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SUPPORTING METHODS  
Structure Preparation. The crystal structure of Spinacia oleracea KARI bound to the transition-state analog N-hydroxy-

N-isopropyloxamate was obtained from the Protein Data Bank27–29 with the accession code 1YVE26 and prepared as 
described previously by Silver.12 Although the enzyme crystallizes as a homodimer with two identical active sites,26 only 
the chain A monomer was used for all simulations in order to improve computational efficiency. This choice was justified 
by the significant separation between the active sites of the two monomers26 (Figure S3). Histidine side-chain orientation 
and protonation for the following chain A residues was selected to maximize hydrogen-bonding potential, resulting in no 
changes to histidine orientation, no doubly protonated histidine side chains, and neutral histidine protonation as 
indicated: 103-𝛿, 215-𝛿, 226-𝛿, 232-𝛿, 280-ɛ, 328-ɛ, 484-𝛿, 506-ɛ, and 564-ɛ. Crystallographic water molecules that were 
neither in the active site nor made at least three hydrogen bonds with the protein (using a maximum heavy-atom 
hydrogen-bond distance of 3.33 Å) were removed. The 61 water molecules remaining had residue identifiers of 72, 75, 87, 
93, 106, 109, 179, 194, 379, 405, 429, 440, 474, 481, 838–841, 852, 862, 878, 883, 887, 894, 895, 941–949, 965, 967–969, 975, 
998, 999, 1023–1025, 1032, 1072, 1089, 1093–1095, 1097, 1105, 1108, 1206, 1250, 1252, 1253, 1257, 1304, 1305, and 1779. 

A model of the substrate-bound enzyme was then constructed by running an in vacuo QM ground-state minimization 
of the substrate, two magnesium centers, five magnesium-coordinating water molecules, and the side chains of three 
surrounding active-site residues, Asp 315, Glu 319, and Glu 496. Glu 496 was protonated, consistent with previous studies 
indicating its importance in stabilizing the transition and product state by forming a hydrogen bond with the substrate 
O8.30 The GAUSSIAN03 computer program31 was used to perform in vacuo QM calculations at the rhf/3-21g* level of 
theory, using ground-state energy minimization (keyword OPT) to obtain reactant and product structures and a saddle-
point search (keyword QST3) to obtain the transition-state structure. Both types of optimization were performed using 
the Berny algorithm.32,33 To ensure low-energy pathways to the reactant and product state of isomerization, the resulting 
transition state was validated by following the vibrational eigenmode corresponding to the single negative eigenvalue. 

Each of the optimized and validated QM-derived structures was combined with the prepared crystallographic structure 
for the rest of the enzyme by alignment of the carbon atoms of the QM-optimized substrate to the crystallographic 
transition-state analog, followed by ten rounds of sliding, restrained minimization.  During this minimization, which 
consisted of 100 steps of steepest descent minimization followed by 100 steps of adopted basis Newton-Raphson 
minimization, all substrate, magnesium ion, and coordinating aspartate and glutamate oxygen atoms were held fixed, and 
the remaining active-site residues were harmonically restrained using a force constant of 50 kcal/(mol⋅Å2). Harmonic 
restraints were reset after each round of minimization.  

Simulation Methodology. CHARMM version 4134,35  compiled with the SQUANTUM option was used to perform all 
molecular dynamics simulations. The QM portion of the energy function was calculated with the AM1 semiempirical 
quantum mechanical force field;36 the MM portion of the energy function was computed using the CHARMM36 all-atom 
force field.37 Additional AM1 parameters were used for the magnesium ions.38 The following atoms made up the QM 
region: substrate (acetolactate), both magnesium centers, five magnesium-coordinating active-site water molecules, the 
side chains of Asp 315, Glu 319, and Glu 496, and the nicotinamide group of NADPH (Figure 1C). The Generalized Hybrid 
Orbital method39 was used to treat the QM/MM boundary atoms, included the Cα atoms of residues Asp 315, Glu 319, and 
Glu 496, as well as the C5' atom of the ribose ring in NADPH linking to the nicotinamide group. The substrate O6 was 
deprotonated and the coordinating Glu 496 was protonated, paralleling previous QM/MM studies of KARI.30 All 
molecular dynamics simulations were performed in vacuo with a distance dependent dielectric (4r) using the leapfrog 
integrator at 300 K with a 1 fs integration time step.  

