-9 in both normoxic and hypoxic

conditions (FigureS3I). Thesedata leadus toconclude that block-

ing increased expression of CD55 could sensitize cells to CMC.

DISCUSSION

Our data indicate that looking for mutations in whole pathways or

within functional subgroupsmayaid in the identificationof genetic

alterations that predict overall survival outcomes. This approach

was helpful in uncovering a pathway that while having clear asso-

ciations with cancer progression has not been previously appre-

ciated as significantlymutated in cancer, andmayhaveotherwise

received little attention due to the perceived ‘‘low’’ frequency of

mutations in individual genes.Despite the relatively low frequency

of individual mutations (typically <10%), certain complement

genes are significant when analyzed by MutSig2CV. Pathway-

level mutational analysis revealed that complement pathway

mutations are widespread across many cancer types. Addition-

ally, KS test analysis revealed that mutations in complement

genes, as a group, occur at a rate above background in a number

of the cancers analyzed. However, it should be noted that com-

plement mutations in cancer types below the significance

threshold set in the KS test may still be relevant. This is due to

the fact that specific groups of mutations in these cancer types

could still be clinically significant if not analyzed as a block.

Interestingly, we report that analysis of peptides derived from

predicted driver complement mutations suggests that a high

proportion of these mutations (over 60%) can give rise to neoan-

tigens that could potentially be used to enhance T cell-mediated

reactivity. Indeed, analysis of immune infiltration differences
5 Contributes to Inhibition of CMC

CD35, CD46, CD55, and CD59 in different colorectal cancer/adenocarcinoma

resource/login.html (GSE20916) (Skrzypczak et al., 2010).

n against hypoxia signature expression (log10 conversion) (Li et al., 2014). Two-

RNA expression levels is shown. This analysis was based on the PrognoScan

le Gene Expression Omnibus data (https://www.ncbi.nlm.nih.gov/geo) with the

1327.

posure of HCT116 cells to 0, 6, or 24 hr of hypoxia (1% O2) or 24 hr of hypoxia

Tukey’s multiple comparison test. Error bars represent the SEM for a repre-

xia followed by 1 hr reoxygenation (21%O2).Western blotting (WB) was carried

ith the antibodies indicated. b-actin, loading control. n = 3.

moxia) and either CD55 blocking antibody or IgG control (for the last hour of

sis (and total cell number) following treatment with either normal human serum

wo-tailed. Error bars represent the SEM for a representative experiment. n = 3.

2 (hypoxia) and either CD55 blocking antibody or IgG control (for the last hour of

sis (and total cell number) following treatment with either normal human serum

two-tailed. Error bars represent the SEM for a representative experiment. n = 3

nd either CD55 blocking antibody or IgG control (for the last hour of treatment).

g treatment with either normal human serum or heat-inactivated normal human

resentative experiment. n = 3.

(hypoxia) and either CD55 blocking antibody or IgG control (for the last hour of

lysis following treatment with either normal human serum or heat-inactivated

ars represent the SEM for a representative experiment. n = 3.

https://www.oncomine.org/resource/login.html
http://dna00.bio.kyutech.ac.jp/PrognoScan/
https://www.ncbi.nlm.nih.gov/geo


between patients with and without CD55 mutations (one of

the mutations giving rise to neoantigens) correlates with altered

immune infiltrates including increased cytotoxic T cell re-

sponses. It would be interesting to test these further to assess

their full potential in therapeutic strategies such as cancer vac-

cines. Predicted neoantigens have typically been reported in

passenger mutations occurring at very low frequencies (around

0.2%–2%), suggesting that any therapeutic use of these muta-

tions would have to be on a patient-by-patient basis (Schu-

macher and Schreiber, 2015). Several of the complement muta-

tion-derived neoantigens we report here occur at far higher

frequencies and therefore could present an opportunity for tar-

geting these mutations in a much wider population of patients.

A closer look at the CD55 mutations identified in colorectal

cancer suggests that these mutations occur across different

short consensus repeat (SCR) domains, suggesting that they

are likely to be loss of function (Vogelstein et al., 2013). This

would be in line with CD55 polymorphisms in other disease

states, which often result in reduced CD55 protein expression

or function (Ozen et al., 2017). However, to our knowledge,

none of theCD55mutations we report here overlap with variants

identified in other diseases such as Cromer Inab phenotype (lack

of all Cromer complex blood group antigens) or even those var-

iants that have been associated with lung cancer or gastric can-

cer risk (Ozen et al., 2017; Zhang et al., 2017). Interestingly, Lu-

kacik et al. (2004) showed that missense mutation L205F

(present in a colon adenocarcinoma patient) results in 50%

reduced CD55 function compared to wild-type CD55. We note,

however, that CD55 mutations are not associated with changes

in overall survival in colorectal cancer patients.

