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Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expres-

sion. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chro-

matin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved

and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or appar-

ently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two

distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kid-

neys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have in-

tellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering

around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrummanifested with autism spectrum dis-

order (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus,

telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibro-

blasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in

neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants,

and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants.
Post-translational modifications including acetylation,

methylation, phosphorylation, and ubiquitination, of

core histones directly alter DNA-histone and histone-his-

tone interactions and thus influence nucleosome dy-

namics.1 Tight regulation of these marks is required by

cells for proper gene transcription,2 DNA repair,3 and
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DNA replication. One major activator of transcription is

the acetylation of histone tails, which act by neutralizing

the positive charges of lysine residues or by recruiting chro-

matin remodelers and transcription factors.4 This tightly

regulated process is performed by histone acetyltrans-

ferases (HATs) and reversed by histone deacetylases
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(HDACs). There are three major families of HATs:

Gcn5-related N-acetyltrasnferase (GNAT), MYST (MOZ,

SAS2, SAS3—also known as YBF2—and TIP60), and

p300 (EP300-CREBBP).5 The activity and localization of

most HATs, such as TIP60 or GCNL5, depend on a multi-

protein assembly that contains the scaffolding protein

transformation/transcription domain-associated protein

(TRRAP).

TRRAP is a large protein of 3,859 amino acids and is

conserved from yeast to humans. It is an ataxia-telangiec-

tasia mutated (ATM) related member of the phosphatidyli-

nositol 3-kinase-related kinase (PIKK) family.6 Like other

ATM-related members, it contains FAT (FRAP, ATM, and
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de Chirurgie Maxillofaciale et Plastique, Centre de référence des Malformation
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TRRAP) and FATC (FRAP, ATM, and TRRAP, C terminus) do-

mains flanking a PI3/PI4-kinase domain. The kinase

domain of TRRAP does not engage in catalytic activity7

but is required for the proper recruitment of HAT

complexes.8 TRRAP has been shown to be involved in

P53-, E2F-, and c-MYC-dependent gene transcription and

oncogenic transformation.6,9,10 As stressed in cancer

studies, TRRAP plays an important role in cell-cycle regula-

tion. A recurrent somatic TRRAP variant, c.2165C>T

p.(Ser722Phe),11 has been identified in melanoma, and

the oncogenic potential of TRRAP has been identified

in glioblastoma multiforme,12 pancreatic adenocarci-

noma,13 and lymphoma.10 Furthermore, Trrap knockout
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6021 Poitiers, France; 62Equipe d’accueil 3808, Université Poitiers, Poitiers
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Stéphane Bézieau,1,2 and Sébastien Küry,1,2,81,* and Philippe M. Campeau3,79,81,*
leads to early embryonic lethality inmice through errors in

the cell cycle and a failure to arrest at the mitotic

checkpoint.14 In mouse embryonic stem cells (ESCs), Trrap

is indispensable for self-renewal as well as correct differen-

tiation,15 suggesting an essential role in embryonic devel-

opment and morphogenesis. Moreover, brain-specific

Trrap knockout in mice leads to premature differentiation

of neural progenitors and abnormal brain development

through a decrease in the expression of cell-cycle regula-

tors. This decreased expression results in brain atrophy

andmicrocephaly.16 TRRAP has previously been associated

with neuropsychiatric disorders such as schizophrenia in a

few patients.17–20 We herein provide data showing that

TRRAP pathogenic variants are associated with a variable

neurodevelopmental disorder.

Through an international collaboration and aided by the

web-based tool GeneMatcher,21 we identified 17 distinct

missense TRRAP variants with strong clinical and/or mo-

lecular evidence for pathogenicity in 24 individuals with

neurodevelopmental disorders (Table 1, Figure 1A). These

variants were identified either by trio or solo exome

sequencing (ES) from research and clinical cohorts. All

affected individuals or their guardians gave appropriate

consent for research procedures. This study was approved

by the CHU de Nantes ethics committee (comité consulta-

tif sur le traitement de l’information en matière de re-

cherche no. 14.556). Methods are described in Table S1.

These 17 variants were absent from ExAC and

gnomAD22 and were found de novo or apparently de novo

(maternity and paternity not checked) in all individuals,

except for two sisters who had inherited a variant from a

mother with low-level mosaicism (Figure S1) and an indi-

vidual whose father was unavailable but whose paternal

grandparents did not carry the variant. Three variants

were recurrently observed: p.Ala1043Thr was identified

in five individuals, and p.Glu1106Lys and p.Gly1883Arg

were each identified in two individuals. All the variants

were predicted to be deleterious by CADD23 (scaled C

scores were over 20), and they were variously predicted

to be pathogenic by SIFT24 and PolyPhen-2 HVAR.25 As

shown in Figure 2A, the 17 variants seen in the individuals

we studied had significantly increased CADD scores
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compared to the scores for singleton missense variants re-

ported in gnomAD.

