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A. Technology rationale

In prostate cancer (PCa), the current reference standard used to diagnose men at-risk
for PCa, the Gleason score, a formalin-fixed based staining of tumor cells, is challenged with
gualitative uncertainty due to observation bias, and has limited prognostic capability. Similarly,
in BrCa, static staining of formalin-fixed paraffin-embedded tissue is the current reference
standard to predict stage and grade, and suffers from the inability to predict if a nascent cancer
lesion (i.e. DCIS) will develop into an aggressive and/or metastatic cancer . Recent
histochemical, molecular, genetic, epigenetic, genomic, and proteomic techniques have
emerged toward better risk stratification of newly diagnosed cancer. However, the clinical
utility and actionability of these tests have not been firmly established *°. Traditional immuno-
histochemical staining and fixed-tissue molecular/genetic/genomic techniques suffer from a
poor “signal-to-noise” ratio due to tumor heterogeneity and only measure biomarkers at a
single time-point without integrating the effect of the tumor microenvironment — leading to
suboptimal predictive performance characteristics ’.

Existing cancer diagnostic tests have revealed prostate and breast cancers as clusters of
heterogeneous cells and are classically difficult to diagnose and treat due to significant inter-
and intra-cellular genetic heterogeneity and complex microenvironment interactions 2. This
makes it difficult to ascertain the specific genetic mutation(s) and physiological contexts
responsible for aberrant cellular behavior and tumor aggressiveness — a necessary step to
create a successful biomarker panel ***2. Further, individual cancer cells may evolve their own
survival mechanisms and biochemical pathways, leading to specific, individual, “rogue,” cells
that may be highly aggressive in invasive and metastatic potential *>. Further compounding the
difficulty in risk stratifying cancer, the differences amongst individual and unique cells make
bulk fixed-tissue-core or fixed-tissue-slice diagnosis of cancer via histochemical, genomic, or
other molecular approaches problematic since it is not known, on a biopsy-sampling level basis
which, or how many, cells within the biopsy are indeed aggressive and metastatic and,
conversely, which cells are benign **. As such a live-cell phenotypic biomarker assay, with
single-cell resolution, enabled with machine vision and machine learning for the risk
stratification by adverse pathology of cancer patients (STRAT-AP) was developed and
investigated via prostate and breast cancer primary tissue samples.

B. Biomarkers and biomarker ranking

The set of all measured biomarkers are listed in Supplementary Table 2. After primary
biomarkers are measured via machine vision, aggregate biomarkers are derived from primary
biomarkers via algebraic formulas detailed in Supplementary Table 3. As STRAT-AP is designed
to probe cell signalling and cytoskeletal activity generated from cell-ECM interactions, focal
adhesion size and actin retrograde flow velocity are heavily utilized when generating aggregate
biomarkers. All listed biomarkers are necessary to train the machine learning algorithm to
maximize the sensitivity, specificity for each prediction (groups of adverse pathology features
and individual adverse pathology features). Of the ~600 biomarkers, biomarkers were selected
by objective machine-based ranking during the training of the machine learning software via
decision tree analysis. The top 10 rankings for local adverse pathology predictor (LAPP) and
metastatic adverse pathology predictor (MAPP) values for prostate cancer are listed in



Supplementary Table 4. The biomarker rankings for LAPP and MAPP were defined by the
machine learning algorithm based on maximizing sensitivity and specificity for a specific
prediction.

Further, biomarker rankings are specific to a given prediction and the total set of ~600
biomarkers are necessary to achieve maximum sensitivity and specificity. Given the decision
tree — based analysis and biomarker rankings, biomarkers cannot be replaced by other
biomarkers. That is to say, it is necessary for each biomarker to be present and ranked, or
weighted, in a specific manner to achieve the predictive performance of STRAT-AP. STRAT-AP
applies the same set of ~¥600 biomarkers to both prostate and breast cancer samples. That said,
analysis of prostate tissue and breast tissue yield different biomarker rankings after machine
learning analysis. A representative comparison of biomarker rankings for prostate and breast
cancer is detailed in Supplementary Table 4 & 5 respectively. Given the machine learning-
derived biomarker rankings, the following biomarkers emerge as important for predicting LAPP
and MAPP: Focal Adhesion intensity, cell height / adhesion / cell spreading as measured by
mean square gray value (MSGV), cell perimeter, nucleus perimeter, and cell tortuosity. Further
studies are planned to understand the individual importance of these biomarkers for given
predictions.