In contrast, we report that high CD55 mRNA expression is

significantly associated with decreased disease-free survival in

colorectal cancer. Our results further suggest that hypoxia-

induced CD55 expression can act as a barrier to maximal

CMC.We should note, however, that we only investigated the ef-

fects of hypoxia on CMC in colorectal cancer cells and appre-

ciate that the effects of hypoxia on CMC in other cell types could

be different (Okroj et al., 2009). The effectiveness of monoclonal

antibody-based therapies, including immunotherapies, has been

suggested to rely on CMC for maximal efficacy in certain tumor

types (Derer et al., 2014). Targeting CD55 in this context could

enhance the efficacy of certain therapeutic strategies. Even

though CD55 is ubiquitously expressed in most human cells,

colorectal cancers express CD55 at much higher levels than

normal colorectal tissue, providing the basis for a therapeutic

window (Gorter and Meri, 1999). In line with previous reports,

we find that hypoxia-induced expression of CD55 is HIF1a

dependent, although we also find HIF2a-dependent regulation

of CD55 under hypoxic conditions (Louis et al., 2005). While

we describe the direct contribution of hypoxia to CD55 regula-

tion, we acknowledge that other factors present in the tumor

microenvironment may also regulate CD55. In fact, angiogenic

factors, including hypoxia-inducible vascular endothelial

growth factor, have been shown to regulate CD55 expression

on endothelial cells (Mason et al., 2001). Furthermore, cyclooxy-

genase-derived prostaglandin E2, interleukin-1b, tumor necrosis

factor a, and lipopolysaccharide, which have all been shown to

regulate CD55, can in turn also increase HIF1a stabilization/tran-
scriptional activity (Frede et al., 2006; Jung et al., 2003; Liu et al.,

2002). These findings highlight the intricate crosstalk that exists

between hypoxia and other known regulators of CD55.

Furthermore, previous reports have described roles for hyp-

oxia in regulating complement proteins in different disease con-

texts, including inflammatory bowel conditions and ischemia

reperfusion injury (Collard et al., 1999; Louis et al., 2005; Olcina

et al., 2018). Reports on ischemia/reperfusion injury may pro-

vide insights into the role of complement in hypoxic tumor re-

gions, given the similarities that exist between ischemia/reper-

fusion and certain tumor contexts. For instance, the interruption

of blood flow experienced during an ischemic event can induce

molecular changes similar to those occurring in tumors with

temporarily occluded blood vessels (Gorsuch et al., 2012;

Hammond et al., 2014). These molecular changes include a

decrease in pH, a factor that should also be considered in the

context of alterations in complement regulation (Fishelson

et al., 1987). Furthermore, temporarily occluded blood

vessels that can give rise to hypoxic regions in tumors may

reopen, resulting in reoxygenation events reminiscent of those

occurring in ischemia/reperfusion injuries (Gorsuch et al.,

2012). Nevertheless, it is important to note that differences

also exist in the downstream consequence of hypoxia/reoxyge-

nation in ischemia/reperfusion injury and cancer. A notable

difference relates to the apoptotic response mounted following

hypoxia/reoxygenation in these two contexts. Apoptosis

following ischemia/reperfusion injury can lead to permanent tis-

sue damage (Gorsuch et al., 2012). However, while apoptosis

programs may also be triggered in hypoxic tumors (especially

in a p53 wild-type tumor), it is common for tumors to evade

such apoptosis through mechanisms including p53 mutations

(Graeber et al., 1996). Our data suggest that hypoxia may

likewise provide a selective pressure for cancer cells to evade

complement-mediated attack. These findings highlight the

importance of the tumor microenvironment in shaping the can-

cer mutational landscape.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-human CD55 BioRad, Cat# MCA914; RRID:AB_321792

Rat polyclonal CD55 R&D Cat# MAB5376; RRID:AB_10640505

Mouse monoclonal b-actin Sigma Cat# A5441; RRID:AB_476744

Rabbit polyclonal H3 Abcam Cat# ab1791; RRID:AB_302613

Mouse monoclonal HIF1a BD-Biosciences Cat# 610959; RRID:AB_398272

Rabbit HIF2a Novus Cat# NB100-122; RRID:AB_10002593

ARNT Novus Cat# NBP1-02476; RRID:AB_1520290

Mouse CD59 Santa Cruz Cat# sc-133171; RRID:AB_2244558

Anti-human CD55 (blocking) antibody (BRIC 110) American Research Products Cat# 08-9402-02; RRID:AB_1540745

Anti-mouse CD55 (blocking) antibody Biolegend Cat# 131802; RRID:AB_1279269

Armenian hamster anti-mouse IgG antibody Biolegend Cat# 400902

Mouse anti-human IgG control Santa Cruz Cat# sc-2025; RRID:AB_737182

Alexa Fluor A459 Invitrogen Cat# A21207; RRID:AB_141637

Critical Commercial Assays

Calcein AM Cell Viability Assay R&D 4892-010-K

Deposited Data

Computational raw and analyzed data (including p values,

q-values, correlation coefficients, predicted IC50 values,

Hotnet2 networks and GSEA data)

This paper Tables S1A–S1I, S2A–S2W, and S3A–S3K

Experimental Models: Cell Lines

HCT116 ATCC CCL-247TM

CT26 Laboratory of Matt Bogyo

(Stanford, USA)

