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Supplementary Note 1 : Linear circuit

Consider the circuit shown in Supplementary Fig. 1a below. This is the same as Fig. 1a of

the main text, but with the complex voltage variables relabeled for convenience. The band

diagram, plotted in Supplementary Fig. 1b, shows that the upper band exhibits negative

dispersion, regardless of the value of α. On unit cell n, the voltages on the two sites are van

(to the right of the Ca capacitor) and vbn (to the right of the Cb capacitor). Also, we let ian

(ibn) denote the current through the inductor to the right of the Ca (Cb) capacitor.

Let Ca, Cb, and L be constants, and take a harmonic mode with angular frequency ω.

For n > 1, we apply Kirchhoff’s laws to the inductors and capacitors, with the exp(iωt)

phasor convention, and obtain

iωLian + van = 0 (1)

iωLibn + vbn = 0 (2)

−iω Ca
(
van − vbn−1

)
+ ian + iω Cb

(
vbn − van

)
= 0 (3)

−iω Cb
(
vbn − van

)
+ ibn + iω Ca

(
van+1 − vbn

)
= 0. (4)

Combining these to eliminate ian and ibn yields the following pair of coupled equations:

vbn−1 −
1

α
van +

1

α
vbn =

(
1− Ω2

)
van (5)

1

α
van −

1

α
vbn + van+1 =

(
1− Ω2

)
vbn, (6)

a b

Unit Cell

......

Ca Cb Ca Cb

L L L L

a
n

b
n

n

i
a
n i

b
n

Unit Cell 1

Cb

L

b
n

i
b
n Ca

L

a
n

i
a
n

+1-1
a b
1 1

i
b

i
a
1 1

v v v v v v

Wavenumber

(M
H
z)

Supplementary figure 1. a Schematic of the left-handed transmission line circuit. b Band

diagram for the infinite lattice. Results are shown for α = 0.5 (solid curves) and 3.0 (dashes).
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where Ω2 ≡ ω2
a/ω

2, ωa ≡ 1/
√
LCa and α ≡ Ca/Cb.

Suppose we close the circuit by grounding the leftmost and rightmost sites. Consider the

left edge (the right edge is handled similarly). There, the Kirchhoff equations simplify to

iωLia1 + van = 0 (7)

−iω Ca va1 + ia1 + iω Cb
(
vb1 − va1

)
= 0, (8)

resulting in the boundary equation

− 1

α
va1 +

1

α
vb1 =

(
1− Ω2

)
va1 . (9)

Hence, we arrive at the modified SSH problem discussed in the main text:

− 1
α

1
α

1
α
− 1
α

1

1 − 1
α

1
α

1
α
− 1
α

. . .

. . . . . .





va1

vb1

va2

vb2
...


=
(

1− Ω2
)


va1

vb1

va2

vb2
...


. (10)

This is the configuration referred to in the main text as the “nontrivial lattice”. The “trivial

lattice” can be described by removing the first row and column of the matrix. In either case,

the edges of the band gap are

ω± =

{√
α

2
ωa or

ωa√
2

}
, (11)

and the angular frequency of the edge state is

ωes =
√
α/(1 + α)ωa. (12)

Next, we consider the response of the circuit to a harmonic voltage source. Instead of

grounding the left edge, we apply an input voltage of amplitude Vin and frequency ω. Then

equation (9) is replaced by

Vin −
1

α
va1 +

1

α
vb1 =

(
1− Ω2

)
va1 , (13)

and the eigenvalue equation (10) is replaced by an inhomogenous equation.

Numerical solutions for this problem are shown in Supplemetary Fig. 2. Supplementary

Fig. 2a–b shows that the voltage amplitude in the nontrivial lattice is resonantly enhanced
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when ω matches ωes. The trivial lattice, on the other hand, does not exhibit a resonant

enhancement. However, when we plot the voltage distributions, they have the same decay

constant, as shown in Supplementary Fig. 2c. This is due to the fact that they have the

same bulk Hamiltonians.

