SUPPLEMENTARY INFORMATION

Secondary structure of the segment 5 genomic RNA of influenza A virus and its application for designing antisense oligonucleotides

Paula Michalak¹, Marta Soszynska-Jozwiak¹, Ewa Biala¹, Walter N. Moss², Julita Kesy¹, Barbara Szutkowska¹, Elzbieta Lenartowicz¹, Ryszard Kierzek¹, Elzbieta Kierzek^{1*}

¹Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland

²Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, United States of America

*Corresponding author: E-mail: elzbieta.kierzek@ibch.poznan.pl, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland, Tel.: +4861-853-8503; Fax: +4861-852-0532

Name	Sequence 5'→3'
PR1	GCGTAATACGACTCACTATAGGGAGTAGAAACAAGGGTA TTTTTC
PR2	AGCAAAAGCAGGGTAGATAATC

Table S1. Primers for PCR for obtaining vRNA5 DNA template.

Name	Complementary vRNA5 region (nt)	Sequence 5'→3'
P1	1541-1565	AGCAAAAGCAGGGTAGATAATCAC
2L	1306-1331	GAgAGaATGgTACtCTCtGCAtTTG
3L	1043-1063	CTcTcGTgCGtACtGGaATG
P4	784-803	GATCAAGTGCGAGAGAGCAG
P5	522-544	GTCAATTAGTGTGGATGGCATG
P6	263-282	GGTCCAGAGAAACCTTCCC
P7	1269-1287	CCTGGAAGAACACCCCAG
P8	1092-1116	CCTGATGATATGGCATTCCAATCTA

Table S2. DNA primers for reverse transcription. LNA is marked with small letter. All primers were 5'-labelled with JOE, FAM, TAMRA or ROX.

Name	Sequence 5'→3'	Length (nt)
QF	AGACCAATCTTGTCACCTCTGAC	23
QR	AGGGCATTTTGGACAAAGCGTCTACG	26
QP	TCACCGTGCCCAGTGAGCGAGGACTGCA	27
RT	ATGAGTCTTCTAACCGAGGTCG	22

Table S3. DNA primers for RT-qPCR. Primer QP was labelled with 6-TAMRA at 3'and 5-FAM at 5' end.

Binding site *	Probe sequence ^b	Nucleotide of RNA target complementary to 3'g of hexamer probe ^c	ΔG°37 (kcal/mol) for duplex modified probe/vRNA5 ^d		Hybridization result ^{e, f} buffer 1, 37°C	Hybridization result ^{e, g} buffer 2, 37°C
20/114/891	GdDdDg	U, C, A	-7.79	-9.81*	m	
21/273/783	dGdDdg	U, G, A	-9.00		W	m
22/184/355/	dDgDdg	U, A, G, G, C,	-9.24	-11.37*	s	m
880/883/1251/		C, G, C, A				
1280/1300/						
1429						
23/257/815/	dDdGag	U, C, C, C, U	-8.39	-10.19*	m	s
1182/1301			9.(2	10 (4*		
30/48/4/2/958	GdCdDg	A, A, C, A, U	-8.62	-10.64*	m	
/1185	UdUaDa	C C C U U	<u> </u>			
1365/1/01	Outogog	0, 0, 0, 0, 0, 0	-0.4/		111	w
36	GdGUda	Δ	-9.20		m	
37/135	GaDalla	IL G	-10.82			m
38/999/1170/	DøGdG		-9.46		m	W
1178/1224	Dgouo	11, 0, 0, 0, 0, 0	9.10			
41/276/324/	CdGdGg	C. U. C. C. C.	-9.86	-12.44*	m	m
439/478/1074	8	U	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
42/215/325/	GCdGdg	C, U, C, A, U	-10.44	-12.57*	m	w
371/785	U					
50/1220	GdGdCg	U, C	-9.84	-11.92*	m	W
51/899/998/	GgDgAg	G, C, A, C, A,	-10.72	-12.47*	m	m
1143/1177/		C				
1223						
52/343/1227	CgGdG	U, C, C	-9.52		m	m
53/120/937/	UCgGdg	C, G, A, C	-10.23	-12.36*	W	m
1228	uUaC ag	IT IT	0.29			
54/958	GGdUag		-9.28		III	m
920	UUUUUU	A, U, U, U	-9.03			111
68/874/1036/	dDøGdø	AAAGU	-10 59		m	m
1260/1297	ubgoug	11, 11, 11, 0, 0	10.59			
69/639/1298/	GdAgGg	U. C. U. C	-9.41	-11.99*	m	m
1362	66	, , , ,	-			
70/760/1363	uGdDgg	C, U, C	-9.17	-12.1*		m
71/78/1304/	dUgDdg	C, A, U, C, G	-9.11	-11.24*	m	m
1364/1490						
105/116	DcGdDg	G, U	-9.22	-11.24*		m
106/915/926/	dDcGag	U, G, C, C, A	-9.03	-10.83*	m	m
1069/1499						
112/840/970/	dDdGgg	G, C, C, U	-9.43	-12.36*	m	
1261		0.0	0.00	11.01*		
113/1560	dDdDgg	C, G	-8.08	-11.01*	W	m
11/	GDcGDg		-8.80	-10.82	m	
150/1559/1410	dCdUcc	A, C, C	-9.91	_12 50*	m	
159/759	DdGdUg	A, A, C	-9.00	-12.39*	m	8
150/750/221/	GdDaDa		<u>-0.33</u> _9 74	-10.4/	111 337	m
884/1249/1252	Gudgdg	$\begin{bmatrix} \Lambda, \Lambda, 0, 0, 0, 0 \\ U U U \end{bmatrix}$	-2.17		vv	111
/1281/1430		0, 0, 0				
160/348/375/	DgDdGg	U, G, G, C. U.	-9.61	-12.19*	m	m
640/882/1250/	5 6	U, C		-		
1299						