RRID:CVCL_7256

FHC ATCC CRL-1831

Oligonucleotides

ON-TARGETplus Non-targeting Pool Dharmacon D-001810-10

SMARTpool: ON-TARGETplus HIF1A siRNA Dharmacon L-004018-00

SMARTpool: ON-TARGETplus EPAS1(HIF2A) siRNA Dharmacon L-004814-00

SMARTpool: ON-TARGETplus ARNT (HIF1b) siRNA Dharmacon L-007207-00

Recombinant DNA

shRNA control: TRC1/1.5-pLKO.1 CCGGCAACAAGATGAAGA

GCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTTT

Open biosystems RHS6848

shRNA HIF1a: pSIREN GTCTAGAGATGCAGCAAGA (LaGory et al., 2015) N/A

shRNA HIF2a: TRC1/1.5-pLKO.1TATGTCCTGTTAGCTCCACCT Open biosystems N/A

Software and Algorithms

DESeq2 (Love et al., 2014) RRID: SCR_015687

GSEA RRID:SCR_003199

MutSig2CV v3.1 (Lawrence et al., 2013). Firebrowse.org

NetMHCpan (v3) (Nielsen and Andreatta, 2016). http://www.cbs.dtu.dk/services/

NetMHCpan/

Hotnet2 (Leiserson et al., 2015). http://compbio.cs.brown.edu/projects/

hotnet2/

VALORATE (Treviño and Tamez-Pena,

2017).

N/A

(Continued on next page)

Cell Reports 25, 3721–3732.e1–e6, December 26, 2018 e1

http://www.cbs.dtu.dk/services/NetMHCpan/
http://www.cbs.dtu.dk/services/NetMHCpan/
http://compbio.cs.brown.edu/projects/hotnet2/
http://compbio.cs.brown.edu/projects/hotnet2/


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MCP-counter (Becht et al., 2016) http://cit.ligue-cancer.net/language/en/

mcp-counter/

SSGSEA (Hänzelmann et al., 2013) https://bioconductor.org/packages/

release/bioc/html/GSVA.html

GraphPad Prism version 7.0c GraphPad Software N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Monica

Olcina (molcina@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and treatments
HCT116 (male adult human epithelial colorectal cancer), cells originally purchased from ATCC (CCL-247TM) were a kind gift from

Ester Hammond (Oxford, UK). Cells were grown in DMEM with 10% FBS, in a standard humidified incubator at 37 oC and 5%

CO2. FHC (fetal human colon, 13weeks gestation, sex information unknown) cells were purchased fromATCC (CRL-1831) and grown

as per ATCC instructions. CT26 (mouse colon carcinoma) cells were a kind gift fromMatt Bogyo’s labortory (Stanford, USA) andwere

grown in RPMI with 10% FBS, in a standard humidified incubator at 37 oC and 5% CO2. CT26 is a N-nitroso-N-methylurethane

(NNMU)-induced undifferentiated colon carcinoma cell line (sex information unknown) induced in BALB/c mice, (Corbett et al.,

1975; Wang et al., 1995). All cell lines were routinely tested for mycoplasma and found to be negative.

METHOD DETAILS

Hypoxia treatment
Hypoxic treatments at 1% O2 were carried out in an In Vivo2 400 (Ruskinn) (LaGory et al., 2015). Unless the experiment involved

periods of reoxygenation cells were harvested inside the chamber with equilibrated solutions.

Immunoblotting
Cells were lysed in UTB (9M urea, 75mMTris-HCl pH 7.5 and 0.15M b-mercaptoethanol) and sonicated briefly before quantification.

Antibodies used were anti-human mouse CD55 (BioRad, concentration # MCA914: 1:500), anti-mouse rat CD55 (R&D # MAB5376,

concentration: 1:500) b-actin (Sigma # A5441, concentration: 1:5000), H3 (Abcam, #ab1791, concentration: 1:1000), HIF1a (BD-Bio-

sciences, #610959, concentration: 1:500), HIF2a (Novus, # NB100-122, concentration: 1:500), ARNT (Novus, # NB100-124, concen-

tration: 1:500), CD59 (Santa Cruz, concentration # sc-133171, 1:500). The BioRad Chemidoc XRS system was used. In each case

experiments were carried out in triplicate and a representative blot is shown unless otherwise stated.

Immunofluorescence
5 3 104 HCT116 cells were seeded on coverslip slides. Treated cells were washed in PBS before being fixed in 4% paraformal-

dehyde (Santa Cruz, # sc-281692) for 15 minutes at room temperature. Cells were then washed once in PBS and incubated with

1% PBS-Triton X-100 (PBS-T) for 10 minutes at room temperature. Blocking was then carried out for 1 hour in 0.5-1 mL 2% (w/v)

BSA in 0.1% PBS-T. Following a wash in ice-cold 0.25% PBS-T, slides were incubated in primary C5b-9 antibody (Abcam, cat #

55811, concentration: 1:1000), diluted in 2%(w/v) BSA-PBS-T 0.1% for 1 hour at 37�C in a humidified chamber. Following three

washes in ice-cold 0.25% PBS-T, slides were incubated in Alexa Fluor A459 (Invitrogen #A21207, concentration: 1:250) for