Supplementary Fig. 2d shows the modal intensity (the sum of squared voltage amplitudes

over the lattice) at resonance, versus the α parameter, for a nontrivial lattice. In this

plot, the input frequency for each value of α is adjusted to the edge state frequency given

by equation (12). With increasing α, the bandgap becomes larger (i.e., the lattice moves
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Supplementary figure 2. Response of the linear circuit to an external voltage, calculated numer-

ically from the circuit equations with the parameters fa = 19 MHz and Ca = 47 pF. a–b Resonant

response of (a) the amplitude of the voltage on the first site (to the right of the leftmost capacitor),

and (b) the amplitude of the stored charge on the first (leftmost) capacitor, versus source frequency

fin = ω/2π, for α = 1.5. The resonance frequency predicted by equation (12) is indicated by the

horizontal dashed line. c Spatial distribution of the voltage ampltidues for fin = 14.75 MHz and

α = 1.5. d Intensity of the nontrivial lattice’s resonant mode, as given by the value of
∑

k |vk|2

(where |vk| is the voltage amplitude at site k) at resonance, versus the α parameter. For each value

of α, the input voltage has amplitude 1 V and frequency given by equation (12).
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deeper into the topologically nontrivial phase); accordingly, the edge state is more strongly

confined, and responds more strongly to the resonant excitation. The modal intensity scales

exponentially with the bandgap size.

Supplementary Note 2 : Circuit equations for nonlinear circuit

We seek a set of time-domain equations for the circuit’s nonlinear regime, where the B

capacitors are nonlinear. Let qan(t) and qbn(t) denote the charges stored in capacitors A and

B, respectively, on site n. These obey

qan(t) = Ca

[
van(t)− vbn−1(t)

]
, (14)

qbn(t) = Cbn(t)
[
vbn(t)− van(t)

]
. (15)

Here, Cbn(t) is the value of the nonlinear B capacitance in unit cell n. Using Kirchhoff’s laws,

we can derive several additional equations. The time-dependent voltage-current relations on

the inductors are

van = −Ldi
a
n

dt
, (16)

vbn = −Ldi
b
n

dt
. (17)

The current-charge relations on the capacitors, with the assumptions of current conservation

and zero net charge, give

dqan
dt
− dqbn

dt
= ian (18)

dqbn
dt
−
dqan+1

dt
= ibn. (19)

By combining Eqs. (14)–(19), we can eliminate the qa/b and ia/b variables, resulting in the

following pair of time-domain circuit equations expressed in terms of the va/b variables:

− d2

dt2

[
van − vbn−1 −

1

αn

(
vbn − van

)]
= ω2

a v
a
n(t) (20)

− d2

dt2

[
vbn − van+1 +

1

αn

(
vbn − van

)]
= ω2

a v
b
n(t). (21)

Here,

αn(t) ≡ Ca
Cbn(t)

(22)
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is the nonlinear capacitance ratio at site n.

It is convenient to re-cast Eqs. (20)–(21) in terms of the variables

un = vbn + van (23)

wn = vbn − van. (24)

Then

− d2

dt2

[
−1

2
un+1 + un −

1

2
un−1 +

wn+1 − wn−1
2

]
= ω2

aun (25)

− d2

dt2

[
−un+1 − un−1

2
+
wn+1 + wn−1

2
+

(
1 +

2

αn(t)

)
wn

]
= ω2

awn. (26)

Supplementary Note 3 : Harmonic decomposition and nonlinearity model

If a harmonic signal is injected into the nonlinear circuit, higher harmonics are generated.

Due to the symmetric C-V curve of the nonlinear capacitors, even-order harmonics are

suppressed.

Let ω denote the frequency of the first harmonic. We will decompose the voltage variables

in the following way:

un(t) ≈
∑

m=1,3,5,···

(−1)n Um
n eimωt + c.c. (27)

wn(t) ≈
∑

m=1,3,5,···

(−1)n Wm
n eimωt + c.c. (28)

On the right hand sides, the integer superscripts {1, 3, 5, . . . } denote the harmonic index.