Seed Trajectory Generation. The initial reactive trajectories used to bootstrap the TIS simulations were found by 
computing a potential of mean force (PMF) along the order parameter λ, defined as the difference of the distance 
between the substrate breaking bond (C4–C5) and the forming bond (C5–C7), which has units of angstroms. This PMF 
was computed using umbrella sampling and the weighted histogram analysis method.40 The umbrella sampling was 
performed in CHARMM41 using the RXNCOR module with windows 0.05 Å in width and harmonic restraints of 
300 kcal/(mol⋅Å2). The resulting PMF provided an estimate of the location of the transition state along the order 
parameter λ, roughly within the –0.05 < λ < +0.05 region. Candidate seed trajectories were then generated by integrating 
forward and backward for 2000 fs without restraints starting from a randomly chosen frame from the umbrella sampling 
window ensembles centered at λ values of –0.05, 0.00, and +0.05. Trajectories were selected as successful seed trajectories 
if they connected the reactant basin (λ < –1) and product basin (λ > +1).  

Training Data Set Generation and Time Point Selection. Three randomly-selected connecting seed trajectories from the 
collection described above were used as starting trajectories for the generation of a larger ensemble of reactive and 
almost-reactive trajectories. Each seed was used to generate 9 reactive ensembles and 9 almost-reactive ensembles of 
20,000 trajectories each.  The combined data set contained 461,422 almost-reactive and 618,578 reactive trajectories. The 
greater number of reactive trajectories resulted because the sampling process for almost-reactive trajectories could also 
generate some reactive ones, but the sampling process for reactive trajectories could not generate almost-reactive ones. 
When the almost-reactive process produced a reactive trajectory, it was removed from that set and added to the reactive 
data set. To ensure a balanced number of reactive and almost-reactive trajectories in each training and testing data set, 
the reactive trajectories were randomly sampled without replacement to produce a set of 461,422 reactive trajectories. 
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For the reactive ensembles, the product interface was defined as λR = +1.00, and for the almost-reactive ensembles, the 
product interface was defined as λAR = –0.20 (Figure 1A).  In both ensembles, the reactant interface was defined as              
λ = –1.00. To collect time points early in the reactant basin for analysis, integration was not stopped once a trajectory 
reached the reactant and product interface (and had been accepted into the Markov chain), but continued forward and 
backward for a total of 200 fs in each direction. A MATLAB wrapper that launched individual CHARMM41 trajectory runs 
was used to perform all TIS computations. 

To ensure that candidate features (see below) were computed at analogous time points between reactive and almost-
reactive trajectory ensembles, in a postprocessing step, all almost-reactive and reactive trajectories from all 27 pairs of 
ensembles were time-shifted such that the 0 fs time point corresponded to the bottom of the last “trough” in λ (when 
plotted vs. time) before the prospective alkyl migration event, a geometric feature that all the collected trajectories shared 
(Figure 1D). Chemically, the last trough represents the point at which the C4–C5 bond is most compressed, before, like a 
spring, launching into the prospective bond-breaking event (whether or not that event occurred). This trough was found 
by first finding the point in the trajectory closest to the transition region at λ = 0, then scanning along the trajectory 
backward from this point until the first change in sign of the derivative of λ with respect to time was found with a value of 
λ less than 0 (i.e., was located in the reactant basin). All other time points were defined relative to this first trough at time 
0. Cartesian coordinate frames of atomic positions were collected in 5 fs increments from the 0 fs time point, going 
backward to –150 fs and forward to +35 fs from the t=0 fs point, for a total of 38 total time points. This collection of 
subsampled time points was used for all subsequent analysis. 

Feature Computation. At each of the 38 time points between –150 and +35 fs, the set of 68 structural features in Table S1 
were computed for each of the trajectories in each of the 27 reactive and 27 almost-reactive ensembles. The 68 features 
are illustrated structurally in Figure S2A (distances), Figure S2B (angles), and Figure S2C (dihedrals).  For the generation 
of Table S5 and Figure S8, the velocity magnitudes of the 341 atoms (including all hydrogens) within 5 Å (based on the 
starting aligned, minimized model) of the migrating methyl (AC6/C5) were also computed at the same time points. These 
data were pooled across ensembles to produce one combined reactive and one combined almost-reactive data set at each 
of the 38 time points, which were used in machine learning and subsequent analysis described below and stored as a row 
in a data matrix. A separate data matrix was constructed for each time point by augmenting the 68 computed features 
with the trajectory outcome (1 for reactive or 0 for almost-reactive), as well as the ensemble and trajectory indices. For 
model training, the data matrix at each time point was randomly sampled without replacement to produce five equal 
partitions containing 73,827 trajectories each, and for model testing, the remaining trajectories were randomly sampled to 
produce five equal partitions containing 18,456 trajectories each. 