1 hour at 37�C in a humidified chamber in the dark. Slides were mounted with ProLongTM Gold Antifade mountant with DAPI

(Thermofisher, P36935) following two further washes in ice-cold 0.25% PBS-T and a final wash in PBS (Olcina et al., 2013). Cells

were visualized using a DSM6000 or Dmi8 (Leica) microscope. Experiments were carried out in triplicate and a representative set

of images are shown.

qRT-PCR
RNA was extracted using TRIzol (Invitrogen/Life Technologies, # 15596018). iScript cDNA synthesis kit (Bio-Rad, # 1708891) was

used to reverse transcribe cDNA from total RNA according to manufacturer’s instructions. Relative mRNA levels were calculated

using the standard curve methodology using a 7900HT Fast Real-Time PCR System. In each case experiments were carried
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out in triplicate and data for a representative experiment is shown unless otherwise stated. Primers used: 18S F: TAGAGGGACA

AGTGGCGTTC, 18S R: CGGACATCTAAGGGCATCAC. CD55 F: CCACAAAAACCACCACACC, CD55 R: GCCCAGATAGAAGACG

GGTAGTA, GLUT1 F: ATACTCATGACCATCGCGCTAG GLUT1 R: AAAGAAGGCCACAAAGCCAAAG, CD46 F: TGCTGCTCCAGA

GTGTAAAGTG, CD46 R: CGCTGCCATCGAGGTAAA.

CMC assay
CMC was assessed as previously described with minor modifications (Ajona et al., 2007). Full details of the protocol followed in this

manuscript are described here. Cells were trypsinized and washed in PBS. Cells were resuspended in calcein buffer containing

2 mM calcein AM (Trevigen, cat # 4892-010-K). Cells were loaded with calcein for 1 hour at 37�C and then washed once with calcein

buffer before addition of complement-containing pooled serumor heat-inactivated serum (Innovative Research Inc, Cat # IPLA-SER for

human serumand IGMSSER formouse serum). Heat-inactivated serumwas treated by incubation at 60�C for 30minutes andwas used

as a control in order to calculate specific CMC. In experiments requiring use of blocking antibodies, CD55 antibody (BRIC 110,

American Research Products # 08-9402-02 for human cells or Biolegend CD55 antibody #131802, for mouse cells) and IgG control

(mouse IgG, Santa Cruz # sc-2025 for human cells or Biolegend Armenian hamster # 400902, IgG for mouse cells) treatment was per-

formed 1 hour before addition of serum (Ajona et al., 2007). Supernatant calcein release was assessed by measuring fluorescence at

485 nm excitation and 520 nm emission, using a Synergy H1-mono plate reader (Biotek) following 1 hour incubation at 37�Cwith either

normal or heat-inactivated serum. The remaining pellet was lysed with 0.1% triton-X and also read by measuring fluorescence at

485 nm excitation and 520 nm emission. Specific CMC was calculated by subtracting calcein release/total lysis from heat-inactivated

serum treated cells from calcein release/total lysis from normal serum treated cells as follows: [Reading from calcein release in

cells treatedwith normal serum/total lysis (calcein release in normal serum treated cells+ calcein release from0.1% triton treated pellet)]

– [Reading fromcalcein release in cells treatedwith heat-inactivated normal serum/total lysis (calcein release in heat-inactivated normal

serum treated cells + calcein release from 0.1% triton treated pellet)]. In each case experiments were carried out in triplicate and data

for a representative experiment is shown unless otherwise stated. For experiments involving hypoxia treatment, all steps (prior to mea-

surement of calcein release by fluorescence reading) were carried out in the hypoxia chamber In Vivo2 400 (Ruskinn).

siRNA transfection
HIF1a (L-004018-00). HIF2a (L-004814-00) and ARNT pool (L-007207-00) (Dharmacon) or non-targeting RNAi negative control

(Scramble, D-001810-10) (Dharmacon) were transfected into HCT116 cells using Lipofectamine RNAiMax transfection reagent

(Invitrogen, #13778075) at a final concentration of 50 nM; according to themanufacturers’ instructions. Cells were harvested 72 hours

post-transfection.

Lentiviral transduction
shRNAs targeting HIF1a, HIF2a, or non-targeting control (Scramble, RHS6848) were used. HCT116 cells were transduced with

shRNA lentiviruses as previously described (LaGory et al., 2015). Full details of the protocol followed in this manuscript are described

here. Inititally, shRNAs were transfected into 293T cells using Lipofectamine 2000 transfection reagent (Invitrogen, #11668027) ac-

cording to themanufacturers’ instructions for virus production. 24 hours post-transfection, mediumwas replacedwith freshmedium.

24 hours later, HCT116 cells were transduced with each virus on two consecutive days to produce stable Scramble (Scr), HIF1a and

HIF2a knockdown cells. 24 hours after the last infection cells were washed extensively and grown in antibiotic selection medium. All

procedures were carried out in compliance with BSL-2 protocol standards.