The factor of (−1)n is for later convenience; we expect the first harmonic mode to behave

like an SSH edge state, which is characterized by alternating signs on adjacent unit cells

(another way of saying this is that the band gap of the bulk SSH model is narrowest at the

Brillouin zone boundary, k = ±π/h, where h is the lattice constant), and this factor ensures

that the U1
n and W 1

n variables act as smooth envelopes with the sign alternation taken out.

We now have to substitute the ansatz (27)–(28) into Eqs. (25)–(26). First, consider

equation (25), which is easy to deal with since it is linear. Matching the individual harmonics,

we obtain

1

2
U1
n+1 + U1

n +
1

2
U1
n−1 −

1

2

(
W 1
n+1 −W 1

n−1
)

= Ω2
1 U

1
n, (29)
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where

Ω2
m ≡

ω2
a

m2ω2
. (30)

Next, consider the nonlinear equation (26). The main complication here is the term

involving
wn(t)

αn(t)
. (31)

The time variation of αn(t) gives rise to two classes of effects: (i) self-phase modulation and

cross-phase modulation, which alter the effective value of αn “seen” by each given harmonic,

and (ii) frequency-mixing processes, which couple the dynamical equations for the different

harmonics. For now, let us try to pick out the contributions to category (i), neglecting (ii).

In our experiment, each nonlinear capacitor consists of a pair of back-to-back varactors.

The nonlinear capacitance ratio αn was defined in equation (22). Let us make the assumption

that

αn(t) ≈ A+B
[
vbn(t)− van(t)

]2
= A+B [wn(t)]2 . (32)

Here, A is the capacitance ratio in the linear limit and B > 0 is a Kerr-like parameter

determining the strength of the lowest-order nonvanishing (cubic) nonlinearity. To obtain

values for A and B, we use the manufacturer-supplied capacitance-voltage curve for the

individual varactors to calculate α and the bias voltage ∆V for a pair of back-to-back

varactors. We then perform a linear least-squares fit of α versus ∆V 2, using the subset

of data points with voltage biases ∆V ≤ 1 V. The fitted parameters are A = 1.32 and

B = 0.51 V−2, and the fit is shown in Fig. 1c of the main text.

In (31), we can take the approximation of replacing αn(t) with its time-independent part,

〈αn〉 ≈ A+ 2B
∑

m=1,3,...

∣∣∣Wm
n

∣∣∣2. (33)

For each harmonic m, this would then give rise to a term

∝ Wm
n

〈αn〉
eimωt, (34)

with 〈αn〉 now playing the role of an ”effective” α parameter.

This approximation does not capture all possible self-phase and cross-phase modulation

terms. This can be seen in the low-intensity limit, where we can Taylor expand 1/αn(t) in the

Wm
n variables; in this expansion, there will be non-constant terms like Wm

n (Wm′
n )∗ei(m−m

′)ωt,

which couples to the Wm′
n eim

′ωt harmonic term from wn(t) to yield a term proportional to

7



Wm
n eimωt, and hence contributing to the self-phase or cross-phase modulation. We will not

undertake a rigorous analysis of these terms, since the Taylor expansion is invalid anyway

when the intensities are not small. Instead, our take-home message is as follows:

1. Each harmonic contributes to the effective value of α in direct proportion to its local

intensity, like in equation (33).

2. However, the precise numerical factor need not be exactly the same as in equation (33).

Based on this approximation, we can now deal with the nonlinear equation (26), which

simplifies to

U1
n+1 − U1

n−1

2
−
W 1
n+1 +W 1

n−1

2
+

(
1 +

2

〈αn〉

)
W 1
n = Ω2

1 W
1
n . (35)

Supplementary Note 4 : Localized and traveling-wave solutions

Let us consider the case where 〈αn〉 is approximately constant in space, and look for

solutions of the form

Um
n = Ume

ikmn, Wm
n = Wme

ikmn. (36)