161/214/349/	CdGdDg	C, G, C, U, G,	-9.07	-11.09*	m	W
784/1347/1385	U	G. A.				
/1461		, ,				
171/796/1269	Dol JoCo	GCC	-10 74	-12 82*	m	
172/797	dDallaa	G, G, C	-9 44	12.02	W	m
174/258/1262/	GdDdGg		-8.58	_11_16*	m	m
1302	GuDuOg	А, О, С, О	-0.50	-11.10	111	111
175/228/220/	aCdDda		0.56	11.60*	337	m
226/1214/1262	gOuDug	C, A, O, A, A,	-9.50	-11.09	w	111
030/1214/1203		C, U				
/1460	C D1		0.07	12 10*		
1/0/022/880/	uGgDag	U, A, C, A, C,	-9.97	-12.10**	W	m
1048/1283/143		C, U				
2/1481			10.46	12 50*		
17//399/408/	dUgGdg	U, G, C, A, U,	-10.46	-12.59*	m	S
804/88///948/		C, G, C, U				
1044/1145/						
1482						
178/529/805/	GdUgGg	U, G, U, U, U	-10.04		W	m
949/1483						
179/806/950/	uGdUgg	C, C, C, G, G,	-9.04	-11.97*	W	m
1022/1087/		U, U				
1112/1306						
185/356/547	uDdGdg	U, U, C	-8.78	-10.91*	m	W
201/416/563/	dUgDgg	C, U, U, U	-9.9	-12.83*	W	m
863	0 00					
216/241	GGCdGg	U, G	-9.64		m	W
218/321/1443	AgGgC	U. U. U	-10.01			m
200/220/505	UGdGøø	UCU	_9 99	-12.92*	W	m
221/378/723/	CuGdGg		-9.62	-12 20*	m	
1451	Cuouog	0, 0, 0, 0	9.02	12.20	III	
229/340/1296	DaGdDa	UUG	-10.17			m
229/340/1290	CdGaAa	U, U, G, G	-10.17	11.80*	m	m
230/311/11/1	UdUgAg	0, 0, 0	-10.03	-11.00	m	111
244/1100		0,0	-8.90	12.0(*	III	
256/45//469/	aDgDgg	G, C, A, A, G,	-10.03	-12.96*	S	m
240/814/1181	ИСИ	C	10.47			
265	UcCcUg	A	-10.4/			S
266	UUcCcg	A	-9.17			S
272/338/1479	GdDdCg	G, U, A	-8.13		m	
274/376/414/	GdGdDg	U, C, G, A, C,	-9.50	-11.52*	m	m
561/641/859/		A, G, A				
1072/1327						
275/642/644/	dGdGdg	U, U, C, C, U,	-10.71	-12.84*	S	m
790/860/1073/		U, C, G, U, C				
1203/1221/						
1328/1330						
291/1118	CCcDC	A, G	-7.72			m
307/1292/1386	dCdGdg	A, A, U, A, A	-9.83		m	W
/1396/1486	_					
308/452	GdCdGg	U, G	-9.41		S	m
377/415/562/	uGdGdg	U, U, U, C, C,	-10.09	-12.22*	S	S
646/722/862/	0	C, C, A				
1205/1450						
395	DcUcCg	U	-10.04		W	S
400/888/955/	DdUoGo	UUAIIII	-9.12	-11 70*	w	m
1045/1146/	Duogog	$\begin{bmatrix} 0, 0, 1, 0, 0, 0 \\ C \Delta \Delta \end{bmatrix}$	2.12	11.70	**	
1211/1324/						
1426						
411/8/10/152/	dDeDug	0.0.0	_7.77		m	
/18/565/800/	dDdUaa		-7.05	_10.00*	111	m
T10/JUJ/007/	aDaOgg	0, 0, 0, 0, 0, 0	-1.75	-10.00		111