KS statistic of mutations
To determine the enrichment of complement mutations in each TCGA cancer, a modified Kolmogorov-Smirnov (KS) test using the

method of GSEA (kt.test2; https://github.com/franapoli/signed-ks-test) was performed on ‘‘mutation ranks.’’ For each patient in a

cohort the mutation rank of a gene was determined from total mutation number divided by gene coding length which was then

put into a rank ordered list. Complement mutations as a group were compared to the background of all other coding genes. Coding

sequence length was obtained from the Consensus CDS database (Pruitt et al., 2009). q-values were computed across all cancers

using the method of Benjamani-Hochberg. The pan-cancer meta-analysis p value was calculated using Stouffers method.

Cancer type abbreviations

ACC = Adrenocortical carcinoma, BLCA = Bladder urothelial carcinoma, BRCA = Breast invasive carcinoma, CESC = Cervical squa-

mous cell carcinoma and endocervial adenocarcinoma, CHOL = Cholangiocarcinoma, COADREAD = Colorectal adenocarcinoma,

DLBC = Lymphoid neoplasm diffuse large B cell lymphoma, ESCA = Esophageal carcinoma, GBM = Glioblastoma multiforme,

HNSC = Head and Neck squamous cell carcinoma, KICH = Kidney Chromophobe, KIRC = Kidney renal clear cell carcinoma,

KIRP = Kidney renal papillary cell carcinoma, LAML = Acute myeloid leukemia, LGG = Brain lower grade glioma, LIHC = Liver hepa-

tocellular carcinoma, LUAD = Lung adenocarcinoma, LUSC = Lung squamous cell carcinoma. MESO =Mesothelioma, OV =Ovarian

serous cystadenocarcinoma, PAAD = Pancreatic adenocarcinoma, PCPG = Pheochromocytoma and paraganglioma, PRAD = Pros-

tate adenocarcinoma, SARC =Sarcoma, SKCM=Skin cutaneousmelanoma, STAD = Stomach adenocarcinoma, TGCT = Testicular

germ cell tumors, THCA = Thyroid carcinoma, THYM = Thymoma UCEC = Uterine corpus endometrial carcinoma, UCS = Uterine

carcinosarcoma, UVM = Uveal melanoma.
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TCGA RNA-sequencing (RNA-seq) analysis
TCGA raw counts were acquired from the TCGA data portal using TCGA-Assembler. Counts were rounded then inputted into

DESEQ2 to perform differential expression analysis using default size factor normalization (Love et al., 2014). The Independent

filtering and Cooks Cutoff flags were set to FALSE. Benjamini–Hochberg method was used for multiple hypothesis testing.

To examine tumor-associated HIF-activity (referred to as hypoxia signature in Figure 4), raw data for each sequenced gene were

rescaled to set the median equal to 1, and HIF-activity was quantified by averaging the normalized expression of 44 target genes,

associated with HIF activity (encoding ADM, IGFBP3, EDN2, PFKFB4, FLT1, TFR2, BNIP3L, TGFA, BNIP3, PGK1, EGLN1, LDHA,

EGLN3, CP, TGFB3, PFKFB3, HK1, TFRC, EDN1, CDKN1A, CA9, HMOX1, SERPINE1, LOX, NDRG1, CA12, PDK1, VEGFA,

ERO1L, RORA, P4HA1, MXI1, SLC2A1(GLUT1), STC2, MIF, DDIT4, ENO1, CXCR4, PLOD1, P4HA2, GAPDH, PGAM1, TMEM45A

and PIM1) (Li et al., 2014). Log10 conversion of the hypoxia signature was plotted against Log10 conversion of raw data for CD55,

CD46 and CD35 (also rescaled to set the median equal to 1). Two-tailed p value is shown for each Pearson r (correlation coefficient).

Raw RNA-seq data were downloaded from the TCGA project (accessed through cBioportal: http://www.cbioportal.org/) on February

15th 2016).

GSEA
Gene set enrichment analysis was performed using COADREAD, SKCM or LGG expression data, where groups were defined by

complement mutational status. For each comparison DESEQ2 was run on RNaseq data using the mutation stratification with default

settings except cooksCutoff = F and independentFiltering = F. Gene set enrichment was run with the preRanked setting using the

‘‘stat’’ column from DESEQ as ranking with the associated hypoxia-related signature using the JAVA based GSEA tool with default

settings (Buffa et al., 2010; Eustace et al., 2013; Li et al., 2014; Winter et al., 2007). Full gene lists for each hypoxia-related signature

used are given in Tables S3C–S3I).

To capture if the hypoxia-related signatures were, as a group, more enriched in complement genemutated samples than expected

by chance we performed ‘‘GSEA-squared.’’ To capture a biological background, GSEA was first performed with the C2 Kegg data-

base with the hypoxia-related signatures appended as individual gene sets (KEGG+Hypoxia). The input of the second round was a

ranked list consisting of the gene sets of KEGG+Hypoxia ranked by their NES scores. Amodified Kolmogorov-Smirnov test that uses

the method of GSEA was then used to derive a p value for the enrichment of the Hypoxia sets on the KEGG gene set background

(kt.test2; https://github.com/franapoli/signed-ks-test).