C. Extracellular matrix formulation (ECMf) and media formulations

STRAT-AP was designed to minimize genetic and phenotypic alterations upon culturing
primary cells in vitro. Toward that aim STRAT-AP was designed to enable rapid and short-term
culturing of primary cells, promoting adhesion and analysis of biomarkers in vitro. That said, we
recognize that in vitro culturing will inevitably alter certain genetic and phenotypic signatures of
the primary cells analysed. As such, STRAT-AP’s culturing methodology and technique was
designed to provide a reference standard to promote a robust and reproducible response from
primary cultured cells derived from primary tissue samples. In other words, the ECMf and
media conditions of STRAT-AP’s culturing conditions serves three functions: 1) to enable rapid
adhesion on a substrate easy to analyse in vitro; 2) to promote short-term survival such that
biomarkers can be measured within 72 hours; and 3) to elicit a specific cell-ECM response to
probe cell-ECM interactions, cell signalling and cytoskeletal activation. STRAT-AP’s success in
measuring meaningful biomarkers is contingent on the ECMf’s ability to enable adhesion,
survival, and stimuli to the cell such that the machine learning algorithm can compare
biomarker measurements effectively toward classifying and characterizing the heterogeneous
population of cancer and non-cancer cells from a patient’s primary tissue sample. Further
studies are planned to further elucidate the role of the ECMf and media formulations in
culturing and exhibiting specific biomarker characteristics.

D. Culture conditions and characteristics

Toward analyzing dynamic biomarkers over multiple time-points, the ability to establish
live-primary cell cultures rapidly and analyze them in a meaningful way to generate informative
biomarker measurements is paramount. To accomplish this, STRAT-AP utilizes standard
culturing and physical chemistry techniques to engineer a discretely-defined environment with
known media and extracellular matrix formulation conditions described in detail in Chander,



A.C., et al., 2017". Such conditions were optimized to provide rapid (< 72 hours) and robust (>
80% adhesion and survival) culturing of primary cells. Standard methods of using classic media
and serum formulations along with uncoated plastic culturing techniques were not successful in
that they did not meet rapid and robust criteria though they may be sub-optimally permissive
for culturing primary cells. Specifically, STRAT-AP’s successful culturing techniques were based
on media with defined growth and extracellular factors'® and defined extracellular matrix
protein formulation®*® used to coat glass culturing surfaces. Given that both prostate and
breast cancer are thought to arise from epithelial tissue and that epithelial tissue, by definition,
is composed of epithelial cells, STRAT-AP’s ECMf formulation and media formulation was
selected to be most permissive to epithelial cells. The distribution of cell types found in STRAT-
AP’s culturing conditions and image analysis conditions is presented in Supplementary Fig. 5. To
optimize consistency of measurements and work-flow, culture conditions used for image
analysis are identical to the culturing conditions.

As detailed in Chander, et al., 2017® the ECMf is critical for rapid and robust (>80%)
adhesion and survival of primary prostate cells. Furthermore, the ECMf is critical to elicit a
strong cell-ECM response from the cell such that biomarkers can be measured and analysed by
machine vision and machine learning software, respectively. That said, given that the ECMf is
reference standard, it is conceivable that other extracellular proteins may be utilized with
varying degrees of accuracy and success if they satisfy the criteria for adhesion, survival and
biomarker measurement. While the ECMf may be most critical and important for STRAT-AP’s
success, the media formulation is less critical in that ECMf may provide enough of an external
signal to allow for adhesion, survival and biomarker measurement across numerous types of
media. Future studies are planned to better understand the importance of the media and its
role in selecting for different cell-types. As detailed in Chander et al., 2017%° the critical
components of STRAT-AP’s ECMTf are collagen type 1 and fibronectin. While future studies are
planned to understand the critical component of the media, preliminary data supports the idea
that the media is a less critical component of the culturing conditions though it may optimize
the speed at which cells can be cultured, cell-type composition, and perhaps biomarker
measurements. Alternative media formulations are discussed briefly in the Alternative
methodology section of the Supplement. Indeed, the ECMf is the same as that is provided in
Chander et al., 20175 Future studies are planned to understand the optimal ratio of collagen &
fibronectin. In this study we utilized a 1:1 ratio of Collagen to Fibronectin with a protein
concentration great enough to saturate the surface of culturing form factor (i.e. microfluidic
device).