Machine Learning. For feature regularization and discovery, the LASSO method41 was used with the lassoglm 
implementation in MATLAB. For an intercept β0 and predictor coefficients βj, LASSO solves the general problem,  

 
where p is the number of input predictor features, N is the number of observables (the number of reactive and almost-
reactive trajectories used in a given LASSO training set), the Xi are each a p-dimensional vector of predictor features 
(generally interatomic distances, angles, and dihedrals), the Yi are scalar outcomes (1 for a trajectory that was reactive and 
0 for one that was almost-reactive), λ is a nonnegative regularization (penalty strength) parameter, and an underlying 
logistic learning model was composed of an intercept β0, a set of p feature coefficients βj, and the loss function .  

Due to the binary nature of the response variables, a logistic loss function was used,  

 
where x and y denote individual observations of Xi and Yi. Note that only the values of the predictor coefficients βj were 
penalized using LASSO, and not the value of the intercept β0. In order to select a given number of features with LASSO, 
the regularization parameter λ was adjusted until a specific number m (1, 5, 10, 15, 20, 25, or 30) of non-zero coefficients βj 
remained (using a tolerance of 1.0 x 10–4). These m LASSO-selected predictor features with non-zero coefficients were then 
fit using the fitglm function in MATLAB to a logistic classifier of the form:                     

 
where μ is the probability of evaluating to 1 (reactive) given a specific linear combination of predictor features xj. 
Trajectories were considered reactive if this probability evaluated to greater than 0.5 ( ) and non-
reactive if this probability evaluated to less than or equal to 0.5 ( ). The logistic classifier essentially 
defines a hyperplane with the equation that partitions the reactant well in two, with reactive 
predictions on one side and non-reactive on the other. 
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After fitting predictor coefficients, the area under the curve of the receiver operating characteristic (AUC) was 
computed for each logistic classifier using the perfcurve function in MATLAB to vary the classifier threshold β0 in order to 
generate a receiver operating characteristic, and subsequently compute the area under the resulting curve. Other 
classifier performance metrics were computed using the classperf function in MATLAB, where accuracy was defined as 
the number of correctly classified trajectories divided by the total number of trajectories, sensitivity was defined as the 
number of correctly classified reactive trajectories divided by the total number of reactive trajectories, and specificity was 
defined as the number of correctly classified almost-reactive trajectories divided by the total number of almost-reactive 
trajectories. 

Cluster Assignment. Reactive clusters were assigned by k-means clustering, with the kmeans function in MATLAB using  
k = 5 applied to the matrix of consensus feature Z-scores weighted by their corresponding logistic coefficient βj for all 
correctly classified reactive trajectories. The number of clusters (5) was chosen based on a hierarchical clustering analysis 
also performed in MATLAB (data not shown). The Euclidian distance of the consensus feature set from each almost-
reactive trajectory to each of the five k-means centers was computed, and each almost-reactive trajectory was then 
assigned to the cluster with the shortest Euclidian distance to its respective centroid. 

Rate Constant Computations. The TIS rate constant was computed as the product of two terms––a flux term and a 
probability term denoted .21 The flux term represents the number of crossings through interface λ1 coming 
directly from state A (also referred to as the reactant basin, defined as all points for which λ ≤  λA = –0.8), normalized by 
the total time spent in state A. The probability term represents the probability for a trajectory to reach interface λB given 
that it crossed interface λ1, and for computational efficiency can be decomposed into a series of conditional probabilities: 

 
For the flux factor calculations, a total of 10 independent 1 ns molecular dynamics simulations were performed starting 

from reactant structures derived from each of 6 randomly selected seed trajectories generated as described above. The λA 
interface was set equal to the λ1 interface at λ= –0.8. For the control flux factor computations (as illustrated in Figure S1A), 
the effective positive flux was computed as the number of times the trajectory crossed the λA=–0.8 interface, having come 
from the region below the λA interface, divided by the total amount of time spent below the λA interface. For the 
constrained test flux factor computations (as illustrated in Figure S1C), the top 10 LASSO-selected features at the t=0 time 
point were written out during the dynamics run, and the effective positive flux was computed as the number of times the 
trajectory crossed the λ1=–0.8 interface, having come from the region A’, where region A’ refers to all points in phase space 
which lie at the last trough (i.e., the first point at which   and  )  before crossing  λA=–0.8, having first crossed  
λ0=–1, and for which the logistic classifier with coefficients and features listed in Table S2 evaluated to true. Derivatives of 
λ with respect to time were computed using finite differences. 