MutSig2CV v3.1
MutSig2CV v3.1 data was obtained from firebrowse.org (Accessed 26.1.2016). MutSig is used to identify genes that are mutated at

higher rates than would randomly be expected to occur by chance (Lawrence et al., 2013). MutSig accounts for the background

mutational rate for each gene by taking into account any process leading to positive selection of mutations (for example, frequency

of non-synonymous versus silent mutations, hotspots of mutation clusters, or being enriched in evolutionary conserved regions). As

such it can give an indication of whether mutations are likely ‘‘passengers’’ or ‘‘drivers.’’ ‘‘Drivers’’ would be expected to be selected

for due to their direct effects on tumor progression as opposed to be indirectly selected for due to co-occurrence with other genetic

alterations (Babur et al., 2015). Significance levels (p values) are determined by testing whether the observed mutations significantly

exceeded the expected counts based on the backgroundmodel. False-discovery rates (q-values) are also calculated and genes with

q < 0.1 are reported as significantly mutated (full list in Table S1D).

Neoantigen Prediction
The list of variants predicted as ‘‘cancer drivers’’ byMutsig2CVwas used for neoantigen prediction (following removal of synonymous

mutations), Genes, mutations, neoantigens and predicted binding affinities (IC50) are shown in Tables S1E–S1I). The term neoantigen

refers to tumor specific DNA alterations that give rise to novel peptide sequences, usually entirely absent from the normal human

genome (Schumacher and Schreiber, 2015). Of note, each mutation gave rise to multiple peptides and from those, neoantigens in

turn were predicted to bind to one or multiple alleles. To prevent overestimation by counting multiple neoantigens from a single

amino-acid changing mutation binding to the same allele, we collapsed mutations by amino acid change and counted them as a sin-

gle event if they were predicted to bind the same allele.

The list of HLA alleles in the whole TCGA cohort was a kind gift from Michael Rooney and these alleles were reduced to the most

common 20 alleles. For an improved coverage of common HLA alleles, the missing most common alleles from the US population

(as reported by http://www.allelefrequencies.net) was also added into the list resulting in a total of 24 alleles. The list of variants

and the list of HLA alleles was fed into the NetMHCpan (v3) via topiary tool (https://github.com/openvax/topiary) to calculate pre-

dicted binding affinities of predicted true neoantigens (Nielsen and Andreatta, 2016).

Copy number and expression correlation data
Copy number variation and mRNA expression correlation data for COADREAD was downloaded from Firebrowse.org (accessed

August 15th 2018). Data generated through the pipeline was downloaded and used to assess correlations between copy number

and expression data. The original downloaded report contained ‘‘the calculated correlation coefficients based on measurements

of genomic copy number (log2) values’’ and the level of expression of the corresponding gene for each patient as described in
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firebrowse.org. ‘‘Gene level (TCGA Level III) expression data and copy number data of the corresponding loci derived by using the

CNTools package of Bioconductor were used for the calculations. Pearson correlation coefficients were calculated for each pair of

genes shared by the two data sets across all the samples that were common. The input file ‘‘*.medianexp.txt’’ is generated in the

pipeline mRNA_Preprocess_Median in the stddata run.’’ Once data for all copy number and gene expression data was downloaded,

data on all complement genes shown in Table S2B was queried. Significant genes are shown in Table S1A.

DNA methylation and expression correlation data
DNA methylation and mRNA expression correlation data for COADREAD was downloaded from firebrowse.org (accessed August

15th 2018). The data was generated as described in firebrowse.org: ‘‘Level 3 methylation and gene expression arrays were paired

on the basis of Entrez Gene ID concordance.’’ Spearman correlation was calculated to assess the association between DNAmethyl-

ation and the level of expression of the corresponding genes, with the top 25 correlatedmethylation probes per gene presented. Plat-

forms used: Methylation Array Platforms: Illumina Infinium HumanMethylation27, Illumina Infinium HumanMethylation450, Illumina

DNA Methylation OMA002, Illumina DNA Methylation OMA003. Gene Expression Platforms: Agilent 244K Gene Expression

G4502A-07-1, Agilent 244K Gene Expression G4502A-07-2, Agilent 244K Gene Expression. Once data for all copy number and

gene expression data was downloaded, data on all complement genes shown in Table S2Bwas queried. Significant genes are shown

in Table S1B.

Hotnet2
Hotnet2 addresses the ‘‘long-tail’’ phenomenon by discovering significant alterations in pathways or networks of genes, rather than

singularly mutated genes (Leiserson et al., 2015). TCGA data used in Hotnet2 was converted from ‘‘.maf‘‘ files from Firebrowse.org.

Data from the Genetech/gRed (colorectal cancer) dataset generated in (Seshagiri et al., 2012) was also used for hotnet2 analysis.

