TGF-β inducible epithelial-to-mesenchymal transition in renal cell carcinoma

SUPPLEMENTARY MATERIALS

Supplementary Figure 1: Influence of TGF-\beta1 treatment on apoptosis. RCC cells were stained with 7AAD and annexin V and the frequency of stained cells as a measure of apoptosis or necrosis was determined over time. Diagrams 1–5 show the fluorescence intensity of annexin V-FITC on the x-axis and 7AAD-PerCP on the y-axis. Unstained control (1) and single stains (2, 3) were required for gating the cells and analyze TGF- β 1-stimulated vs. unstimulated RCCs. Pie diagrams (6) show apoptosis rates of one representative experiment with 96 h TGF- β 1- stimulated and unstimulated RCC cells.

Apoptosis Assay

Supplementary Figure 2: Effect of increasing amounts and interval of TGF- β 1 treatment on renal cell lines. *CDH1* repression and upregulation of mesenchymal markers were investigated via qPCR. Data from one representative experiment are shown, respectively. (A) EMT markers do not increase or decrease more with increasing amounts of TGF- β 1 in MZ2733NN. 10 ng/mL appeared to be a suitable concentration of TGF- β 1 to trigger EMT in renal cell lines. (B) MZ2858RC cells were treated for 72 h – 120 h with 10 ng/mL TGF- β 1. Although the repression of *CDH1* and the expression of the mesenchymal markers seem to increase from 72 h to 96 h, no remarkable increase from 96 h to 120 h stimulation time was detected. Therefore, for RCC stimulation experiments, a treatment with 10 ng/mL TGF- β 1 for 96 h was determined to be the method of choice.

Supplementary Figure 3: Reversibility of the mesenchymal transition of RCC cells analyzed by qPCR. Bar graphs show data of one representative re-culturing experiment. RCC cell lines were tested for the reversibility of the mesenchymal transition after 96 h by re-culturing in medium without TGF- β 1. Black bars display the mRNA levels of the epithelial marker *CDH1* relative to the untreated control after 96 h of TGF- β 1 treatment and additional 96 h re-culturing, respectively. Dark grey bars indicate the mRNA levels of the mesenchymal marker *MMP2*; the light grey bars show *TGFB1* mRNA levels. Arrows label the increase (\uparrow), decrease (\downarrow) or no change (\rightarrow) of mRNA levels of the respective genes after re-culturing.

Supplementary Figure 4: Kaplan-Meier curve for overall survival of ccRCC patients with different *TGFBR2* expression levels. Patients with high *TGFBR2* expression (n = 301, red) have a significantly better overall survival (p-value = 0.0001022) than patients with low *TGFBR2* expression levels (n = 303, blue).

Supplementary Figure 5: Kaplan-Meier curve for overall survival of ccRCC and pRCC patients with different *TGFB1* expression levels. (A) Clear cell RCC patients with low *TGFB1* expression (n = 302, blue) have a significantly better overall survival (p-value = 0.01145) than patients with high *TGFB1* expression levels (n = 302, red). (B) No significant difference in overall survival was determined for pRCC patients with different *TGFB1* expression levels.

APM components

Supplementary Figure 6: The effect of the TGF- β 1 treatment on the mRNA levels of components of the antigen presenting and processing machinery. Bar graphs show qPCR data of at least 3 independent stimulation experiments ($n \ge 3$) normalized to the untreated control. *TPN*, TAP-binding protein tapasin; *TAP1/2*, transporter associated with antigen processing 1/2; *B2M*, β -2-microglobulin.