These are traveling-wave solutions if km is real, and exponentially localized solutions if km

is complex. Substituting this into Eqs. (29) and (35) gives1 + cos km −i sin km

i sin km 1 + 2
〈α〉 − cos km

Um

Wm

 = Ω2
m

Um

Wm

 . (37)

Solving the characteristic equation gives

cos km =
(

1 + 〈α〉
)

Ω2
m −

(
1 +
〈α〉
2

Ω4
m

)
. (38)

We can then easily show that, for 〈α〉 > 1, the domains over which the right-hand side has

magnitude smaller than unity (i.e., km is real) are:

Ω2
m < 2/〈α〉 (39)

2 < Ω2
m < 2(1 + 1/〈α〉). (40)

For m = 1, this corresponds exactly to the bands shown in Fig. 1d–e of the main text. In

particular, within the band gap between ωa/
√

2 and
√
α/2ωa, the right-hand side is larger

than unity and hence k1 is imaginary, in complete agreement with the linear analysis.
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Supplementary figure 3. On-site voltage amplitudes for the first-harmonic signal (orange circles)

and third-harmonic signal (blue squares). The frequency of the input is fin = 16.4 MHz. a, b

Nontrivial and trivial lattices with Vin = 2.5 V. c, d Nontrivial and trivial lattices with Vin = 3.4 V.

For the higher-harmonic modes, (39) is satisfied easily. For example, for the third har-

monic, we require

ω2 >
〈α〉
18

ω2
a. (41)

For operating frequencies below the linear-regime band gap, ω <
√
A/2 ωa, this is satisfied

for

α < 9A, (42)

which is well within the regime considered in this experiment. This analysis thus confirms

that the nonlinear circuit is capable of supporting traveling-wave higher-harmonic solutions.

Supplementary Note 5 : Simulated voltage profiles

We performed simulations of the nonlinear circuit using the circuit simulation software

SPICE. The simulations reproduce the basic features of the experimental results, though the

results are not in exact agreement, probably due to imperfections in the circuit components.

Supplementary Fig. 3 shows the on-site voltage amplitudes for the first- and third-

harmonic signals. These are extracted from the simulation results in a manner similar to

the experiment: after the simulation reaches steady-state, we take a time-dependent sample,
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Supplementary figure 4. Squared bias voltage amplitudes on the nonlinear capacitors, for the

first-harmonic signal (orange circles) and higher-harmonic signals (purple squares). The frequency

of the input is fin = 16.4 MHz. The higher-harmonic data is obtained by summing over the third,

fifth, and seventh harmonic data (further harmonics are negligible). a, b Nontrivial and trivial

lattices with Vin = 2.5 V. c, d Nontrivial and trivial lattices with Vin = 3.4 V.

Fourier transform, and extract the peak heights. To obtain simulation results matching the

experimental results shown in Fig. 2a–b of the main text, we find that it is necessary to

apply a higher input voltage amplitude than in the experiment, Vin ≈ 3.4 V. The results

are shown in Supplementary Fig. 3c–d. Similar to the experiment, the first-harmonic mode

in the nontrivial lattice decays away from the edge, reaching values much lower than in the

trivial lattice.

Supplementary Fig. 4 shows the bias voltage amplitudes on the nonlinear capacitors,

which were not measured in the experiment. As discussed in Supplementary Note 3, the bias

voltages determine the effective value of the nonlinear α parameter. To obtain this data from

the simulations, we extract the time-dependent bias voltage samples (i.e., the time-dependent

voltages between the ports of the nonlinear capacitors, denoted by wn(t) in Supplementary

Note 2), Fourier transform, and extract the peak heights; this yields the components denoted

by |Wm
n | in Supplementary Note 3. According to equation (33), the contribution of each

harmonic to the effective local α is proportional to |Wm
n |2. Supplementary Fig. 4 shows a

comparison between the first-harmonic contribution (orange circles) and the higher-harmonic
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contributions (purple squares). In particular, in Supplementary Fig. 4c, which correspond

to the voltage plot of Supplementary Fig. 3c, the higher-harmonic signals are found to

increasingly dominate the nonlinearity as we go deeper into the lattice.