For the probability factor calculations, a total of 29 P(λi+1| λi) interface ensembles from each of the six seed trajectories 
were computed, with the λi interfaces spaced between λ = –0.8 and λ = 0.  The placement of these interfaces relative to 
the potential of mean force surface used to generate initial seed is shown in Figure S4. To ensure sufficient sampling, 
interfaces between λ = –0.8 and λ = –0.15 were spaced in 0.025-Å increments and the remaining interfaces between –0.15 
and 0 spaced in 0.05-Å increments.  For each interface ensemble, a total of 5000 shooting moves was attempted. In each λi 
ensemble, candidate trajectories were generated using full shooting moves and accepted if they both crossed the λA= –0.8 
interface and crossed the λ = λi interface having first come from crossing interface λA. For the unconstrained control 
ensembles (Figure S1B), no further acceptance rules were applied. 

For constrained ensembles (Figure S1D), once the trajectory connected the λA = –0.8 and λi+1 interfaces, the trajectory 
was only included in the ensemble if the logistic classifier evaluated with features and coefficients in Table S2 evaluated to 
true at the first point at which   and   before crossing λA=-0.8, having first crossed interface λ0=–1.  

Integration was stopped when the candidate trajectories crossed their respective λ = λi+1 interface or the λ0 interface, 
which was accomplished by modifying the RXNCOR module of CHARMM41.34,35 All shooting moves and acceptance 
criteria were implemented using a MATLAB wrapper around CHARMM41 (i.e., CHARMM was only used for the actual 
molecular dynamics integration). The number of accepted trajectories varied between the interface ensembles, seed 
trajectories, and whether or not the additional sampling constraint was applied, ranging between 10 and 95%. 
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Figure S1: (A) Illustration of computation of the TIS flux factor. The red and gray line represents a long molecular dynamics 
trajectory originating in region A. Portions of the trajectory in red indicate the time points in region A used to normalize the flux 
factor. Black dots represent effective crossings of the λA interface. (B) Illustration of computation of a P(λi+1| λi) ensemble. Each 
red and white line indicates an attempted shooting move.  Black dots indicate shooting points. Red lines indicate accepted 
shooting moves, while white lines indicate rejected shooting moves.  (C) Illustration of procedure used to compute the 
constrained flux factor. The dark red region indicates the reactive subregion A’ identified using machine learning. Portions of the 
trajectory in red indicate the time point in either region A’ used to compute the constrained flux factor. Black dots represent 
effective crossings of the λA interface.  (D) Illustration of a constrained P(λi+1| λi) ensemble. The dark red region indicates the 
reactive subregion A’ identified using machine learning.  
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Table S1. Feature names, feature indices, and feature types computed at each time point. Residue name AC6 refers to the 
substrate, residue name NDP refers to the NADPH cofactor, and the residue name MG6 refers to the 5 active site waters and two 
magnesium ions. Structural representations of features are shown in Figure S2. 

