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Remarks on edge selection in behavior prediction 
 
The edge selection was performed via a two-step feature selection 

procedure (see Fig. 1 in the texts). During the first step we selected an edge, 
if its average p-value (obtained from the GCA) across all subjects was smaller 
than a threshold. At the threshold of p < 0.1 this selected a total of 13,022 
directed edges (as a comparison, at the threshold of p < 0.05, this selected 
3,927 edges; see the next section for a comparison using different thresholds). 
The second step edge selection was conducted within a predictive modeling 
framework (see Fig. 1 and Method in the texts for more details). 

Notably, the selected edges with large F-values across subjects were 
from the cerebral cortex to bilateral prefrontal (𝜇! ≥ 6.60), parietal (𝜇! ≥ 8.30), 
temporal (𝜇! ≥ 8.11) and motor regions (𝜇! ≥ 9.38), as well as flow within the 
temporal region (𝜇! ≥ 10.37) (see Fig. 7 in the texts).  

At the network level, within-network information flow was strong in the 
majority of the examined networks, in particular the medial frontal (𝐹 ≥ 7.24), 
frontoparietal (𝐹 ≥ 7.59), the default-mode (𝐹 ≥ 6.60), and V1 (𝐹 ≥ 18.90). 
Relatively large between-network information flow was also observed 
between the higher-order functional networks that are most pertinent to 
cognitive functions including the medial frontal, frontoparietal and the default-
mode networks (𝐹 ≥ 6.60) (see Fig. 2 in the texts).  
 
 
Interpretation of F-values from a Granger-Geweke analysis as 
information flows in the brain 
 

We used F-values in the sense where a large 𝐹!→! value suggests that 

past information from region Y can improve the (explanation of) current neural 

activation of region X.  

The reason that F-value is a reasonable metric for quantifying the 

directed connectivity between two regions can be interpreted in the context of 

Granger-Geweke causality, from which each F-value is derived. Specifically, 

consider the following two autoregressive (AR) processes obtained from two 

time series from two brain areas X and Y: 

 

X! =  α!X!!! + ε!,      Var ε! = Σ!
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X! =  a!X!!! + b!Y!!!
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+ e!,      Var e! = Σ!

!
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The first AR model is aiming at predicting the activity of region X at 

time t (X!) using all the past information of X, and Σ! is the variability of X! that 
cannot be explained by past information of X. The second AR model further 
adds in the past information of Y to predict X!; namely, it uses both X’s past 
information and Y’s past information to predict X!, and Σ! is the variability of X! 
that cannot be explained by past information of both X and Y. If brain area Y 
feeds information into X, then the past information of Y must arrive at X after 
some time – this could be happening continuously. If the past information of Y 
can improved the explaining of X!, then Σ! must be smaller than Σ! (in other 
words, adding past information of Y into the first AR model reduces the 
information not explained, or Σ!). 

The Granger-Geweke F-value from region Y to X is defined as 

𝐹!→! = ln |!!|
|!!|

.  Quantitatively speaking, it is the log of the ratio of the residual 

variances before and after adjusting for Y. Note that since ln |!!|
|!!|

 can be written 

as ln |Σ!|− ln |Σ!| , 𝐹!→!  therefore measures the difference between the 
information (in terms of varibility) not explained in the first AR model and the 
information not explained in the second AR model. In simpler terms, it 
quantifies the reduction of information-not-explained (at the log-scale) from 
one brain area when additional past information of another brain area is 
included. When 𝐹!→! is very large, it means that Σ! is much smaller than Σ!, 
namely adding past information of Y improves the prediction of current status 
of X (X!).  
 
 
 
 
 
 
 
 
 
 
 
 
 



Optimal lags associated with F-values 
 

 
Supplementary Figure 1: The optimal lag length corresponding to each edge is arranged 

according to their anatomic regions. The brighter the color is, the larger the edge optimal lag 

is. Those with 0 entries correspond to edges that were not selected. In general, the cerebrum 

was associated with relatively larger optimal time lag, where the subcortex and cerebellum 

were associated with relatively smaller lag. 

 

 

The results showed that lager optimal lags were primarily present in the 

prefrontal, motor, parietal, temporal, and occipital cortices, where the 

cerebellum, subcortex, and brain stem were associated with relatively small 

optimal time lag. This finding may suggest that the information processing and 

transfer at subcortical and cerebellum are relatively faster than those at the 

cerebrum. 
 

 
Left-right and right-left phase encoding in the Human Connectome 
Project (HCP) Data 
 
 

Unlike the common EPI phase encoding strategy that is applied in the 

anterior–posterior (A–P) or posterior–anterior (P–A) direction, the HCP data 

used a “left–right and right–left” direction strategy. The aim of this strategy 

was to minimize the field of view (FoV) and the number of lines of k-space 

during phase encoding and therefore reduce the distortion and blurring1.  
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Comparison of signal-to-noise ratio (SNR) between subcortical regions 
and the whole brain 
 

To examine whether subcortical regions are associated with lower SNR, 

we computed voxel-wise SNR maps for each individual2. In particular, the 

SNR for a given voxel is defined as the mean of that voxel across all time 

points over the standard deviation of that voxel. We computed the SNRs for 

four subcortical nodes (i.e. bilateral caudate and bilateral putamen) and 

compared the derived SNRs with that from the whole brain. We found that, for 

all of the four regions, the SNRs were significantly higher than that from the 

whole brain (p < 0.001), suggesting that subcortical regions are not 

associated with poor signal, at least in the sample we used.  

 

 

 

 
References: 
 
1. Smith, S. M. et al. Resting-state fMRI in the Human Connectome 

Project. Neuroimage 80, 144–168 (2013). 
2. Murphy, K., Bodurka, J. & Bandettini, P. A. How long to scan? The 

relationship between fMRI temporal signal to noise ratio and necessary 
scan duration. Neuroimage 34, 565–574 (2007). 

 