The 17 variants all occurred at residues conserved among

vertebrates (Figure 1B) and in regions depleted in missense

variants in gnomAD. Indeed, when we assessed missense

tolerance ratios for TRRAP, we observed that most of the

17 variants were in regions intolerant to missense variants

(Figure 2B). Nine out of the 17 variants occurred at highly

mutable CpG sites, including one within the codon that

leads to the recurrent p.Ala1043Thr variant observed in

five individuals. Six missense variants with lesser evidence

for pathogenicity were found in another six unrelated indi-

viduals (individuals 25 to 30 in Table S1). These variants

might be deleterious but were not clearly pathogenic:

perhaps the inheritance pattern could not be determined;

the variant was present in gnomAD or led to another

missense change at the same residue as a variant reported

in gnomAD; or the variant was located in a less conserved

region of TRRAP (Table S2).

Given the number of de novo variants identified, the

enrichment for TRRAP de novo variants in our study

was calculated as (p ¼ 4.2 3 10�6) on the basis of denovo-

lyzer.26 Nevertheless, the current number of 22 detected de

novo variants in TRRAP is not of genome-wide significance

(p ¼ 0.08) after correction for the following: (a) �19,000

protein-coding genes, (b) 22,898 trios studied, and (c) the

underlying mutability of the full-length protein-coding

TRRAP transcript. However, this statistical calculation

does not take into account the spatial distribution of the

variants. Indeed, three-dimensional modeling of human

TRRAP structure inferred from the orthologous Saccharo-

myces cerevisiae protein Tra1 (Figure 2C) suggested a clus-

tering of the variants in different regions of TRRAP. The

most important clustering was observed for 13 variants be-

tween codons 1031 and 1159. Interestingly, when visual-

ized in 3D, these variants localized near one another

(Figure 1C), revealing a domain of TRRAP with a poten-

tially novel specific function, although this domain has

not yet been characterized. We performed a statistical clus-

tering analysis comparing the mean distance between

observed variants to ten million permutations of random

variants, as previously described.27 This analysis revealed
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Table 1. De Novo TRRAP Variants Identified in 24 Individuals

cDNA Protein Inheritance CpG gnomAD
CADD Phred
Score (v1.3) SIFT PolyPhen2 HVAR

Number of
Individuals

c.2413C>T p.Leu805Phe de novo no absent 28.2 deleterious (0) probably damaging (0.998) 1

c.2580C>G p.Phe860Leu de novo no absent 27.6 deleterious (0.03) possibly damaging (0.867) 1

c.2678G>T p.Arg893Leu apparently
de novo

yes absent 34 deleterious (0) probably damaging (0.986) 1

c.3093T>G p.Ile1031Met de novo no absent 23.4 deleterious (0.02) benign (0.308) 1

c.3104G>A p.Arg1035Gln de novo yes absent 23.9 tolerated (0.09) benign (0.404) 1

c.3111C>A p.Ser1037Arg de novo yes absent 23.7 tolerated (0.14) possibly damaging (0.656) 1

c.3127G>A p.Ala1043Thr de novo yes absent 23.2 tolerated (0.27) benign (0.066) 5

c.3311A>G p.Glu1104Gly de novo no absent 24.6 deleterious (0.04) probably damaging (0.91) 1

c.3316G>A p.Glu1106Lys de novoa no absent 27.7 deleterious (0) possibly damaging (0.816) 2

c.3331G>T p.Gly1111Trp apparently
de novo

yes absent 34 deleterious (0) probably damaging (0.999) 1

c.3475G>A p.Gly1159Arg de novo no absent 33 deleterious (0) probably damaging (0.999) 1

c.5575C>T p.Arg1859Cys de novo yes absent 34 deleterious (0) probably damaging (0.997) 1

c.5596T>A p.Trp1866Arg de novo no absent 28.7 deleterious (0) probably damaging (0.999) 1

c.5598G>T p.Trp1866Cys de novo no absent 33 deleterious (0) probably damaging (0.999) 1

c.5647G>A p.Gly1883Arg de novo yes absent 33 deleterious (0) probably damaging (1) 2

c.5795C>T p.Pro1932Leu germline
mosaicism

yes absent 35 deleterious (0) probably damaging (0.997) 2

c.11270G>A p.Arg3757Gln de novo yes absent 28.6 deleterious (0.01) benign (0.269) 1

The RefSeq transcript used for TRRAP is RefSeq: NM_001244580.1. Apparently de novowas mentioned when paternity andmaternity were not checked. a. For one
individual with p.(Glu1106Lys), father was unavailable, paternal grandparents were tested and did not carry the variant.
a significant clustering of variants along the primary

sequence of TRRAP (p value ¼ 9 3 10�8), suggesting a

model in which specific domains are affected and haploin-

sufficiency is unlikely, at least for clustering variants.

Among the 24 individuals who carried pathogenic vari-

ants, 19 presented with facial dysmorphisms. Recurrent

features that were noted among these individuals included

upslanted palpebral fissures, epicanthus, telecanthus, a

wide nasal bridge and ridge, a broad and smooth philtrum,

and a thin upper lip (Figure 3). We performed a computer-

assisted facial gestalt visualization,28,29 which highlighted

several of these features, particularly for individuals with

variants clustering with the recurrent p.Ala1043Thr

variant (Figure 3R). All the individuals had developmental

delay, although the severity of intellectual disability (ID)

was highly variable. Whereas most individuals had

apparent ID with markedly impaired basic life functions,

some of them presented with mild ID or even no cognitive

deficits (Table 2 and Table S3). Peripheral neuropathy was

also noted; it was severe in one individual and consisted

of lower-limb hyperreflexia in five other individuals.