Feature Index Feature Name Feature Type Feature Index Feature Name Feature Type 

1 Dist AC6/O2,NDP/N7N Substrate-environment 36 Dist NDP/H4N2,NDP/C4N Intra-cofactor 

2 Dist AC6/O2,NDP/O7N Substrate-environment 37 Dist NDP/N7N,NDP/O2N Intra-cofactor 

3 Dist AC6/O3,MG6/H24 Substrate-environment 38 Ang NDP/C4N,NDP/N1N,NDP/C1NQ Intra-cofactor 

4 Dist AC6/O6,MG6/M16 Substrate-environment 39 Ang NDP/C6N,NDP/C3N,NDP/C7N Intra-cofactor 

5 Dist AC6/O8,GLU496/He2 Substrate-environment 40 Ang NDP/N7N,NDP/H72N,NDP/O2N Intra-cofactor 

6 Dist AC6/O8,MG6/M17 Substrate-environment 41 Dihe NDP/C2N,NDP/C3N,NDP/C7N,NDP/N7N Intra-cofactor 

7 Dist GLU319/Oe1,AC6/C5 Substrate-environment 42 Dihe NDP/C2NQ,NDP/C1NQ,NDP/N1N,NDP/C6N Intra-cofactor 

8 Dist MG6/H25,AC6/O6 Substrate-environment 43 Dihe NDP/C4N,NDP/C3N,NDP/C7N,NDP/O7N Intra-cofactor 

9 Dist MG6/H26,AC6/O6 Substrate-environment 44 Dihe NDP/H1NQ,NDP/C1NQ,NDP/N1N,NDP/C2N Intra-cofactor 

10 Dist MG6/H27,AC6/O6 Substrate-environment 45 Dist MG6/O18,MG6/M17 Water-metal 

11 Dist MG6/H28,AC6/O6 Substrate-environment 46 Dist MG6/O19,MG6/M17 Water-metal 

12 Dist MG6/H31,AC6/O6 Substrate-environment 47 Dist MG6/O20,MG6/M17 Water-metal 

13 Dist MG6/H32,AC6/O6 Substrate-environment 48 Dist MG6/O21,MG6/M16 Water-metal 

14 Dist MG6/M16,AC6/O3 Substrate-environment 49 Dist MG6/O22,MG6/M16 Water-metal 

15 Dist MG6/M17,AC6/O6 Substrate-environment 50 Ang MG6/H23,MG6/O22,MG6/M16 Water-metal 

16 Dist NDP/H4N2,AC6/C4 Substrate-environment 51 Ang MG6/H24,MG6/O22,MG6/M16 Water-metal 

17 Ang AC6/O6,MG6/M16,AC6/O3 Substrate-environment 52 Ang MG6/H25,MG6/O21,MG6/M16 Water-metal 

18 Ang AC6/O8,MG6/M17,AC6/O6 Substrate-environment 53 Ang MG6/H26,MG6/O21,MG6/M16 Water-metal 

19 Ang MG6/M17,AC6/O6,MG6/M16 Substrate-environment 54 Ang MG6/H27,MG6/O20,MG6/M17 Water-metal 

20 Dist AC6/C1,AC6/C4 Intra-substrate 55 Ang MG6/H28,MG6/O20,MG6/M17 Water-metal 

21 Dist AC6/C1,AC6/O2 Intra-substrate 56 Ang MG6/H29,MG6/O18,MG6/M17 Water-metal 

22 Dist AC6/C1,AC6/O3 Intra-substrate 57 Ang MG6/H30,MG6/O18,MG6/M17 Water-metal 

23 Dist AC6/C4,AC6/C7 Intra-substrate 58 Ang MG6/H31,MG6/O19,MG6/M17 Water-metal 

24 Dist AC6/C4,AC6/O6 Intra-substrate 59 Ang MG6/H32,MG6/O19,MG6/M17 Water-metal 

25 Dist AC6/C5,AC6/C4 Intra-substrate 60 Dist GLU496/Oe2,GLU496/He2 Other environment 

26 Dist AC6/C5,AC6/C7 Intra-substrate 61 Dist GLN136/Ne2,NDP/O7N Other environment 

27 Dist AC6/C7,AC6/C9 Intra-substrate 62 Dist MG6/H25,MG6/O21 Other environment 

28 Dist AC6/C7,AC6/O8 Intra-substrate 63 Dist MG6/H26,MG6/O21 Other environment 

29 Ang AC6/C1,AC6/C4,AC6/C7 Intra-substrate 64 Dist MG6/H27,MG6/O20 Other environment 

30 Ang AC6/C4,AC6/C7,AC6/C5 Intra-substrate 65 Dist MG6/H28,MG6/O20 Other environment 

31 Ang AC6/C4,AC6/C7,AC6/C9 Intra-substrate 66 Dist MG6/H31,MG6/O19 Other environment 

32 Ang AC6/C5,AC6/C4,AC6/C1 Intra-substrate 67 Dist MG6/H32,MG6/O19 Other environment 

33 Ang AC6/C5,AC6/C7,AC6/C9 Intra-substrate 68 Ang GL136/Ne2,GLN136/He22,NDP/O7N Other environment 

34 Dihe AC6/C1,AC6/C5,AC6/C7,AC6/C4 Intra-substrate      

35 Dihe AC6/C5,AC6/C4,AC6/C7,AC6/C9 Intra-substrate 
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Figure S2: Structural representation of (A) distances computed, (B) angles computed, and (C) dihedrals computed at each time 
point. Numbering of features corresponds to that of Table S1. Coloring of features corresponds to the feature type with red 
indicating substrate-environment interactions, orange indicating intrasubstrate conformations, blue indicating intra-cofactor 
conformations, green indicating water-metal interactions and gold indicating other environment interactions. 