1090/1212						
458/470	cDdGdg	C, C	-9.49	-11.62*	m	m
461	uCcCa	U	-8.86		W	S
468/495	DgDgUg	C, G	-10.26	-12.20*	m	m
471/876	DcDdGg	U, C	-8.73	-11.31*	m	
492/578/1513	gUcUcG	U, U, U,	-9.63		m	
496/1331	UdGdGg	A, U	-9.15			m
530/935/1034	GGdUgg	C. U	-9.69	-12.62*	W	m
532/659	GUgGdg	A. A	-10.39		m	m
533	uGuGgg	U	-9.87		W	m
534/683	gUgUgg	C, A	-9.77	-12.70*	S	
535	DgUgUg	C		-11.61*	S	
623/1433	uUgGdg	U, U	-9.41			m
435/966/639/	GgGuAg	A, U, C, C, C	-9.79	-11.54*	W	m
965/1553						
638/839/969/	dDgGg	A, U, C, A, U	-9.52		m	W
1016/1361	00					
643/645/721/	GdGdGg	U, U, C, G, U,	-10.29	-12.87*	m	
789/791/861/	_	U, C, G, C, G,				
898/1066/1142		U, U, U				
/1202/1204/						
1222/1329						
657	gGdUdg	A	-9.83		W	m
669	GCdGug	C		-11.92*	m	
677	DcGgDg	G	-10.81		S	S
679/1189	GUdCgg	C, U	-8.68	-11.61*	m	
614/726/779/	dUcCug	A, C, C, G	-8.74	-11.82*		m
846						
775/1411	UgGgAg	U, C	-10.53	-12.28*	W	m
787/812	GdGCdg	C, U	-10.44	-12.57*	m	W
792/1067	CGdGdg	C, C		-12.37*	W	m
816/841/1183	CdDdGg	U, C, U	-8.15	-10.73*	m	m
875/1017/1037	CDdGgg	U, C, U, G	-9.39	-12.32*	m	m
/1509						
885/1282/1431	GgDdGg	U, U, U	-10.17		W	m
901/992/1049/	CUgGdg	C, C, U, C, U	-10.37	-12.5*		m
1244/1284						
909	CgGdAg	A	-9.74		S	
924/1001	CgDgG		-9.76		m	
925/1068	DcGdGg	C, U	-10.01	-12.59*	m	m
936	CgGdUg	С		-12.12*	m	W
952/1207	GgUgDg	A, C	-10.74	-12.76*	m	W
475/838/922/	AgGgAg	G, U, A, G, C	-10.34	-12.09*		S
961/1360				12.00*		
963	gUdGgg	C	10.05	-13.09*	W	m
982	CgGuGg	G	-10.37			m
1013	GgUcDg	U	-10.25	10.45*	m	
1018	GcDdGg	C C		-12.45*	S	
1077	UdUcDg	C C	0.50	-10.00		m
11/2/1445	UCdGgg	U, C	-9.50	-12.43*	W	m
1264/1460	GgGdAg	A, U, U, U, G	-10.24		W	m
1264/1469	OD OU		0.01			
1241/1408	GDgGUg	G, A	-9.24		m	
1253	CGdDgg	U	-9.32			m
/95/1056/12/0	g∪gCg	U, A, G	-9.48		m	
1272	CCcDG	A	-8.17	0.00*		m
1273	CcCcA	C	0.05	-9.88*		m
1322	UgGUdg	G	-9.25		m	