In addition to alteration in cerebral function, some

individuals showed brain, cerebellum, heart, kidney, or

urogenital malformations. We observed a strong geno-

type-phenotype correlation (Figure1A,Table 2); thehighest

incidence of malformations was seen in 13 individuals

whose variants cluster in the region of the predicted
The Ameri
protein from codons 1031 to 1159: c.3093T>G

(p.Ile1031Met), c.3104G>A (p.Arg1035Gln), c.3111C>A

(p.Ser1037Arg), c.3127G>A (p.Ala1043Thr), c.3311A>G

(p.Glu1104Gly), c.3316G>A (p.Glu1106Lys), c.3331G>T

(p.Gly1111Trp), and c.3475G>A (p.Gly1159Arg). In

contrast, individuals with variants residing outside of this

region had less malformation and presented mainly with

autism spectrum disorder (ASD) and/or ID, sometimes

associated with epilepsy. Variants in these individuals

were more dispersed along the protein, although

some, including c.5575C>T (p.Arg1859Cys), c.5596T>A

(p.Trp1866Arg), c.5598G>T (p.Trp1866Cys), c.5647G>A

(p.Gly1883Arg), and c.5795C>T (p.Pro1932Leu), appar-

ently aggregated in another region.

13 individuals with variants in the codon 1031–1159 re-

gion had global developmental delay and apparent ID,

ranging from speech delay and learning difficulties to

markedly impaired basic life functions (Table 2 and

Table S3). The last available occipitofrontal-circumference

measurements revealed microcephaly (ranging from �2.8

to �5 standard deviations [SDs]) in 46% (6/13) of individ-

uals. Cerebral magnetic resonance imaging (MRI) had been

performed in 10 out of 13 individuals, and seven of those

10 (70%) showed structural brain anomalies, including

cerebellar vermis hypoplasia (6/10), ventricular enlarge-

ment (3/10), cortical atrophy (2/10), brainstem atrophy

(2/10), polymicrogyria (1/10), focal gliosis (1/10), delayed
can Journal of Human Genetics 104, 530–541, March 7, 2019 533



Figure 1. Genotype-Phenotype Correlation Associated with TRRAP Variants
(A) Predicted de novo and apparently de novo variants in affected individuals are represented on the TRRAP protein. The variants in red
represent individuals with apparent ID andmalformations, the variants in purple represent individuals with isolated ID with or without
ASD, and the variants in blue represent individuals with only ASD and an IQ above 70. If more than one individual was heterozygous for
the variant, the number of affected individuals is indicated in the circle. Adapted from ProteinPaint.55

(B) Amino acid conservation of each mutated residue. The overall amino acid similarity with the human sequence is shown on the left.
(C) Homology model of human TRRAP (GenBank: NP_001231509.1) predicted by PHYRE2 Protein Fold Recognition Server56 repre-
sented by UCSF Chimera.57 Mutated residues in the 1031–1159 cluster are shown. Abbreviations are as follows: FAT—FRAP, ATM,
and TRRAP; PIKK-like—phosphatidylinositol 3-kinase-related protein kinase-like; and FATC—FRAP, ATM, and TRRAP C-terminal.
myelination (1/10), and corpus callosum hypoplasia

(1/10). Neurological examination revealed hypotonia in

31% (4/13) of individuals. Only one individual was re-

ported to have epilepsy. Seven individuals (54%) were re-

ported to require feeding exclusively by gastrostomy

tube. Among the 10 individuals who were examined by

echocardiography, 70% (7/10) had abnormal results, 50%

(5/10) had ventricular septal defects, 30% (3/10) had pat-

ent ductus arteriosus, 30% (3/10) had patent foramen

ovale, 20% (2/10) had pulmonary hypertension, and

20% (2/10) had aortic coarctation. Abdominal ultrasound

revealed anomalies in 70% (7/10) of individuals in which

it was performed. Abnormal renal morphology, namely

multicystic dysplastic kidney, hydronephrosis, a duplicate

kidney, and/or a small kidney, was described in 60% (6/10)

of individuals, and vesicoureteral reflux was also observed

in 30% (3/10) of these individuals. Individual 15 presented

with a large left-sided posterolateral congenital diaphrag-

matic hernia (Table S3). Hernias of the abdominal wall

were also found in 23% (3/13) of individuals and included

an umbilical hernia, an omphalocele, and an inguinal her-

nia. Three males (3/6; 50%) had external-genitalia anoma-

lies, including microphallus, hypoplastic scrotum, and

cryptorchidism, and two females (2/7; 29%) had a dupli-

cated vagina and/or uterus. Other observed anomalies

included dysplastic nails (8/13; 62%), cleft lip and palate

(5/13; 38%), clinodactyly of the fifth finger (4/13; 31%),
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laryngotracheomalacia (3/13), accessory nipple (3/13;

23%), bilateral cutaneous syndactyly of the second and

third toe (2/13; 15%), and anomalies of the lacrimal glands

(1/13; 8%; see also below with regard to individuals

1 and 19). Four individuals (4/13; 31%) had visual impair-

ment, and three (3/13; 23%) had hearing impairment.