 
  

A 

B 

C 



   S8 
 

Figure S3: Illustration of both KARI homodimer subunits (PDB ID: 1YVE), with active-site residues Asp 315, Glu 319, Glu 496, 
bound transition state analog N-hydroxy-N-isopropyloxamate and NADPH cofactor shown as sticks to indicate active-site 
separation and to support the choice of using a single subunit in simulations. 
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Table S2: Top 10 LASSO selected features at 0 fs time point and coefficients βj used to define reactive region A’ in constrained 
TIS simulations. Note that classification was performed on the fly through the TIS Markov chain and thus features were not 
normalized by Z-scores, so non-standardized coefficients βj are reported. The bias β0 used was –18.603. 

j Feature βj 

1 Distance GLU`319/Oε1,AC6/C5 2.1944 

2 Distance MG6/M16,AC6/O3 –12.093 
3 Distance AC6/C1,AC6/C4 13.447 

4 Distance AC6/C4,AC6/O6 20.561 

5 Angle NDP/C4N,NDP/N1N,NDP/C1NQ –2.8234 

6 Distance AC6/O8,GLU`496/Hε2 –3.4298 

7 Distance AC6/C5,AC6/C4 –8.8403 
8 Distance AC6/O8,MG6/M17 8.8193 

9 Dihedral AC6/C5,AC6/C4,AC6/C7,AC6/C9 –3.7307 

10 Distance MG6/H28,AC6/O6 –0.5615 
 

  



   S10 
 

Figure S4: Placement of interfaces used in TIS probability factor calculations superimposed onto the potential of mean force 
surface used to generate initial seed trajectories. Key interfaces λ0=-1, λA = -0.8 and λB = 1 are labeled. 
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Table S3: Top 30 consensus features for the –150 to 0 fs time window. Feature rank indicates ranking according to the number of 
occurrences in the 20 LASSO-selected feature sets. 

Rank Feature Name Feature Type Occ. 

1 Dist GLU319/Oε1,AC6/C5 Substrate-environment 24 

2 Dist MG6/H32,AC6/O6 Substrate-environment 23 

3 Dist MG6/H26,AC6/O6 Substrate-environment 22 

4 Ang MG6/H31,MG6/O19,MG6/M17 Water-metal 20 

5 Dist MG6/H28,AC6/O6 Substrate-environment 19 

6 Dist AC6/O8,GLU496/Hε2 Substrate-environment 19 

7 Ang NDP/C4N,NDP/N1N,NDP/C1NQ Intra-cofactor 19 

8 Dist MG6/H27,AC6/O6 Substrate-environment 18 

9 Dist AC6/C5,AC6/C4 Intra-substrate 18 

10 Ang MG6/M17,AC6/O6,MG6/M16 Substrate-environment 18 

11 Dihe AC6/C5,AC6/C4,AC6/C7,AC6/C9 Intra-substrate 17 

12 Ang AC6/O6,MG6/M16,AC6/O3 Substrate-environment 17 

13 Dist MG6/O20,MG6/M17 Water-metal 17 

14 Ang AC6/C1,AC6/C4,AC6/C7 Intra-substrate 16 

15 Dist AC6/C7,AC6/C9 Intra-substrate 16 

16 Ang AC6/O8,MG6/M17,AC6/O6 Substrate-environment 16 

17 Ang GLN136/Nε2,GLN136/Hε22,NDP/O7N Other environment 16 

18 Ang AC6/C5,AC6/C7,AC6/C9 Intra-substrate 15 

19 Dist MG6/M17,AC6/O6 Substrate-environment 15 

20 Ang MG6/H29,MG6/O18,MG6/M17 Water-metal 15 

21 Dist GLN136/Nε2,NDP/O7N Other environment 15 

22 Dist MG6/H31,AC6/O6 Substrate-environment 13 

23 Dist AC6/C4,AC6/C7 Intra-substrate 13 

24 Dist AC6/O6,MG6/M16 Substrate-environment 13 

25 Dist AC6/C1,AC6/C4 Intra-substrate 12 

26 Ang MG6/H32,MG6/O19,MG6/M17 Water-metal 12 

27 Dist MG6/M16,AC6/O3 Substrate-environment 10 

28 Dist MG6/O19,MG6/M17 Water-metal 10 

29 Ang MG6/H23,MG6/O22,MG6/M16 Water-metal 10 

30 Ang MG6/H25,MG6/O21,MG6/M16 Water-metal 10 
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Figure S5: Structural representations of top 30 most consistently predictive (A) distances and (B) angles and dihedrals during 
the –150 to 0 fs time window. Labeling of features corresponds to ranking in Table S3. Coloring of features corresponds to the 
feature type with red indicating substrate-environment interactions, orange indicating intra-substrate conformations, blue 
indicating intra-cofactor conformations, green indicating water-metal interactions and gold indicating other environment 
interactions. 
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Table S4: Mean standardized logistic regression coefficients fit to classifier trained using the top 30 most consistently predictive 
features between –150 and 0 fs  (listed in Table S3 and illustrated structurally in Figure S5) at the –150, –100, –50 and 0 fs time 
points relative to the last trough in the order parameter prior to the prospective catalytic event. Coefficients shown represent the 
mean values across 5 cross-validation partitions. 