1371/1533	dGuGdg	G, G	-10.06		m	
1374	CUcDgg	А	-9.32		m	
536/1420	UdGuGg	A, C	-8.50	-11.08*	W	m
964/1552	GgUdGg	C, U	-9.98	-12.56*	m	W

Table S4. Isoenergetic microarrays probes that bind strongly and moderately to vRNA5 and their thermodynamic properties. a – binding sites of probes (all complementary possible targets), sites are denoted by the middle nucleotide of the complementary RNA region to specific pentamer; b - nucleotides in capital letter (A, C, G, U, D) are 2'-O-methyl-RNA nucleotides, in small letter (a, c, g, u, d) are LNA nucleotides, D and d are 2,6 –diaminopurine (2'-O-methyl type or LNA, respectively); c - listed nucleotides concern each binding sites in column 1, respectively; d- ΔG°_{37} calculated as modified probe/RNA duplex for listed binding sites ^{1, 2}, * - ΔG°_{37} calculated for duplex of full complementary hexamer probe (3'g of probe is paired with C of RNA target); e - binding was considered strong (s), medium (m) and weak (w), when the integrated intensities were $\geq 1/3$, $\geq 1/9$ and $\geq 1/27$ of the strongest intensity, respectively; f - hybridization condition: buffer 1 (300 mM KCl, 5 mM MgCl₂, 50 mM HEPES pH 7.5), 37°C.

Name	Complementary	Sequence $5^{2} \rightarrow 3^{2}$	Sites of RNase H
ivanic	vRNA5 region (nt)	Sequence 5 75	cleavage
H1	72-83	CATGAATAAT	71 (w) 76 (w) 78 (w) 82 (w)
H2	464-472	AAGAGTGG	681-683 (s) 471-472 (w)
НЗ	466-485	TTCATAAGAGGAAAGAAAGT	750 (w) 751-754 (s) 755 (w) 470-484 (s)
H4	643-651	CTTTGAGAGAG	647 (s) 649-650 (s)
Н5	676-684	GTGTACGG	676-684 (s)
H6	878-888	TGGACGAAGGA	880-882 (w) 883 (s)
H7	886-895	GCGAAAATGG	890-891 (s) 893 (s) 895 (s)
H8	1065-1073	AGAACGAGA	1067-1071 (s) 1073 (s)
H9	1102-1109	ATATGGCA	Х
H10	1248-1260	GGACCCTAAGAAA	1250-1253 (w) 1254-1260 (s) 1261 (w)
H11	1257-1264	GAAAGGAC	1261-1262 (w) 1264 (w)
H12	1336-1327	CAATAGAGAG	1331-1332 (s) 1334 (s)
H13	1425-1416	TGGTTAGTGG	1421-1425 (s) 1426 (w)
H14	1415-1427	ATGGTTAGTGGCA	1421-1427 (s) 1428 (w)

Table S5. RNase H assay results for vRNA5 with listed DNA oligonucleotides. s - sites of strongRNase H cleavage; w - sites of weak RNase H cleavage; x - no cleavage.

Name	Complementary	Sequence 5'→3'a	ASO type
	VKNA5 region (III)		
79-18GP	70-87	cUuU <u>GACATGAGTA</u> AuGa	gapmer
474-21M	465-485	UUCAUAAGAGGAAAGAAAGU	2'OMeRNA
474-21L	465-485	UUcAUAAgAGGaAAgAAAGU	2'OMeRNA-LNA
538-10L	534-543	UCaAUuGGUG	2'OMeRNA-LNA
883-11M	878-888	UGGACGAAGGA	2'OMeRNA-LNA
883-11L	878-888	UGgACgAAgGA	2'OMeRNA-LNA
1069-10L	1065-1074	GAGaACaAGA	2'OMeRNA-LNA
1148-18GP	1140-1157	cAaG <u>CAAACAATGG</u> CgAa	gapmer
1253-13M	1248-1260	GGACCCUAAGAAA	2'OMeRNA
1253-13L	1248-1260	GGACCCUAAGAAA	2'OMeRNA
1333-16L	1326-1341	CAuAACaAuAGaGAGG	2'OMeRNA-LNA
1420-13L	1415-1427	AuGaUUGGUGGaA	2'OMeRNA-LNA
1420-13GP	1415-1427	AuG <u>ATTGGTG</u> GaA	gapmer
MX	_	GUUAAGUAAUACAGAGAAGA	2'OMeRNA
NEG	_	AGACCUCUAUAGCAGCU	2'OMeRNA
1079-12M	1074-1085	GCCACAUAUCAG	2'OMeRNA

