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I. SCREENED COULOMB GREEN’S FUNCTION IN THE PRESENCE OF A METALLIC SPHERE

The Green’s function G(r,r’), describing electrostatic interactions of explicit charges within the dressed multivalent
ion theory, is standardly obtained from the Debye-Hiickel (DH) equations, governing the electrostatic potential in an
electrolyte surrounding, in the present context, an ideally polarizable, metallic, nanoparticle (NP) of radius Ry with
constant surface (and interior) potential. Hence, by taking the center of coordinates at the center of the NP, we have

G(r,r')=C , 7 < Ry,

(1)
V2G(r,r") — k2G(r,r') = —L6(r —1') , 7 > Ry,
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where C' is a constant. The solution to the above set of equations in the region outside the spherical NP can
be expressed as the sum of a “special” solution (first term below), representing the bulk solution Go(r,r’) =
e ="l /(47eeo|r — 1r’'|), and a “homogenous” solution (second term below) due to the presence of the NP [1],
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G(r,r') =
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D | > Biky(kr) Pi(cos ), (2)
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where k;(-) are modified spherical Bessel functions of the second kind, P;(-) are Legendre polynomials, and we have

defined r = |r|, ' = |r/|, and ¢ as the angle between r and r’. The coefficients B; are in general functions of r’. The

first term above can be expanded as [I]
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in which ¢;(-) are modified spherical Bessel functions of the first kind and r~ and r~ denote the smaller and larger
values of r and r’. Since the potential on the metallic sphere is constant and does not depend on J, and using
r« =1 =Ry and r~ =1/, we find

C = Boko(HRo) + ﬁio(ﬁRo)ko(lﬁ",), for [ = O,

(4)
0= Blk’l(,‘iRo) + ﬁ(Ql + 1)2'1(I€R0)]€l(lﬂ"/), for [ > 0.

and, hence,
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which give the solution in the outside region, r,7’ > Ry, as
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1 exp(—k|r —1'))

(6)

dmeeg |r — 1’|

The constant C' can be fixed by using the fact that the metallic NP is assumed to be electroneutral; hence, using
Gauss’s law and after straightforward manipulations, we find

Kk ko(kr') , y 1 e~ r(r'=Ro)
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where we have used the explicit expressions
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The final expression for the Green’s function can thus be obtained as
G(r,1') = Go(r,x') + G (r, '), 9)
where G, (r,r’) is the contribution representing salt/dielectric image effects,
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1I. HAMILTONIAN OF THE MODEL VLP

In the VLP model used in the main text, the charge distribution of the inner and outer spherical shells (of radii R,
and Rj) can formally be expressed as

2
=Y 0ac0d(r — Ra). (11)

Other explicit charges in the system include multivalent ions each of charge valency ¢, located at positions {r;}, giving
the local charge distribution function

N
= Z qeoé(r — I‘i). (12)
i=1

The Hamiltonian associated with electrostatic interactions in the system can in general be written as

1
Z G (v, r; +quo/drpg )G(r,r;) + 5/drdr'pg(r)G(r,r')pa(r’). (13)
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Let us first focus on the case of only one multivalent ion in the system positioned at b (note that multivalent ion
positions are restricted to remain outside the inner shell, i.e., b = |b| > R;). We will thus have

2.2 1
H = T0G(b,b) + geq / drp, (r)G(r,b) + 5 / drdr’ p, ()G (r, ') (v') = Hipy + Hy + Hoo. (14)

The first term in Eq. is the self-energy of the multivalent ion and its image interaction. We subtract the redundant
(infinite) vacuum self-energy of the multivalent ion, and the ion-image interaction term is found as

2.2 2.2,27 (26R
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The second term in Eq. is the interaction between the ion and the surface charge, including both the direct DH
and the image interactions. For the a-th shell, it yields

2 2
Hy =Y qoac] / dré(r — Ra)G(r,b) = Y qoac) / r2dr dQ8(r — Ry)[Go(r,b) + Gip(r,b)] = HY™ + HI™. (16)
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The direct interaction is
2
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where ¥ is the angle between r and b. The direct interaction term can be evaluated as
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The image interaction part, on the other hand, is obtained as
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The integral over the Legendre functions is non-zero only for [ = 0, leaving us with
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The net contribution from the second term in Eq. is thus obtained as
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For the last part of Eq. , which gives the contribution from surface-surface interaction (including the relevant
image effects), we can write

2 2
Hy, = Z %O/dr dr' o, 0(r — Ro)[Go(r, ') + Gim(r,1)]osd(r' — Rg) = HE" 4 HI™. (22)
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The direct interaction part here is given by
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The first angular integration above can be done straightforwardly, and since the result is independent of the angle
between the two vectors, the second angular integration only yields a constant. Thus,
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The image interaction part, on the other hand, is obtained as
2 .2
Him= %" 50 /drdr'aaé(r — Ro)Gim(r,x)osd(r" — Rp), (27)

a,p=1
or, similarly as before,
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from which we obtain
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Hence, we have

2
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Putting the three terms contributing to the Hamiltonian together, i.e., H = H;;, + H, + H,,, we have
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Now, when we have N multivalent ions in the system, the Hamiltonian can straightforwardly be expressed as
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This completes the derivation of the expressions given in Eqgs. (2)-(6) of the main text.