Standardized  
Regression 
Coefficient 

Time Before Last Trough 

-150 fs -100 fs -50 fs 0 fs 

β0 -0.059 -0.195 -0.269 -0.094 

β1 -0.361 -0.527 0.354 0.470 

β2 -0.198 -0.569 -0.374 0.874 

β3 -0.303 -0.957 -0.497 -0.035 

β4 0.615 0.706 0.117 0.453 

β5 0.094 0.069 0.401 -0.477 

β6 -0.365 -0.265 -0.147 -0.613 

β7 0.273 -0.251 -0.423 -0.397 

β8 0.293 -0.428 -1.134 -0.356 

β9 0.068 0.446 0.533 -1.030 

β10 0.318 -1.060 -0.666 -0.025 

β11 -0.307 0.058 -1.379 -0.289 

β12 -0.723 0.414 0.179 -0.510 

β13 0.236 -0.129 0.610 0.050 

β14 -0.256 0.214 -0.348 -0.107 

β15 -0.132 -0.460 -0.227 0.269 

β16 -0.330 -0.237 1.049 0.106 

β17 0.065 0.302 0.137 0.039 

β18 0.193 -0.704 0.665 0.026 

β19 -0.426 0.252 -0.425 0.007 

β20 0.033 0.141 0.477 0.704 

β21 0.319 -0.327 -0.471 -0.013 

β22 -0.135 -0.630 -0.162 -1.100 

β23 0.790 0.281 -0.089 0.200 

β24 -0.048 -0.179 -0.127 -0.014 

β25 0.083 -0.047 -0.182 0.504 

β26 0.592 0.592 0.434 -0.244 

β27 0.142 0.093 0.241 -0.944 

β28 -0.208 0.477 0.437 -0.083 

β29 -0.148 -0.370 -0.327 -0.061 

β30 0.183 0.151 0.338 -0.174 
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Figure S6: Representative structures for the reactive cluster and corresponding almost-reactive clusters described in Figure 3B–
E. Feature numbering corresponds to that of Table S3.  (A) Representative structures from all five reactive clusters.  
Representative structures from (B) cluster 1, (C) cluster 2, (D) cluster 3, (E) cluster 4, (F) cluster (5) and their corresponding 
almost-reactive clusters, respectively. In all panels, magenta corresponds to cluster 1, cyan corresponds to cluster 2, green 
corresponds to cluster 3, yellow corresponds to cluster 4, orange corresponds to cluster 5 and gray corresponds to the 
corresponding almost-reactive cluster for the reactive cluster shown in each histogram. In all panels, structures were aligned to 
minimize the root mean square difference between the two magnesium centers.               
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Supplementary Commentary on Figure 3E and Figure S6: 
Figure S6 shows a number of interesting structural variations, particularly considering that they represent the final bond 

compression of reactive trajectories. The five water molecules that coordinate to one or the other magnesium ion each show 
significant variability across the clusters. Some of these are differences in water molecule positioning are represented in the 
features significant for cluster identify (e.g, features 2 and 22) and others in those significant for reactivity within a cluster (e.g., 
feature 20). Additionally, there is substantial variability in the internal substrate conformation across the different reactive 
clusters, with cluster 2 being an especially unusual outlier. 

Illustrated in Figure 3E (column 5; feature 27), clusters 1, 2, and 5 exhibit significantly shorter values for the distance 
MG6/M16–AC6/O3 for the reactive than the almost-reactive trajectories. Structurally, Figure S6B, C, and F show that this 
corresponds to a different conformation of the substrate carboxylate group and a different engagement of magnesium ion 
M16 between reactive and almost-reactive trajectories. This shorter distance corresponds to a somewhat different 
orientation for the entire substrate relative to the two magnesium ions that also affects substrate hydroxyl O6 and the 
metal coordination environment. By contrast, clusters 3 and 4 show much less difference in the distribution of MG6/M16–
AC6/O3 (feature 27) between reactive and almost-reactive sets (Figure 3E) and this can also be seen structurally in Figure 
S6D and E.  