Hearing impairment was associated with inner-ear malfor-

mations in two cases. Recurrent infections, mainly respira-

tory and urinary-tract infections, affected three out of 13

(23%) individuals. Individual 9 died at 12 years of age in

the context of multiple co-morbidities, including renal

failure with acute fluid fluctuations, tracheostomy for

severely obstructive laryngotracheomalacia, intermittent

supraventricular tachycardia, arterial insufficiency, and

polyendocrinopathy (insulin-dependent diabetes, adrenal

insufficiency, and hypothyroidism).

Among individuals with variants falling outside of the

1031–1159 region, 5/11 (45%) were diagnosed with ASD,

and another three individuals (3/11; 27%) had some find-

ings of ASD but no formal diagnosis. 8/11 (73%) had devel-

opmental delay and mild-to-severe ID, and three had

speech delay, but their IQs were measured above 70, and

two of these IQs were in the normal range. Four individuals

(4/11; 36%) had various types of epilepsy, namely absence

and tonic-clonic seizures, or Lennox-Gastaut syndrome.

The age of seizure onset ranged from 2 to 10 years old. Mal-

formations were infrequent in this group overall, although
7, 2019



Figure 2. TRRAP Sequence Is Intolerant to Missense Variants
(A) CADD scores of the 17 variants identified in affected individuals are compared to scores for gnomAD singleton missense variants. In
order to avoid CADD training circularity, we compared the individuals’ variants to variants seen once in gnomAD.
(B) TRRAPmissense tolerance ratio (MTR) plot. TheMTR is a statistic that quantifies the extent of purifying selection that has been acting
specifically against missense variants in the human population. For TRRAP, we adopted the 21-codon sliding window and used exome-
sequencing standing-variation data in the gnomAD database, version 2.0. MTR data were downloaded from Missense Tolerance Ratio
(MTR) Gene Viewer (see Web Resources). An MTR ¼ 1 (blue dashed line) represents neutrality (i.e., observing the same proportion of
missense variants in the window as expected on the basis of the underlying sequence context). Red segments of the MTR plot have
achieved exome-wide FDR<0.10 for a significance test of a window’s deviation from MTR ¼ 1. The black dashed line signifies gene-spe-
cific medianMTR, the brown dashed line signifies gene-specific 25th centile MTR, and the orange dashed line signifies gene-specific fifth
centile MTR. The locations of our 23 case-ascertained de novo variants are denoted by red stars along TRRAP’s MTR plot. The 17 different
variants are numbered within circles as follows: (1) p.Leu805Phe; (2) p.Phe860Leu; (3) p.Arg893Leu; (4) p.Ile1031Met; (5) p.Arg1035Gln;
(6) p.Ser1037Arg; (7) p.Ala1043Thr; (8) p.Glu1104Gly; (9) p.Glu1106Lys; (10) p.Gly1111Trp; (11) p.Gly1159Arg; (12) p.Arg1859Cys;
(13) p.Trp1866Arg; (14) p.Trp1866Cys; (15) p.Gly1883Arg; (16) p.Pro1932Leu; and (17) p.Arg3757Gln. We found that de novo variants
were significantly enriched in the intolerant 50% of TRRAP’s protein-coding sequence; 18 (78%) of the 23 de novo events affected the
most intolerant 50% of the TRRAP sequence (binomial exact test p ¼ 0.01). Strikingly, only the most recurring de novo missense variant
(GenBank: NM_001244580.1 p. Ala1043Thr) resided outside of the intolerant TRRAP sequence.
(C) Localization of the mutated TRRAP residues on 3D protein models including 14 out of 17 likely pathogenic variants and two out of
six additional variants of unknown significance are shown. The representation of the structure of human TRRAP (GenBank:
NP_001231509.1) was predicted by PHYRE2 Protein Fold Recognition Server by comparison to its Saccharomyces cerevisiae ortholog, ac-
cording to the cryo-EM structure of the SAGA (Spt-Ada-Gcn5-acetyltransferase) andNuA4 coactivator subunit Tra1 present in the protein
data bank (PDB: 5OJS). Variants in regions non-homologous to Tra1 are not represented. Structure representation was made with UCSF
Chimera.
individual 2 had microcephaly and heart malformations,

individual 1 had lacrimal duct aplasia, individual 19 had

lacrimal duct aplasia and optic disc colobomas, and indi-

vidual 21 had a postaxial polydactyly of one hand.

TRRAP-associated chromatin remodeling complexes are

generally associated with gene activation,30 which is

consistent with their HAT activity. Nevertheless, the

NuA4 complex has been shown to have a gene-repression

activity necessary for ESC pluripotency.31,32 This gene-

repression activity seems to be independent from its lysine

acetyltransferase activity.33 To test the hypothesis that

TRRAP variants alter gene expression, we obtained skin

fibroblasts from two individuals, individual 1, with
The Ameri
p.Leu805Phe, and individual 19, with p.Trp1866Cys and

performed next-generation sequencing with technical

replicates of RNA (i.e., separately prepared libraries from

the same samples). The RNA library preparation and

sequencing as well as bioinformatics analysis methods

can be found in the Supplemental Data. We found that,

in comparison to two typically developing individuals

(controls), both individuals with TRRAP variants

had remarkably different gene expression patterns

(Figure S2A). Interestingly, most differentially expressed

genes (DEGs) analyzed with DESeq2 were upregulated in

affected individuals compared to controls (Figure S2B).

