Pre- and postnatal exposure of mice to concentrated urban PM_{2.5} decreases the number of alveoli and leads to altered lung function at an early stage of life.

Thais de Barros Mendes Lopes, Espen E. Groth, Mariana Veras, Tatiane K. Furuya, Natalia de Souza Xavier Costa, Gabriel Ribeiro Júnior, Fernanda Degobbi Lopes, Francine M. de Almeida, Wellington V. Cardoso, Paulo Hilario Nascimento Saldiva, Roger Chammas, Thais Mauad

Supplementary Material

Pregnancy outcomes

Time point	Group	Dam	Fetuses	Resorpt.	<i>n</i> stereology	<i>n</i> microarray analysis
		#1	13	0	2	3
	Exposed	#2	7	3	2	1
E14.5		#3	2	5	2	
	Control	#1	4	4	3	2
	Control	#2	9	1	2	2
	Exposed	#1	6	2	2	1
		#2	5	2	2	1
		#3	3	3	1	1
		#4	6	1		1
<i>E18.5</i>		#1	3	3	1	
	Control	#2	6			1
		#3	4	2	2	1
		#4	2		1	1
		#5	1	2		1

Table S1. Prenatal pregnancy outcomes of CAP-exposed and control dams and the respective n of fetuses used in analyses, if any.

Resorpt.: Resorptions.

Table S2. Litter size and sex distributio	n of offspring and n c	of offspring mice used	1 in analyses
(at P40) per dam.			

Group	Dam	Litter size (m,f)	Dead- born	<i>n</i> lung function	n BAL	<i>n</i> stereology	<i>n</i> microarray analysis
	#1	7 (4,3)		6	3	3	2
Exposed	#2	2 (0,2)	1	2	1	1	1
	#3	5 (4,1)		5	5	1	2
	#1	4 (0,4)		4	4	2	
Control	#2	3 (1,2)		2	3	3	2
	#3	3 (1,2)		3	2		1
	#4	6 (4,2)		4	5		2
	#5	3 (2,1)		2	3		

m: males, f: females.

Characterization of PM_{2.5} composition

As previously described (Andrade et al., 2012; de Miranda et al., 2012; Mauad et al., 2008), we assessed the metal elemental composition and black carbon (BC) concentration of ambient air $PM_{2.5}$ during the months of animal exposure. In short, $PM_{2.5}$ was collected in suitable polycarbonate filter membranes. We used X-ray fluorescence spectrometry to measure the concentration of metal trace elements (Na, Al, Si, P, S, K, Ca, Ti, V, Fe, Nu, Cu, Zn, Pb) in a quantitative manner (*n*=17). Furthermore, a smoke stain reflectometer was used to determine black carbon (BC) concentration (*n*=15).

metal trace element content of $PM_{2.5}$ sampled at our exposure site.						
Para	ımeter	Mean	± SD	Min	Max	
PM _{2.5}	$(\mu g \cdot m^{-3})$	19.8	± 11.4	7.2	52.9	
BC	$(\mu g \cdot m^{-3})$	7.6	± 6.5	1.2	27.0	
BC/PM _{2.5}	(%)	38.2	± 15.8	17.3	74.2	
Na	$(ng \cdot m^{-3})$	200.9	± 171.3	0.0	496.6	
Mg	$(ng \cdot m^{-3})$	0.2	± 0.8	0.0	3.1	
Al	$(ng \cdot m^{-3})$	90.5	± 83.6	0.0	301.9	
Si	$(ng \cdot m^{-3})$	361.4	± 206.5	121.2	887.4	
Р	$(ng \cdot m^{-3})$	33.5	± 26.5	4.9	106.0	
S	$(ng \cdot m^{-3})$	1441.0	± 988.2	429.4	4465.8	
Cl	$(ng \cdot m^{-3})$	25.0	± 29.6	1.9	123.7	
Κ	$(ng \cdot m^{-3})$	354.9	± 357.0	41.6	1397.0	
Ca	$(ng \cdot m^{-3})$	97.2	± 52.2	11.0	198.3	
Ti	$(ng \cdot m^{-3})$	9.3	± 7.5	0.7	27.1	
V	$(ng \cdot m^{-3})$	0.9	± 1.2	0.0	4.6	
Cr	$(ng \cdot m^{-3})$	0.3	± 0.7	0.0	2.6	
Mn	$(ng \cdot m^{-3})$	4.9	± 3.0	0.3	11.0	
Fe	$(ng \cdot m^{-3})$	182.9	± 117.5	23.6	426.8	
Ni	$(ng \cdot m^{-3})$	0.7	± 0.6	0.0	1.9	
Cu	$(ng \cdot m^{-3})$	6.6	± 7.4	0.0	28.5	
Zn	$(ng \cdot m^{-3})$	66.6	± 44.7	10.5	169.8	
Se	$(ng \cdot m^{-3})$	2.5	± 3.0	0.0	11.4	
Br	$(ng \cdot m^{-3})$	6.8	± 10.0	0.0	40.8	
Pb	$(ng \cdot m^{-3})$	7.8	± 6.1	0.3	19.3	

Table S3. Ambient air concentration as well as black carbon (BC) and metal trace element content of $PM_{2.5}$ sampled at our exposure site.