III. NET PRESSURE ON THE OUTER SHELL

In the absence of a metallic core within the VLP, the net electrostatic potential of the two charged shells with radii
R; and R» is obtained as

€

inh
e1(0<r<Ry)=— (o1 "M Ry + 00e” "2 Ry) e (32)
EEQ RT
€o wR sinh k1 . e "
< Ry) =2 2
(pQ(Rl <r< RQ) e (026 RQ) o + (JlRl smh K)Rl) o s (33)
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The free energy of the system in the absence of multivalent ions then follows standardly as
2
Fpu = 7;650 {afRfu —e 2 ) 4 I R3(1 — e *2) + 20105 Ry Ry (e "2~ F0) — e*“<Rl+R2))} : (35)
0

The corresponding net (osmotic) pressure acting on the outer shell follows from

0Fpn ’
Wy Q2

Ppy =— , (36)

where Vo = 47R3/3 is the volume of the outer shell and the partial derivative is taken at fixed value of the total
surface charge of this shell, i.e., Q2 = 47 R305. We thus find

o3el 1 1 o109e R 1
Pry = 229 _ e 2Rz (1 192 071{ —k(Rz—R1) _ —H(R1+Rz)} 1 . 37
DH 2880 {K‘,RQ ¢ + KRQ + 2580 RQ ¢ ¢ * HRQ ( )
The contribution of multivalent ions to the osmotic pressure follows as (see Refs. [2] B])
N
dp(rs)
P = — 38
! <;q60 Vs Q2 7 ( )

where the potential ¢ is defined in piece-wise fashion throughout the space according to expressions —. Since
multivalent ions are restricted to remain outside the inner shell |r;| > R;, we shall only require

Opa(R1 <1 < Ry) o2eq sinh kr —kR
= 22 (14 KkRy)e "2 39
Vs 0 471'550/-@1"1%3( + Rl ’ (39)
and
(9@3(7‘ > RQ) ooege” .
—_ =7 = — (kR h kR — sinh kRs). 40
Ve o,  AmecorrR3 (1B coshrfy = sinh F) (40)

In the presence of a metallic core within the VLP, the potential derivative can be obtained from the second term

in Eq. as

) N —k|ri—Ra| —w(ritRa=2Ro) -1
dolr)| oo {e (kRasgn(r; — Ra) — 1) — (14 #Ry) (HRO )} ()
i=1
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This expression can be used to construct the contribution of multivalent ions to the osmotic pressure, as expressed
in Egs. (12) and (13) in the main text. Also, the third term in Eq. (30), can be used to obtain Egs. (9)-(11) in the

main text.

IV. ITERATIVE CANONICAL ALGORITHM

As noted in the main text, the ionic bulk due to the explicit multivalent ions is established in our simulations
using the iterative canonical MC algorithm introduced by us in Refs. [2] B], while the ionic bulk for monovalent
ions is implicitly assumed. The mentioned method utilizes a series of individual (full) canonical simulations that are
performed iteratively for any given set of parameter values and for a prescribed value of the bulk concentration, ¢,
for the multivalent ions. It is assumed that the number of explicit multivalent ions placed in the simulation box and
the bulk concentration obtained for them through the simulations are monotonically related. This latter assumption
is numerically verified. The goal is then to design the simulations such that, in consecutive steps i and ¢ + 1 of the
iterations, the resulting (simulated) bulk concentrations ¢; and ¢;41 bracket the prescribed value ¢y with increasingly
improved accuracy; hence, the corresponding numbers of multivalent ions N; and N; 1 used in the simulations, which
are estimated based on a linear interpolation scheme and based on the information from the previous steps of the
iterations (see below), bracket and converge to the desired value that produces the prescribed value of the bulk
concentration, c¢g. The bulk concentration obtained in each individual simulation is read off from the equilibrium
plateau-like region of the simulated density profile of multivalent ions, as established within the simulation box and
at sufficiently large distances away from the central VLP. We have verified that the proposed simulation cycle always
converges to the desired limit for each data set reported in the main text.

The algorithm can be summarized in practical terms as follows.



e Initialization:

> Set up an initial simulation with the number of multivalent ions being set equal to Ni,; = Ng + Cn, where
Cn and Ny are chosen for practical convenience as Cy = 10 and Ny = max{1l, coVs — (Q1 + Q2)/q} (these
choices are of no physical significance for the outcomes). Here, ¢oV} is the number of multivalent ions in
the simulation box of volume V,, if they were to be distributed evenly within the box, and —(Q1 + Q2)/q
is the excess number of multivalent ions required to compensate the sum of the fixed charges on the two
shells Q,, = 470, R%, where o = 1 and 2 for the inner and outer shells, respectively.

> Run a full simulation using Nj,; multivalent ions and obtain the resulting bulk concentration c;p;.

> If ¢y < c¢p, re-run the initial simulation by setting Nj,; — Niy + Cny and repeat as necessary until a
situation with c¢jn; > ¢ is reached.

> The initial bracketing of the prescribed c¢q is thus achieved by storing the last values of Niy; and ¢;y,; obtained
through the preceding steps as the upper-bound values Nyax = Nini and cmax = Cini, and by setting the
lower-bound values as Ny, = 1 and cpin = 0; the latter are reasonable lower-bound choices, as with just
one multivalent ion, our simulations give a nearly vanishing bulk concentration.

e Interpolation and iteration:

> Set N* = (Nmax - Nmin)(CO - Cmin)/(cmax - Cmin) + Nmin-
> Run a full simulation using N, multivalent ions and obtain the resulting bulk concentration c,.

> If ¢ > ¢, store N, and ¢, as the new upper-bound values (Nyax = Ny, Cmax = ¢«), while the lower-bound
values are carried on from the previous step;

> Otherwise, store N, and c, as the new lower-bound values (Nyin = Ny, Cmin = ¢« ), while the upper-bound
values are carried on from the previous step.

> Repeat the above four steps until |c. — ¢o| < €cp is satisfied, where the convergence relative error is
conventionally taken as e = 1073,

e The data from the final simulation achieved through the above iterative steps produce the desirable outcomes.
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