Moreover, the individual with p.Leu805Phe had 619
can Journal of Human Genetics 104, 530–541, March 7, 2019 535
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Figure 3. Photographs of Individuals with TRRAP Variants
(A) Individual 1 at the age of 8 years. Note the telecanthus, broad nasal bridge, widely spaced eyes, relatively thin upper vermilion, flared
eyebrows, and ectropion.

(legend continued on next page)
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DEGs; the Log2 fold change (Log2FC) was higher than 2 or

lower than �2, and the p value was adjusted for 10% false

discovery rate lower than 0.01 (padj) (Supplemental Data,

Table S5).

To identify genes with significant expression differences,

we performed differential gene expression analysis be-

tween the two individuals with TRRAP variants (combined

as biological replicates) and two unaffected controls. Gene

ontology (GO) enrichment analysis of these genes with the

GOrilla web application indicates an enrichment for the

adrenergic receptor signaling pathway, genes important

for neurological function, and potassium and ATP-

sensitive ion transporters (Figure S2B, Supplemental

Data, Table S5). The two individuals who were tested car-

ried variants outside the cluster associated with the more

syndromic ID; if there are distinct effects on gene regula-

tion, it will be worth comparing gene expression between

the two groups. Finally, because it has been shown that

TRRAP has direct interactions with different partners not

related to the HAT complex, we cannot exclude the possi-

bility that the transcriptome alteration might be caused by

a mechanism other than impaired HAT activity. Thus, we

highlighted candidate pathways that might be useful for

uncovering the pathomechanism of TRRAP variants in

future studies.

TRRAP acts as a scaffold in HAT complexes. Although it

does not have a direct role in acetylation, we hypothesize

that pathogenic effects of variants might be due to dysre-

gulation of acetylation, a major process that has been

associated with several neurodevelopmental disorders.34

Pathogenic variants of KAT6B (MIM: 605880) cause both

Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS

[MIM: 603736])35–37 and genitopatellar syndrome (GPS

[MIM: 606170]),38,39 and pathogenic variants in KAT6A
(B) Individual 5 at the age of 8.5 years. Note the wide mouth, thin u
bridge.
(C) Individual 6 at the age of 29 years. Note the sparse eyebrows, upsla
columella.
(D) Individual 9 at the age of 11 years. Note the deeply set eyes, spa
(E) Individual 8. Note the telecanthus, low-set ears with upturned earl
palmar crease.
(F) Individual 12 at the age of 5 years. Note the prominent foreh
depressed nasal bridge, and thick upper vermilion.
(G) Individual 13 at the age of 14 years. Note the upslanted palpebr
(H) Individual 10 at the ages of 1 month, 16 months, and 3 years. N
thism, and supernumerary nipples.
(I) Individual 15 at the age of 12 years. Note the wide nasal bridge a
(J) Individual 19 at the ages of 2.5 years and 8 years. Note folded-do
(K) Individual 16 at the age of 2 years. Note the prominent forehead
(L) Individual 20 at the age of 10 years. Note the widely spaced eyes, t
(M) Individual 18. Note the narrow nose, flared eyebrows, almond-sha
philtrum, and small, low-set, and posteriorly rotated ears.
(N) Individual 21. Note the short palpebral fissures, epicanthal folds
(O) Individual 22 at the age of 24 years. Note the broad nasal bridge, d
posteriorly rotated ears.
(P) Individual 23 at the age of 19 years. Note the deeply set eyes, ups
posteriorly rotated ears.
(Q) Individual 24. Note the smooth philtrum and wide nasal ridge.
(R) Average facial gestalt visualization of nine healthy age- and gende
variants in the 1031–1159 cluster. Facial images are flipped and align

The Ameri
and BRPF1 mutations have also been associated with a

neurodevelopmental disorder.40–42 Rubinstein-Taybi syn-

drome (MIM: 180849 and 613684) is associated with vari-

ants in HAT-complex-encoding genes, namely CREBBP

and EP300.43–46 In addition to cognitive impairment,

abnormal histone acetylation can also result in behavioral

disorders, as evidenced by the associations found between

non-syndromic ASD and/or schizophrenia and alterations

in several lysine acetyltransferase and lysine deacetylase

genes, including BRD1, HDAC4, HDAC6, and

HDAC9.34,47–50

Variants in TRRAPwere associated with neuropsychiatric

disorders, including childhood disintegrative disorder,17

schizophrenia,18,19 and ASD.20 The ASD report included

individuals 18 and 19, who had p.Trp1866Arg and

p.Trp1866Cys, respectively. We thus confirmed the associ-

ation with ASD and provide evidence that it can be found

either isolated or associated with ID. On the basis of the

ExAC dataset alone without studies on neuropsychiatric

disorders, TRRAP is in the top five human genes that are

most intolerant of missense variants: it has a missense

z-score of 10.1.22 Although this study includes only the

first 24 identified individuals, a strength of the study is

that it was primarily ascertained by sequencing, reducing

phenotypic ascertainment bias. Given the highly con-

strained region of the observed variants coupled with the

population constraint and evolutionary conservation, we

hypothesize that variants outside of these regions are likely

to be associated with prenatal lethality, although we

cannot exclude the possibility that milder phenotypes

might be underrepresented in current exome datasets. It

is worth noting that we exclusively identifiedmissense var-

iants in the affected individuals. Given the loss-of-function

(LoF) intolerance of TRRAP in ExAC (pLI¼ 1.00), we would
pper lip, and widely spaced eyes with a wide and depressed nasal