Parameter		Me	р	
		Exposed	Control	
Weigh	t (g)	$20.1~\pm~1.6$	23.1 ± 1.5	0.006**
R	$(cm H_2O \cdot s \cdot mL^{-1})$	$0.81~\pm~0.17$	$0.72~\pm~0.15$	0.35
Е	$(cm H_2O \cdot mL^{-1})$	32.37 ± 6.22	$26.83~\pm~3.47$	0.10
R_n	$(cm H_2O \cdot s \cdot mL^{-1})$	0.33 ± 0.13	$0.25~\pm~0.08$	0.25
G	$(cm H_2O \cdot mL^{-1})$	5.51 ± 2.23	5.44 ± 1.18	0.95
Н	$(cm H_2O \cdot mL^{-1})$	30.43 ± 5.61	$22.73~\pm~2.88$	0.02*

Table S4. Lung function (flexiVent) of exposed and control mice at P40 (males).

n=8 in exposed, n=5 in control group. R: dynamic resistance, E: dynamic elastance, R_n: Newtonian resistance, G: tissue damping, H: tissue elastance.

1 401						
Parameter		Mean	Mean ± SD			
		Exposed	Control			
Weig	ht (g)	19.8 ± 1.6	19.5 ± 2.0	0.83		
R	$(cm H_2O \cdot s \cdot mL^{-1})$	$0.85~\pm~0.11$	$0.77~\pm~0.13$	0.31		
Е	$(\text{cm H}_2\text{O}\cdot\text{mL}^{-1})$	$37.4~\pm~9.70$	31.10 ± 3.85	0.09		
R_n	$(cm H_2O \cdot s \cdot mL^{-1})$	$0.26~\pm~0.03$	$0.30~\pm~0.09$	0.37		
G	$(cm H_2O \cdot mL^{-1})$	$6.72~\pm~1.04$	$6.22~\pm~0.96$	0.37		
Н	$(cm H_2O \cdot mL^{-1})$	35.64 ± 11.00	29.25 ± 4.75	0.13		

Table S5. Lung function (flexiVent) of exposed and control mice at P40 (females).

n=5 in exposed, n=10 in control group. R: dynamic resistance, E: dynamic elastance, R_n: Newtonian resistance, G: tissue damping, H: tissue elastance.

Cell type			Mean ± SD		
		Exposed	Control		
Neutrophils		0.00	0.08 ± 0.13	0.07	
Lymphocytes		$0.06~\pm~0.07$	$0.07~\pm~0.07$	0.65	
Eosinophils		0.00	0.00		
Macrophages		$4.63~\pm~2.10$	3.70 ± 1.91	0.26	
Total		$4.69~\pm~2.12$	3.85 ± 1.94	0.32	
Neutrophils	(%)	0.0	1.9 ± 3.3	0.09	
Lymphocytes	(%)	1.2 ± 1.7	1.9 ± 1.9	0.37	
Eosinophils	(%)	0.0	0.0		
Macrophages	(%)	$98.8~\pm~1.7$	96.1 ± 4.2	0.09	
Epithelial cells		0.33 ± 0.24	0.54 ± 0.51	0.25	

Table S6. Differential cell counts in BAL fluid of exposed and control animals at P40.

Values in 10^4 cells·mL⁻¹ if not mentioned differently.

Stereology

Parameter		Mear	р	
		Exposed	Control	
Fetus weight	(g)	0.146 ± 0.060	0.114 ± 0.057	0.40
Lung volume	(mm^3)	$0.90~\pm~0.43$	$0.62~\pm~0.45$	0.32
Volume/weight ratio	$(mm^3 \cdot g^{-1})$	6.36 ± 2.32	4.99 ± 2.56	0.37
V _f of mesenchyme	(%)	49.2 ± 6.5	55.4 ± 6.1	0.14
V _f of epithelial tubes	(%)	$36.0~\pm~6.1$	$30.2~\pm~6.9$	0.17
V _f of vessels	(%)	14.8 ± 1.3	14.4 ± 2.4	0.73
Vt of mesenchyme	(mm^3)	0.43 ± 0.16	$0.33~\pm~0.22$	0.40
Vt of epithelial tubes	(mm^3)	$0.34~\pm~0.21$	$0.21~\pm~0.18$	0.29
Vt of vessels	(mm^3)	$0.13~\pm~0.07$	$0.08~\pm~0.06$	0.25

Table S7. Stereological measures of lungs of prenatally exposed and control fetuses at E14.5 (pseudoglandular stage).