Target Gene	Abbreviation	Primer name	Primer sequence	
β-actin	ACTB	ACTB qPCR fw	GAAGCATTTGCGGTGGACGAT	
		ACTB qPCR rv	TCCTGTGGCATCCACGAAACT	
β_2 -microglobulin	B2M	B2M qPCR fw	CTCGCGCTACTCTCTT	
		B2M qPCR rv	AAGACCAGTCCTTGCTGA	
E-cadherin	CDH1	CDH1 qPCR fw	TCCCTTCACAGCAGAACTAACA	
		CDH1 qPCR rv	AGTCACACACGCTGACCTCTAA	
N-cadherin	CDH2	CDH2 qPCR fw	TGGGAATCCGACGAATGG	
		CDH2 qPCR rv	TGCAGATCGGACCGGATACT	
claudin 1	CLDN1	CLDN qPCR fw	CCTATGACCCCAGTCAATGC	
		CLDN qPCR rv	TCCCAGAAGGCAGAGAGAAG	
glyceraldehyde-3-phosphate dehydrogenase	GAPDH	GAPDH qPCR fw	GGACTCATGACCACAGTCCAT	
		GAPDH qPCR rv	AGGTCCACCACTGACACGTT	
metallo matrix protease 2	MMP2	MMP2 qPCR fw	ATGGCTACCGCTGGTGCGG	
		MMP2 qPCR rv	GGTGCAGCTCTCATATTTGTTGCC	
slug	SNAI2	SNAI2 qPCR fw	GACCCTGGTTGCTTCAAGGA	
		SNAI2 qPCR rv	TGTTGCAGTGAGGGCAAGAA	
snail	SNAII	SNAI1 qPCR fw	CATCCTTCTCACTGCCATG	
		SNAI1 qPCR rv	GTCTTCATCAAAGTCCTGTGG	
tapasin	TPN	TPN qPCR fw	TGGGTAAGGGACATCTGCTC	
		TPN qPCR rv	ACCTGTCCTTGCAGGTATGG	
transporter associated with antigen processing 1	TAP1	TAP1 qPCR fw	GGAATCTCTGGCAAAGTCCA	
		TAP1 qPCR rv	TGGGTGAACTGCATCTGGTA	
transporter associated with antigen processing 2	TAP2	TAP2 qPCR fw	CCAAGACGTCTCCTTTGCAT	
		TAP2 qPCR rv	TTCATCCAGCAGCACCTGTC	
transforming growth factor beta 1	TGFB1	TGFB1 qPCR fw	GACTCGCCAGAGTGGTTATCTT	
		TGFB1 qPCR rv	CTGAAGCAATAGTTGGTGTCCA	
transforming growth factor beta receptor 1	TGFBR1	TGFBR1 qPCR fw	TGGCAGTAAGACATGATTCAGC	
		TGFBR1 qPCR rv	TAGATGTCAGCACGTTTGAAGG	
transforming growth factor beta receptor 2	TGFBR2	TGFBR2 qPCR fw	AGATACATGGCTCCAGAAGTCC	
		TGFBR2 qPCR rv	ACTTCTCCCACTGCATTACAGC	
vimentin	VIM	VIM qPCR fw	GGAGATGCTTCAGAGAGA	
		VIM qPCR rv	TCTTCGTGGAGTTTCTTC	
zinc finger and homeobox transcription factor-1	ZEB1	ZEB1 qPCR fw	GCCAATAAGCAAACGATTCTG	
		ZEB1 qPCR rv	TTTGGCTGGATCACTTTCAAG	

Supplementary Table 1: Oligonucleotides used in qPCR experiments

Abbreviations: fw, forward; rv, reverse.

molecule	antibody	company	isotype	fluorophore	order no.		
HLA-ABC	Anti-HLA-ABC	Beckman Coulter	IgG2a	FITC	IM1838U		
HLA-BC	Anti-human HLA BC	eBioscience	IgG1	APC	17-5935-42		
B7-H1	Anti-human CD274	eBioscience	IgG1	PE	12-5983-42		
B7-H2	Anti-human B7RP-1	eBioscience	IgG1	PE	12-5889-73		
B7-H3	Anti-hB7-H3	R&D systems	IgG1	APC	FAB1027A		
B7-H4	Anti hB7-H4	AbD serotec	IgG1	FITC	MCA2632F		
ICAM-1	CD54-FITC	Beckman Coulter	IgG1	FITC	IM0726U		
TIM-3	Anti-TIM-3 FITC	Miltenyi Biotec	IgG1	FITC	130-104-646		
isotype control	IgG2a(mouse)-FITC	Beckman Coulter	IgG2a	FITC	A12689		
isotype control	IgG1(mouse)-FITC	Beckman Coulter	IgG1	FITC	A07795		
isotype control	IgG1(mouse)-PE	Beckman Coulter	IgG1	PE	A07796		
isotype control	IgG1(mouse)-APC	eBioscience	IgG1	APC	400122		

Supplementary Table 2: Antibodies used for flow cytometry