nting palpebral fissures, smooth philtrum, thin upper lip, and low

rse eyebrows, and wide nasal bridge.
obes, and, on the fourth picture from the left, the single transverse

ead, arched eyebrows, short palpebral fissures, epicanthal folds,

al fissures and prominent forehead.
ote the cleft lip and palate, wide mouth, epicanthic fold, progna-

nd upslanting palpebral fissures.
wn upper eyelid and sparse medial eyebrows.
, epicanthic fold, telecanthus, flat nasal bridge, and low-set ears.
elecanthus, wide nasal bridge and ridge, and thin upper vermilion.
ped eyes with hypoplastic infraorbital ridges, telecanthus, smooth

, and thin upper vermilion.
eeply set eyes, upslanted palpebral fissures, widely spaced eyes, and

lanted palpebral fissures, widely spaced eyes, epicanthal folds, and

r-matched controls on the left; on the right, nine individuals with
ed to preserve bilateral asymmetry.
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Table 2. Clinical Description of Individuals with Variants Inside or Outside the 1031–1159 Cluster

Symptoms All Individuals Cluster 1031–1159 Variants Outside the Cluster

Global developmental delay 24/24 (100%) 13/13 (100%) 11/11 (100%)

Intellectual disability 17/20 (85%) 11/11 (100%) 6/9 (67%)

Facial dysmorphisms 19/24 (79%) 11/13 (85%) 8/11 (73%)

Autism spectrum disorder 5/24 (21%) 0/13 (0%) 5/11 (45%)

Microcephaly (<-2.5 SD) 7/24 (29%) 6/13 (46%) 1/11 (9%)

Short stature 7/23 (30%) 4/12 (33%) 3/11 (27%)

Hypotonia 8/24 (33%) 4/13 (31%) 4/11 (36%)

Feeding difficulties 8/24 (33%) 7/13 (54%) 1/11 (9%)

Seizures 5/24 (21%) 1/13 (8%) 4/11 (36%)

Cleft lip and palate 5/24 (21%) 5/13 (38%) 0/11 (0%)

Cerebellar hypoplasia 6/18 (33%) 6/11 (55%) 0/7 (0%)

Cerebral abnormalities 6/18 (33%) 6/11 (55%) 0/7 (0%)

Cardiac malformations 10/15 (66%) 9/12 (75%) 1/3 (33%)

Renal malformations 5/17 (29%) 5/13 (38%) 0/4 (0%)

Genital malformations 5/24 (21%) 5/13 (38%) 0/11 (0%)

Hearing impairment 3/24 (12%) 3/13 (23%) 0/11 (0%)

Visual impairment 4/24 (17%) 3/13 (23%) 1/11 (9%)

Scoliosis 3/24 (12%) 3/13 (23%) 0/11 (0%)

Dysplastic nails 8/24 (33%) 8/13 (62%) 0/11 (0%)

Lower-limb hyperreflexia 5/24 (21%) 1/13 (8%) 4/11 (36%)

Lacrimal-duct aplasia 3/24 (12%) 1/13 (8%) 2/11 (18%)

Accessory nipple 4/24 (17%) 3/13 (23%) 1/11 (9%)
expect to identify at least some LoF variants if haploin-

sufficiency of TRRAP was the causal mechanism. In

DECIPHER (accessed May 14, 2018), no small or intragenic

deletions involving TRRAP have been identified. Thus,

when the significant clustering is taken into account, our

results suggest that missense variants might act either as

gain-of-function or dominant-negative variants and that

haploinsufficiency of TRRAP is likely to be prenatally le-

thal, although we cannot exclude the possibility that an

LoF effect of non-clustering variants is associated with a

milder phenotype.

TRRAP participates in embryonic development, as

demonstrated by its binding with proteins regulating the

Notch signaling pathway in fruit fly51, the Ras signaling

pathway in C. elegans52, or the Wnt53 signaling pathway

in 293T cells.53 Therefore we suspect that TRRAP variants,

more especially those falling within the 1031–1159 region,

perturb the interactions with at least one of these develop-

mental signaling pathways; such a perturbance would

explain the multiple malformations observed in about

half of the affected individuals.

In yeast, a series of �100 codon deletion mutants in the

ortholog tra1 showed reduced or complete loss of

viability.54 Most deletions impaired coactivator complex
538 The American Journal of Human Genetics 104, 530–541, March
assembly, notably the ones encompassing the homolo-

gous 1031–1159 cluster (mutants D13–D14), as well as

the regions homologous to those containing variants

p.Leu805Phe, p.Phe860Leu, and p.Arg893Leu (mutants

D11–D12) and the p.Arg3757Gln variant (mutant D39).