E. Alternative methodology

With respect to alternative methodology, alternative reagents and software, albeit with
sub-STRAT-AP efficiency, can be utilized to approximate the results of STRAT-AP. Specifically,
commercial Dulbecco’s Minimal Essential Media (DMEM) is sufficient in conjunction with the
ECMf to promote adhesion and survival of primary prostate tissue with varying efficacy. Further
studies are designed to understand the role the media plays in adhesion, survival, and
biomarker measurements as well as cell-type composition. Data supporting the ability to
culture cells (promote adhesion and survival) in a commercially available media are presented
in the following. Specifically, data presented in Supplementary Fig. 10, 11, and 12 support the



utilization of DMEM, supplemented with 10 mM glutamine for transport, dissociation, and
culturing as measured by cell adhesion in vitro on ECMf coated glass. Data supporting the
ability to utilize 10 pug/ml of laminin as an alternative ECM is presented in Chander et al., 2017%°
and discussed in the following.

In this manuscript we present data gathered using custom reagents such as transport
media, dissociation media, culturing media, and an extracellular matrix formulation (ECMf).
Additionally, we present data that is collected by custom automated machine vision software
and analyzed by custom machine learning software. In this section we describe how alternative,
previously available commercial reagents and software can be utilized to collect similar results.
Further, we present data that supports the use of commercially available medias and software
to obtain similar data.

Toward the aim of successfully transporting tissue from the operating room to a central
lab, a transport media is employed such that core-biopsy samples from surgical tissue can be
stored during a transport time of <72 hours. Preliminary data support the ability to transport
tissue with DMEM, supplemented with 10 mM glutamine while maintaining ~70% viability as
measured by cell adhesion after dissociation. The use of DMEM with 10 mM glutamine exhibits
a 10% decrease in viability when compared to Cellanyx’s custom transport media®.
Supplementary Fig. 10, 11, and 12 display data supporting the ability to transport tissue,
dissociate tissue into cells, culture cells and measure biomarkers using commercially available
DMEM supplemented with 10 mM glutamine.

Similar to tissue transport, DMEM with 10 mM glutamine may be employed to
dissociate cells, albeit with less viability efficiency, as measured by cell adhesion, cell survival
and biomarker measurement (Supplementary Fig. 10, 11, and 12). DMEM with 10 mM
glutamine may also be employed to culture cells albeit with ~10% less efficiency than Cellanyx’s
custom media (Supplementary Fig. 10, 11, and 12).

As mentioned earlier, the ECMf is thought to contribute most to efficient culturing. In
Chander et al., 20175, we present data comparing ECMf with laminin as an alternative protein
coating to enable adhesion and survival of primary prostate cancer cells. Laminin was achieved
~60% adhesion and survival as compared to ECMf which achieved >80% adhesion and survival.

While data presented from this study was collected using automated MatLab machine
vision software utilizing functions found in the ‘Image Processing Toolbox,” machine vision
software to quantify biomarkers can be also built using Imagel (NIH) utilizing the following
functions: ‘find edges’, ‘optimum threshold’, ‘fill holes’, and ‘remove noise’. Supplementary Fig.
12 demonstrated biomarker measurements quantified using manual (open source) Imagel
techniques. Further, manual machine vision software to quantify biomarkers can also be
employed using MatLab utilizing the functions in the ‘Image Processing Toolbox'.

In addition to primary biomarkers (Supplementary Table 2) aggregate biomarker were
utilized to highlight and quantify the interdependence, synergistic and antagonistic
relationships, of primary biomarkers. Supplementary Table 3 lists the aggregate biomarkers
that were used. Both primary and aggregate biomarkers were initially presented in patent®.



While less efficient with respect to time and performance, commercial methods and reagents
may be utilized to obtain similar results and analysis presented in this manuscript.

Machine learning methodology were initially presented in the patent. The following is a
description of how a machine learning pipeline in Matlab can be built:

Capture raw data

Using a microscope’s automation software, capture images of the sample cells. There are three
collection regimes: cell spreading, cell tracking, and focal adhesion.

Cell spreading is the first collection regime. It is the time immediately after the cells are first
introduced to the microfluidic environment. The images are taken in quick succession to
capture the fast movement of cells adhering to the ECM and spreading.

Cell tracking is the next regime. As the cells have adhered and interact with the ECM, the cells
are tracked over a period of hours, with images taken at many different locations to capture as
many cells as possible, but ensuring constant time differences between each subsequent
capture at a specific location. The result is images of many cells over the period of hours.

The final regime is after cells are stained to image focal adhesions. They are observed through
the proper filter cube and imaged to obtain images of the focal adhesions.