FHCRC and PRMET datasets (from (Kumar et al., 2016), (Robinson et al., 2015) respectively) were downloaded from cbioportal.

org using the cgdsr package. ‘NEPC & variants’ dataset was obtained from (Beltran et al., 2016). ‘‘Silent’’ and ‘‘RNA’’ mutations

were filtered out from the list of patient mutations. Hotnet2 determines a heat score for each gene in a given cancer (Leiserson

et al., 2015). Heat scores are calculated using an insulated heat diffusion process, determined by the significance and number of

times the genewasmutated. 1000 randompermutations of the Human Protein Reference Database (HPRD) were used to test against

subnetworks identified by the Hotnet2 algorithm. Once the randomly permuted networks were made, Hotnet2 was run using default

parameters, except the minimum subnetwork size was changed from 2 genes to 3 genes.

Clinical association analysis
Alterations were only evaluated if they occurred in at least 3 samples. Somatic mutations, CNA and survival information, from

the public TCGA data portal (https://tcga-data.nci.nih.gov/docs/publications/tcga/) for individual cancers were first analyzed

using a univariate model on the alteration status using the logrank test with the survival package in R (variable: logrank.pval;Tables

S2U–S2W). Unlike clinical studies, analysis of patient populations based on genomic data such as the TCGA often have unbalanced

patient populations based on dichotomies generated from individual genomic features. In the context of these ‘‘unbalanced arms’’

the asymptotically normal assumption of the traditional log-rank test is not met and often gives misleading false positives (Vandin

et al., 2015). To correct for this problem we used VALORATE, an algorithm that creates an accurate approximation of the p value

using the conditional distributions of the co-occurrences between events and mutations (Treviño and Tamez-Pena, 2017). The

VALORATE method was recently shown to provide a more accurate assessment of survival statistics in imbalanced populations

such as those found in genetic studies (Treviño and Tamez-Pena, 2017). The VALORATE algorithm is additionally useful in cases

where the wald test does not converge (variable: valorate.pval; Tables S2U–S2W). Analysis of all complement genes across 23 tumor

types was performed. Additionally 6 different metagene signatures based on a previous functional classification of complement

genes (All genes, Components, Pattern Recognition, Proteases, Receptors, Regulators) were analyzed (Ricklin et al., 2010).

Individual cancers were additionally analyzed using a multivariate wald test using the coxph module in R on samples with clinical

annotation. In this multivariate model clinical covariates of stage, age, and gender were included when available (variable: not cor-

rected for load.wald.pval; Tables S2D, S2F, S2H, S2J, S2L, and S2N). An additional covariate of mutational load which is the sum of

all non-silent mutations in a cancer sample was used (variable: corrected.for.load.wal.pval; Tables S2C, S2E, S2G, S2I, S2K, and

S2M) to control for genomic instability and as a proxy for MSI (Chalmers et al., 2017). Data for correlations between associations

and overall survival where q < 0.1 are reported as dark red squares in the heatmap in Figure 2. These data represent Benjamani Hoch-

berg corrected Log q-values of themodel including age, stage, gender, and in the cases of COADREAD, ESCA, STAD andUCEC also

mutational load correction (Cortes-Ciriano et al., 2017).

Similarly, analyses were also performed at the pan-cancer level. In the pan-cancer analysis the multivariable cox regression was

performed either controlling for type (variable: corrected.for.type.wald.pval; Tables S2O–S2T) or controlling for type, age and gender

(variable: corrected.for.type.age.gender.wald.pval; Tables S2O–S2T). The improvement LRT was performed on these two models.

Immune infiltration analysis
For each cancer, samples with and without mutation were compared for enrichment of immune infiltration signatures using RNaseq

data. Single sample GSEA (ssGSEA) was performed with immune signatures derived from (MCP-counter) (Becht et al., 2016).
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ssGSEA scores were compared between mutant and non mutant groups using a Student’s t test to find significant differences in

specific immune infiltration signals.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis for the quantification of experimental data was performed with GraphPad Prism Software version 7.0c. Three

independent biological replicates were carried out for all experiments unless otherwise stated in the figure legend and ‘‘n’’ denotes

the number of independent biological replicates performed. The statistical tests used and the levels of significance are stated in the

figure legend for each figure. Information describing how data was analyzed and quantified can also be found in the relevant ‘‘Method

Details’’ section for each method.
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Figure S1: Complement mutations predicted to be “drivers” can give rise to predicted neoantigens. 

Related to Figure 1. 

(A) Graph shows the % neoantigens binding with either strong (<50 nM), moderate (50-150 nM), 

weak (150-500 nM) and very weak (>500 nM) affinity for predicted neoantigens derived from 

three complement mutations (CD55, CPN2 and C1S) and neoantigens derived from APC, TP53 

and ARID1A mutations in COADREAD. 41 predicted true complement mutation-derived 

neoantigens were compared to 41 predicted true neoantigens derived from APC, TP53 and 

ARID1A mutations in COADREAD. 

(B) Graph shows the % neoantigens binding with either strong (<50 nM), moderate (50-150 nM), 

weak (150-500 nM) and very weak (>500 nM) affinity for predicted neoantigens derived from 

complement mutations (CD55, CPN2, C1S and C4BPA), and neoantigens derived from APC, 

TP53, ARID1A and LDH1 mutations. 43 predicted true complement mutation-derived neoantigens 

(from CD55, CPN2, C1S mutations from COADREAD and C4BPA from LGG) were compared to 

43 predicted true neoantigens derived from APC, TP53 and ARID1A mutations in COADREAD 

and LDH1 in LGG. 