In contrast, mutants D21–D22 encompassing the region

homologous to the cluster associated with fewer malfor-

mations (codons 1859–1932) were viable, which might

help explain the milder clinical phenotype associated

with variants within this cluster. In mice, Trrap knockout

leads to early embryonic lethality,14 and a neural-cell-spe-

cific conditional Trrap knockout line16 revealed premature

differentiation of neural progenitors, depletion of progen-

itor pools, and a significant reduction in cortical thickness.

These mice exhibited striking microcephaly, in agreement

with what we observed in half of the individuals in our

study cohort, primarily those with variants in the 1031–

1159 cluster.

In summary, we report evidence that variants in TRRAP

are associated with a pleiotropic neurodevelopmental syn-

drome with a potential genotype-phenotype correlation.

Our functional data highlight an enrichment of genes

related to neuronal function and ion transport. This

enrichment could underline the pathophysiology of the
7, 2019



disease. Future in vitro and in vivo studies on variants inside

and outside the main cluster will be required if we are to

determine which gene expression changes are connected

to which TRRAP-related specific phenotypes.
Supplemental Data

Supplemental Data can be foundwith this article online at https://

doi.org/10.1016/j.ajhg.2019.01.010.
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Figure  S1.  Maternal  mosaicism  of  variant  c.5795C>T  (p.Pro1932Leu)  identified  in individuals 22 and 

23.  (A) Pedigree of the family. (B) Integrative Genome Viewer snapshot of BAM emitted by GATK 

haplotype caller in the mother (individual I.2.). Reads are shown aligned to the genome in blue for forward 

strand and red for reverse strand. The C to T variant is shown in red on 4/55 reads.  This  low  7%  

representation  is  significantly  deviated  from  the  expected  50%  and  is indicative of mosaicism. (C) 

Segregation analysis of the variant by Sanger sequencing confirms the heterozygous variant in the siblings 

and the mosaicism in the mother. 



 

Figure S2. Fibroblasts harboring the p.(Leu805Phe) or p.(Trp1866Cys) variants have differential gene 

expression patterns. 

RNAseq was performed on two healthy controls and two individual fibroblasts to assay gene expression 

with technical duplicates. (A) Heatmap of genes expressed with at least 10 counts in at least one condition. 

Normalized count values from “DESeq2” were plotted and scaled row-wise using the “pheatmap” R 

package. (B) Log2 Fold Change (Log2FC) and p-values adjusted for 10% False Discovery Rate (padj) were 

calculated for the two affected individuals and two controls respectively pooled together using the 

“DESeq2” R package then plotted using the “ggplot2” R package as a volcano plot. Green dots represent 

genes with a padj lower than 0.01, and an absolute Log2FC higher than 2 (padj < 0.01, abs(Log2FC) > 2) and 

are referred to as Differentially Expressed Genes (DEGs). Red dots represent genes with a padj lower than 

0.01 but an absolute Log2FC lower than 2 (padj < 0.01, abs(Log2FC) < 2).   

 

 



Supplementary methods 

RNAseq 

Human primary fibroblasts for patient  were cultured in DMEM (ThermoFisher cat# 

11995-065), 10% FBS, 1mM GlutaMax (ThermoFisher cat# 35050-061) and antibiotics-

antimycotics (ThermoFisher cat# 15240-062). Fibroblasts were plated at 1 million cells per 150 

mm dish and allowed to grow until they reached 80% confluency. Cells were washed twice with 

D-PBS, resuspended in QIAzol (Qiagen cat# 79306) and stored at -80°C until all samples were 

ready for RNA extraction. RNA isolation was performed using the RNeasy mini kit (Qiagen cat# 

74104), according to the manufacturer’s protocol. Samples were treated with the Turbo DNA 

free kit (ThermoFisher cat# AM1907) and quality was assessed using the Agilent 2100 

Bioanalyzer. Sequencing was performed at the CHU Sainte-Justine and Génome Québec 

Integrated Clinical Genomic Centre in Pediatrics (CIGCP). mRNA Libraries were prepared using 

the TruSeq Stranded mRNA kit for 48 samples (Illumina), according to the manufacturer’s 

instructions. Samples were run on the Illumina HiSeq 4000 PE100 with 7 samples per lane. 

Output files were analyzed using the MUGQIC RNAseq pipeline (MUGQIC) steps 1 through 14 

on the Guillimin Génome Québec HPC. In summary, BAM files were converted to FASTQ using 

Picard (BROAD Institute), sequences were trimmed using Trimmomatic (Bolger, 2014) then 

aligned to the GRCh37 genome using STAR (Dobin, 2013); duplicate and misaligned reads 

were discarded using Picard, and raw counts were called using HTseq (Anders S, 2015). 