     Also illustrated in Figure 3E (column 2; feature 9), all five clusters show that the length of the breaking bond, 
AC6/C5–AC6/C4, spans a wider range of values for the nearly-reactive trajectories and is on the shorter side of that 
distribution for the reactive ones. Keeping in mind that these conformations are for the 0 fs time point, when the bond is 
fully compressed before launching toward the barrier, this represents the notion that reactive trajectories require 
substantial potential energy by stored in the bond that is not always seen for almost-reactive trajectories (that is, this 
extra compression is necessary but not sufficient). 

Figure 3E indicates that the adjacent substrate bond, AC6/C1–AC6/C4 (column 4; feature 25), is distributed somewhat 
longer in reactive than almost-reactive trajectories for clusters 2, 3, and 5; examining the corresponding structures in 
Figure S6C, D, and F doesn’t show a clear effect of this on conformation. Figure 3E also indicates that a water molecule 
orientation, angle MG6/H29–MG6/O18–MG6/M17 (column 3; feature 20), is distributed substantially larger for reactive 
than almost-reactive trajectories in cluster 5, and much more so than in any of the other clusters. Figure S6F seems to 
indicate that this allows engagement of a lone pair from O18 to interact much more favorably with magnesium, and 
perhaps affect the polarization of the substrate, in a typical reactive rather than almost-reactive trajectory. Some of the 
other clusters appear to show a difference in the interaction between that water molecule and magnesium ion, although it 
may not show up in the angle indicated. Finally, Figure 3E indicates that the distance from Glu 319 Oe1 to the substrate’s 
migrating methyl group C5 (column 1; feature 1) is distributed longer in reactive than almost-reactive trajectories for 
clusters 1, 2, and 5 (and partially for clusters 3 and 4). Figure S6B–F indicates the interaction, but it is unclear how much 
of it is steric (the Glu side chain must be far enough away from the methyl at compression to be adequately poised to 
push it toward product upon bond expansion) and how much is stabilizing of the methyl during the transition.  
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Figure S7. (A) Cumulative log(P) for increasing interface placement for each of the 5 seed trajectories tested. Red lines indicate 
trajectories sampled with the reactant basin constrained to only include the region where the 10 feature classifier evaluated to 
true. Blue lines indicate unconstrained control simulations. (B) Individual values of P(λi+1| λi) for each λi ensemble computed. 
Error bars correspond to two standard errors of the mean across three independent Markov chains at each λi ensemble. Red bars 
indicate test simulations, while blue bars indicate unconstrained control simulations.               
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Table S5: Top 20 atomic velocity magnitudes at the 0 fs time point ranked by individual AUC. The feature set was comprised of 
the velocity magnitudes of the 341 atoms within 5 angstroms of the migrating methyl, AC6/C5 (including all hydrogens). Note 
that of these 341 velocities, only 17 exhibited individual AUCs greater than 0.60 at the “last trough” of the prelaunch window, and 
of these 17, 5 involved atoms included in the "consensus set”. 

Rank Atom Name AUC Involved in Consensus Feature Set? 

1 AC6/O6 0.854 Yes 

2 AC6/C4 0.738 Yes 

3 Glu 319/Oε1 0.6713 Yes 

4 AC6/H12 0.6687 No 

5 NDP/P2A 0.6435 No 

6 NDP/H2A 0.6406 No 

7 Met 254/C 0.637 No 

8 Thr 520/HN 0.6363 No 

9 AC6/C7 0.6213 Yes 

10 Glu 319/C 0.6187 No 

11 Gln 136/CA 0.6154 No 

12 NDP 600/O3 0.6082 No 

13 Glu 319/Oε2 0.6077 No 

14 Glu 319/O 0.6034 No 

15 Glu 496/Oε2 0.6022 No 

16 AC6/C1 0.6022 Yes 

17 Lys 252 /HG1 0.602 No 

18 Pro 251/O 0.5991 No 

19 NDP 600/H1NQ 0.5984 No 

20 AC6/O8 0.5953 Yes 
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Figure S8: Comparison of AUCs versus reaction progress for top LASSO-selected features from set consisting of (a) the 68 
structural descriptors listed in Table S1 only, (b) velocity magnitudes of the 341 atoms within 5 Å of the migrating methyl or 
(c) the combined structural/velocity feature set. 
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