Supplementary Note 6 : SPICE simulation results: mid-lattice excitation

If we choose to excite a site in the middle of the circuit, rather than the edge, the

behavior depends on the input impedance of the voltage source. First, consider a low-

impedance voltage source. In this case, the voltage on the input site is rigidly determined

by the voltage source, so this is similar to exciting two independent transmission lines.

If lattice is uniform (i.e., defect free), once we pick an excitation site, the lattice sections

to the left and right of the excitation site necessarily have different topological phases. For

instance, for α > 1, if there is a Ca capacitor to the right of the excitation site, then

the section on the right is nontrivial and the section on the left is trivial. Under such

circumstances, reasoning from the behavior of the circuit under edge excitation, we expect

the higher-harmonic signal to be emitted asymmetrically: a strong higher-harmonic signal

should propagate to the topologically nontrivial side, with a weak higher-harmonic signal

on the trivial side. This prediction is verified by the SPICE simulation results plotted in

Supplementary Fig. 5.

When the input impedance of the voltage source is high, the behavior is less clear-cut, as

both the first- and higher-harmonic signals can easily cross the excitation site. In both the

topologically trivial and nontrivial lattices, the higher-harmonic modes are in-band; thus,

any higher-harmonic signal that is generated can propagate to either the trivial or nontrivial

side. At each frequency, the dominant direction of higher-harmonic emission will depend on

the availability of circuit modes, based on finite-size effects, in each lattice section.

Supplementary Note 7 : Simulation comparisons with conventional NLTL

Finally, we used SPICE simulations to compare the third harmonic intensity in this circuit

to a conventional left-handed NLTL. In the conventional left-handed NLTL, all the linear Ca

capacitors are replaced with nonlinear Cb capacitors (i.e., the lattice is no longer dimerized).

In the linear limit, the conventional left-handed NLTL with Cb = 35 pF is a high-pass filter
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Excitation on site 20 Excitation on site 21a b

NontrivialTrivial Nontrivial Trivial

Supplementary figure 5. Voltage amplitude profiles for the first and third harmonic signals,

from SPICE simulation on a 40-site NLTL with (a) site 20 excited, and (b) site 21 excited. The

choice of excitation site partitions the lattice into topologically trivial and nontrivial sections. The

input signal has voltage amplitude Vin = 3 V, frequency fin = 16 MHz, and input impedance 1Ω.

All NLTL simulation parameters are the same as in Section Supplementary Note 5.

with a Bragg cutoff frequency of 11 MHz.

Supplementary Fig. 6 plots the simulation results for the normalized third-harmonic in-

tensity χ (defined in the same way as in the main text), versus the input parameters fin

and input voltage Vin. The simulation results for the SSH-like lattice, shown in Supplemen-

tary Fig. 6a, are similar to the experimental results shown in Fig. 3a of the main text; in

particular, the maximum value of χ is >∼ 2.4, comparable to the experimentally-obtained

maximum value χ ≈ 2.5. By contrast, Supplementary Fig. 6b shows that the conventional

NLTL exhibits no comparable enhancement of the third-harmonic signal intensity, with

χ < 0.47 throughout the entire parameter regime we investigated. Hence, the introduction

of the topological edge mode has contributed to a five-fold increase in the intensity of the

generated third-harmonic signal.
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Supplementary figure 6. Plot of the normalized third-harmonic intensity χ versus input fre-

quency fin and input voltage Vin, for (a) the SSH-like lattice in its topologically nontrivial con-

figuration, and (b) a conventional left-handed nonlinear transmission line (NLTL) with identical

nonlinear capacitors. The figure of merit χ is defined in the same way as in the main text, as the

mean squared third-harmonic amplitude on the first 10 sites relative to the squared input voltage

amplitude. In the SSH case, we obtain χ >∼ 2.4, which is comparable to the experimental result of

χ ≈ 2.5 reported in the main text. In the conventional NLTL, we observe χ < 0.47 throughout the

parameter range.
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