(C) -(I) Differential predicted immune infiltration profiles for patients with or without CD55 

mutations in COADREAD are shown.  

 

 

 



 



Figure S2: Hypoxia inhibits complement-mediated cytotoxicity (CMC) in colorectal cancer. 

Related to Figure 3. 

(A)  GSEA plot for “Graft vs host disease ”in COADREAD patients with any complement mutation. 

(B) GSEA plot for “Antigen processing and presentation” in COADREAD patients with any 

complement mutation. 

(C) GSEA plot for “Hypoxia_ Buffa2010” in COADREAD patients with any complement mutation.  

(D) GSEA plot for “Hypoxia_Winter2007 upregulated” in COADREAD patients with any 

complement mutation.  

(E) GSEA plot for “Hypoxia_Winter downregulated” in COADREAD patients with any complement 

mutation.  

(F) GSEA plot for “Hypoxia_Winter downregulated” in COADREAD patients with component 

mutations.  

(G) GSEA plot for “Hypoxia_Li2014” in SKCM patients with component mutations.  

(H) GSEA plot for “Hypoxia_Li2014” in LGG patients with regulator mutations. 

(I) Graph represents the % CMC/total lysis in fetal human normal colon (FHC) cells and HCT116 

colorectal cancer cells. CMC/total lysis was assessed by calcein release/total lysis following 

treatment with either normal human serum or heat inactivated normal human serum. Error bars 

represent the SEM for a representative experiment. n=2 

(J) Graph represents the % CMC/total lysis in HCT116 colorectal cancer cells exposed to normoxia 

(21% O2) or hypoxia (1% O2) for 24 hr. CMC/total lysis was assessed by calcein release/total lysis 

following treatment with either normal human serum or heat inactivated normal human serum. ** 

= p-value <0.01, unpaired t-test, two-tailed. Error bars represent the SEM for a representative 

experiment. n=3 



 

 

  



Figure S3: Hypoxia-induced expression of complement regulator CD55 contributes to inhibition 

of CMC. Related to Figure 4. 

(A) Relative expression of CD46 (Log10 conversion) in COADREAD patients is shown against 

hypoxia signature expression (Log10 conversion)(Li et al., 2014). Two-tailed p-value is shown for 

the Pearson r (correlation coefficient). 

(B) Relative expression of CD35 (Log10 conversion) in COADREAD patients is shown against 

hypoxia signature expression (Log10 conversion)(Li et al., 2014). Two-tailed p-value is shown for 

the Pearson r (correlation coefficient). 

(C) mRNA expression of CD55/18S is shown. qPCR was carried out following treatment of RKO 

colorectal cancer cells with 0 or 24 hr of hypoxia (1% O2). ** = p-value <0.01, unpaired t-test, 

two-tailed. Error bars represent the SEM for a representative experiment. n=3. 

(D) mRNA expression of CD46/18S is shown. qPCR was carried out following treatment of HCT116 

cells with 0, 6 or 24 hr of hypoxia (1% O2) or 24 hr of hypoxia followed by 1 hr reoxygenation 

(21% O2). Error bars represent the SEM for a representative experiment. n=3. 

(E) mRNA expression of GLUT1/18S is shown. qPCR was carried out following treatment of 

HCT116 colorectal cancer cells with 0, 6 or 24 hr of hypoxia (1% O2) or 24 hr of hypoxia 

followed by 1 hr reoxygenation (21% O2). **** = p-value <0.0001, 1-way ANOVA with Tukey’s 

multiple comparisons test. Error bars represent the SEM for a representative experiment. n=3. 

(F) mRNA expression of GLUT1/18S is shown. qPCR was carried out following treatment of RKO 

colorectal cancer cells with 0 or 24 hr of hypoxia (1% O2). *** = p-value <0.001, unpaired t-test, 

two-tailed. Error bars represent the SEM for a representative experiment. n=3. 

(G)  HCT116 cells were transduced with either scramble (Scr), HIF1α or HIF2α shRNA and exposed 

to normoxia (21% O2) or hypoxia (1% O2) for 24 hr. WB was carried with the antibodies 

indicated. H3 = loading control. N.S = non-specific band that can indirectly provide an indication 

of loading. n=3. 

(H)  HCT116 cells were transfected with either scramble (Scr), HIF1α, HIF2α or 

ARNT/HIF1β siRNA and exposed to normoxia (21% O2) or hypoxia (1% O2) for 24 hr. WB was 

carried with the antibodies indicated. β-actin = loading control. n=3. 



(I) HCT116 cells were treated as in (Figure 4G/H). Immunofluorescence staining for membrane 

attack complex (C5b-9) was performed as a marker for CMC. C5b-9 = red, DAPI = blue. White 

arrows indicate areas of C5b-9 staining. Scale bar in white = 59.7 µM. 
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