 V_f : volume fraction, V_t : total volume.

Table S8. Stereological measures of lungs of prenatally exposed and control fetuses at H	E18.5
(saccular stage).	

Danamatan		Mean ± SD			
1 al ameter		Exposed	Control	p	
Lung weight	(g)	0.022 ± 0.004	$0.027 ~\pm~ 0.005$	0.19	
Lung volume	(mm^3)	15.37 ± 6.91	23.00 ± 12.22	0.27	
Volume/weight ratio	$(mm^3 \cdot g^{-1})$	685.99 ± 312.35	832.96 ± 387.59	0.55	
V _f of mesenchyme	(%)	64.0 ± 5.9	63.4 ± 4.6	0.86	
V _f of airways	(%)	8.1 ± 3.8	9.3 ± 1.0	0.56	
V _f of vessels	(%)	5.3 ± 3.5	$4.6~\pm~2.4$	0.73	
$V_{\rm f}$ of saccules	(%)	$22.6~\pm~3.3$	$22.8~\pm~5.4$	0.95	
Vt of mesenchyme	(mm^3)	10.05 ± 4.94	14.41 ± 7.64	0.33	
Vt of airways	(mm^3)	$1.22~\pm~0.78$	$2.05~\pm~0.94$	0.19	
Vt of vessels	(mm^3)	$0.66~\pm~0.23$	$0.900~\pm~0.53$	0.38	
Vt of saccules	(mm^3)	3.44 ± 1.63	5.65 ± 3.49	0.25	
S _D of saccules	(mm^{-1})	1.28 ± 0.27	$1.05~\pm~0.05$	0.15	
S _A of saccules	(mm^2)	20.28 ± 10.589	23.93 ± 12.60	0.65	

 $V_f\!\!:$ volume fraction, $V_t\!\!:$ total volume, $S_D\!\!:$ surface density, $S_A\!\!:$ surface area.

Figure S1. Venn diagram of DEGs at E14.5, E18.5 and P40.

Cono Symbol	Cono Description	E1	4.5	E18.5	
Gene Symbol	Gene Description	log ₂ FC	р	log ₂ FC	р
C87198	expressed sequence C87198	0.74	0.0009	-0.62	0.0098
Ccr2	chemokine (C-C motif) receptor 2	0.78	0.0016	-0.47	0.0055
	GTPase activating protein (SH3 domain)				
G3bp2	binding protein 2	-0.08	0.0038	0.26	0.0076
Cyyr1	cysteine and tyrosine-rich protein 1	0.54	0.0013	-0.48	0.0092
	transient receptor potential cation channel,				
Trpc1	subfamily C, member 1	0.34	0.00005	-0.39	0.0068
LOC105243101	keratin-associated protein 5-4-like	-0.34	0.0098	0.68	0.0100

Table S9. DEGs E14.5 \cap E18.5.

Table S10. DEGs E14.5 ∩ P40.

Cono Symbol	Conc Description	E14	.5	P40	
Gene Symbol	Gene Description	log ₂ FC	р	log ₂ FC	р
Rxfp2	relaxin/insulin-like family peptide receptor 2	-0.86	0.0041	-0.32	0.0029
Fopnl	Fgfr1op N-terminal like	0.15	0.0012	-0.25	0.0097
Olfr1371	olfactory receptor 1371	0.25	0.0019	0.23	0.00005

References

Andrade, M.D., de Miranda, R.M., Fornaro, A., Kerr, A., Oyama, B., de Andre, P.A., Saldiva, P., 2012. Vehicle emissions and PM(2.5) mass concentrations in six Brazilian cities. Air Qual Atmos Health 5, 79-88. <u>http://dx.doi.org/10.1007/s11869-010-0104-5</u>

de Miranda, R.M., de Fatima Andrade, M., Fornaro, A., Astolfo, R., de Andre, P.A., Saldiva, P., 2012. Urban air pollution: a representative survey of PM(2.5) mass concentrations in six Brazilian cities. Air Qual Atmos Health 5, 63-77. <u>http://dx.doi.org/10.1007/s11869-010-0124-1</u>

Mauad, T., Rivero, D.H., de Oliveira, R.C., Lichtenfels, A.J., Guimaraes, E.T., de Andre, P.A., Kasahara, D.I., Bueno, H.M., Saldiva, P.H., 2008. Chronic exposure to ambient levels of urban particles affects mouse lung development. Am J Respir Crit Care Med 178, 721-728. http://dx.doi.org/10.1164/rccm.200803-436OC