Differential expression analysis was performed using the DESeq2 R package (Love, 2014), with 

default parameters.  GO annotation analysis was performed using the GOrilla web application 

(Eden, 2009). Control and patient cell lines of the same type were respectively pooled together 

into two groups for differential gene expression analysis, so as to find genes which were 

significantly differentially expressed in all patients compared to all controls. Significantly 

expressed genes were selected with an adjusted p value (10% False Discovery Rate, padj) 



lower than 0.01, and a log2 Fold Change (log2FC) higher than 2 or lower than -2; corresponding 

to an overall fold change of at least 4 or -4. Genes of interest were all significantly differentially 

expressed in individual patient analyses with DESeq2 compared to controls.  

qPCR 

Total RNA from human cell lines was extracted as described above. Affected individuals 

were compared to 5 controls for ABCC9 and 6 controls for KCNJ8. Among the controls used for 

ABCC9and KCNJ8, the following cell lines were obtained from the NIGMS Human Genetic Cell 

Repository at the Coriell Institute for Medical Research: AGO8498A; GM00041 and GM07532. 

Reverse transcription was performed with 1 µg- of total RNA in a 20 µl reaction volume using 

qScript cDNA SuperMix (QuantaBio; CA101414-102) according to the manufacturer’s 

specifications. For Real-Time PCR, cDNA samples were diluted 2-fold (HMBS and KCNJ8) or 

35-fold (GAPDH, ABCC9), respectively. Gene-specific transcription level was measured in 

triplicates using the PowerUp SYBR Green Master Mix (Thermo Fisher Scientific ; A25741) and 

the LightCycler® 96 System from Roche Life Science). Primers (amplified sequences 85 to 200 

bp) were designed using PrimerBank (https://pga.mgh.harvard.edu/primerbank/) and Primer-

Blast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). KCNJ8 (FW : 

GCTCTTCGCTATCATGTGGT; REV : GAAGAGAAAAGCAGAAGTGAAAGAC E=2.07), ABCC9 

(FW: TCGCTTCCTTTTGAGTCCTG; REV: ATGTCCTCTGTTTCTGCGG E= 2.15), and 

controls: HMBS (FW : GGCAATGCGGCTGCAA; REV : GGGTACCCACGCGAATCAC E= 

1.93), GABDH (FW : AGCCACATCGCTCAGACA; GCCCAATACGACCAAATCC E=1.92). 

Melting curves for each primer sets showed a single symmetrical amplicon, and no primer-dimer 

peaks were observed in the no-reverse transcription-control (NoRT) reactions. PCR efficiency 

for each set of primers was calculated based on the slope of the standard curve from a 5-fold 

serial dilution and taken into account for the calculation of the relative quantification ratio (RQ) 

as described by (Pfaffl, 2001). 

Statistics 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/


Outliers were identify and deleted with the Grubbs’ test, α = 0.05 (Prism 6 – GraphPad). 

Results are expressed as the means ± standard errors of the means (SEMs). Unpaired 

parametric t-test (Prism 6 - GraphPad) was performed unless otherwise indicated. 
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Supplementary discussion on RNAseq analysis 

Apart from common DEGs, each patient had a majority of DEGs which weren’t shared. 

Of those, the p.Leu805Phe individual had upregulation of more than 80 cell cycle regulation 

genes (supplementary). GO analysis of DEGs in this patient showed a significant enrichment in 

chromosome segregation, chromosome organization, cell division, mitotic cell cycle process, 

and other related GOs. TRRAP has been shown to be necessary for cell-cycle regulation, and 

Trrap conditional knock-out in mouse brain leads to premature neural progenitor differentiation, 

microcephaly and disorganized neuronal layers1. Moreover, Trrap knockout mouse ESCs 

accumulate chromosomal aberrations because of chromosome fragmentation and lagging, and 

fail to arrest at the mitotic checkpoint2, consistent with the genes upregulated in this individual 

(NDE1, MIS18A, NEK2, CENPE, CENPF, and others – Supplementary).  Thus, it is possible 

that overexpressing TRRAP-related genes can lead to cell-cycle deregulation and abnormal 

neural progenitor differentiation, leading to the neural phenotype observed in TRRAP patients. 

The p.Trp1866Cys individual did not have the same enrichment in cell cycle regulation genes. 

Nevertheless, the DEGs with the lowest adjusted P values were associated mostly with 

neuronal function (EMB, PDE11A, STMN2, DYSF, SGIP1, PLEKHG5, and others - 

Supplementary). In addition, members of the HOXC cluster were significantly upregulated 

(HOXC9, HOXC10, HOXC11, HOXC-AS1, HOXC-AS2, HOXC-AS3, HOTAIR), as well as 

HOXB9 and HOXD13, suggesting a role for TRRAP in regulating 5’ Hox gene signaling.  

Homeobox containing transcription factors (Hox genes) have been implicated in embryonic 

morphogenesis and a multitude of disorders3, and the spatio-temporal regulation of their 

expression has been thoroughly studied in a model of “temporal collinearity” 4; 5. Each cluster of 

Hox genes is globally repressed, then progressively activated from the 3’ to the 5’ end during 

embryogenesis through the addition of active histone marks (H3K27Ac, H3K4m3) and the 

removal of repressive histone marks (H3K27m3) at the same time in all the clusters (Hox A, B, 



C, and D). An irregular early expression of these Hox genes can cause abnormal embryonic 

development in mouse and drosophila6; 7.  
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