Table S6. Antisense oligonucleotides (ASOs) designed based on influenza virus vRNA5 secondary structure. NEG and MX are negative controls that are not complementary to vRNA5. MX is scramble oligonucleotide (mixmer) of 474-21M; a – nucleotides in capital letter (A, C, G, U) are 2'-O-methyl-RNA nucleotides, lower case letters (a, c, g, u) are LNA nucleotides, in gapmers the DNA nucleotides are underlined ($\underline{A}, \underline{C}, \underline{G}, \underline{T}$).

Figure S1. vRNA5 analysis by agarose gel electrophoresis. A – RiboRuler High Range RNA Ladder (Thermo Fisher Scientific), B – vRNA5 after folding in buffer 2; C – vRNA5 after folding in buffer 1; D - vRNA5 in buffer 2 without folding; E – vRNA5 in buffer 1 without folding (see Methods). One structure and no dimer formation was detected for folded RNA in both buffers.

Figure S2. Example of capillary electrophoresis raw data of vRNA5 chemical modification results detected by reverse transcription (using only *Fitted Baseline Adjust* option in ShapeFinder program). On each panel is shown a fragment of SHAPEFinder window with reverse transcription products of chemical mapping with: A – NMIA; B – DMS; C – CMCT; D – kethoxal. The reaction products is a green line (5' labelled with JOE), control is a blue line (5' labelled with FAM). The DNA ladder is respectively a black line - G (5' labelled with TAMRA) and red line -A (5' labelled with ROX).

Figure S3. Secondary structure model of vRNA5 predicted with RNAstructure using constrains from chemical mapping at 23°C. Constrains from chemical mapping experiments with DMS, CMCT, kethoxal and NMIA were incorporated analogical as for data from 37°C. The secondary structure motifs that differ from 37°C structure model (Figure 1) are marked with pink colour.

Figure S4. Results of hybridization of vRNA5 to isoenergetic microarrays. All complementary sites for probes that bind strongly or moderately are shown A - in buffer 1 at 37°C; B - in buffer 2 at 37°C. Binding was considered strong and medium when the integrated intensities were $\geq 1/3$ and $\geq 1/9$ of the strongest intensity. In graphs the bindings were normalized to the strongest intensity and have values in range 1–0.11, showing bindings: $0.33 \leq$ strong and $0.11 \leq$ medium <0.33.

Figure S5. The MTT assay results for MDCK cells treated with 0.5 μ M of selected antisense oligonucleotide (ASO). The presented data are average percentages of three biological repeats. K - untreated cells, L- cells treated with Lipofectamine 2000. Statistics were calculated using a two-tailed T-test (p < 0.01). Statistically important results are marked with *.

Figure S6. "Mirror motifs" found in determined secondary structures of vRNA5 [(-) strand] and (+)RNA5 ³. The motifs are marked by blue shadow on vRNA5 secondary structure model predicted by RNAstructure 5.7 using experimental data from 37°C as constraints.

References

- 1 Kierzek, E., Ciesielska, A., Pasternak, K., Mathews, D. H., Turner, D. H., Kierzek, R. The influence of locked nucleic acid residues on the thermodynamic properties of 2'-O-methyl RNA/RNA heteroduplexes. *Nucleic Acids Res.* **33**, 5082-5093 (2005).
- 2 Pasternak, A., Kierzek, E., Pasternak, K., Fratczak, A., Turner, D. H., Kierzek, R. The thermodynamics of 3'-terminal pyrene and guanosine for the design of isoenergetic 2'-Omethyl-RNA-LNA chimeric oligonucleotide probes of RNA structure. *Biochemistry* 47, 1249-1258 (2008).
- 3 Soszynska-Jozwiak, M., Michalak, P., Moss, W. N., Kierzek, R., Kesy, J., Kierzek, E. Influenza virus segment 5 (+)RNA secondary structure and new targets for antiviral strategies. *Scientific Reports*, 7: 15041 (2017).