Get data for each cell for each time point

Metrics are calculated for every time point for every cell during the cell spreading and cell
tracking regimes. To calculate these metrics, first segment the cells. It is necessary to identify
cells that are touching. Some cells move between time points. We want to track these cells
across frames of data. To do this, for each cell, calculate the center of mass. In the next time
point, look for the center of mass that is closest to this one, and identify those as the same cell.
For each cell, also segment the nucleus.

Segmentation can be achieved in Matlab using a combination of commands like ‘multithresh,’
‘bwdist,” imhmin, ‘watershed,” and ‘bwmorph,’ all in the image processing toolbox.

For each cell and nucleus, calculate the parameters: area, perimeter, tortuosity, mean grey
scale value. These can be calculated in Matlab using the ‘regionprops’ command in the image
processing toolbox.

For cells from the cell spreading regime, calculate the change in the area to calculate the
spreading velocity.

For cells in the cell tracking regime, calculate the movement of the center of mass of the cell
between frames to get the migration velocity.

The output from this is a list of directly measured metrics for each cell for each time point,
these are called the primary biomarkers. Aggregate biomarkers are calculated from
combinations of the primary biomarkers.



Measure actin retrograde flow

Retrograde flow is the movement of actin towards the center of a cell at the leading edge of its
leading edge connection with the ECM. The retrograde flow is measured from the cell tracking
regime. In this regime, radial samples are taken from the center of mass of the cell to the
perimeter at periodic angles. These line samples are lined up for all time points to generate a
kymograph. From this kymograph, the identification and measurement of retrograde flow can
be calculated.

Measure focal adhesions

Observing the images taken in the focal adhesion regime, focal adhesions can be segmented,
sized, counted, and locations measured using matlab functions like multithresh, bwmorph, and
regionprops.

Aggregate data for all time points

To aggregate data from all time points, to produce a single metric per cell, several statistical
operations are used. The mean, median, maximum, minimum, mean of top quartile, mean of
bottom quartile of all metrics are taken. Also, the inverse of these values is taken. This results in
12 values for each metric for each cell. Reject cells that were not able to be tracked for all time
points.

Train classifier

With all the metrics for each cell calculated, they can be used to train and validate a machine
learning classifier. Each cell is treated as independent observations. As a result, the pathology
output for each patient from which the cell came was used as the ground truth for each of the
cells.

The cells are separated into independent training and validation sets using a standard 70%/30%
training/validation split. The cell metrics and output pathologies are used to train a random
forest model.

In matlab, this can be done using the TreeBagger function.
Validate classifier

Take the validation set that was held apart from training the classifier and use that cell data to
predict the output. Combine cell-by-cell results into a sample-level response by taking the
average classifier output. Compare this predictor output to the ground truth of the actual
pathology report for the cell that the patients came from. Calculate performance metrics.
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Supplementary Fig. 1: STRAT-AP’s breast cancer phenotypic (cellular and molecular)
biomarkers are measured via sequential live-cell imaging and fixed-cell imaging in a
standardized microfluidic environment and quantified using automated machine vision
software to obtain live- and fixed-cell biomarkers with single-cell resolution. Example breast
cancer biomarkers measured include A) Cell spreading + tortuosity: cell adhesion rate to device
substrate, cell area change during adhesion, tortousity of the cell membrane as a measure of
morphology B) Membrane fluctuations: rapid dynamics of the membrane surface are measured
as retrograde flow through kymographs C) expression, localization, and phosphorylation state
of subcellular protein complexes (phospho-focal adhesion kinase (pFAK)) and individual
proteins (integrin-linked kinase (ILK)) as well as microtubules are measured on corresponding
fixed cells matched to the live cells 20x DIC and 40x fluorescence images were measured via a
standard automated fluorescent microscope. D-H) Live-cell biomarker examples quantified. D)
Quantitative measure of mean cell spreading velocity for the total population of cells. E)
Quantitative measure of mean cell migration velocity for the total population of cells. F)
Quantitative measure of mean cell tortuosity for the total population of cells. G) Quantitative
measure of mean cell mean gray scale value for the total population of cells. H) Quantitative
measure of cell mean retrograde flow velocity for the total population of cells. I-L) Fixed cell
biomarker examples quantified. I) Quantitative measure of mean cell focal adhesion number for
the total population of cells. J) Quantitative measure of mean cell focal adhesion intensity for
the total population of cells. K) Quantitative measure of mean cell focal adhesion distance from



membrane edge for the total population of cells. L) Quantitative measure of mean cell nuclear
area/cell area for the total population of cells. M) Quantitative measure of LAPP2 (Tortuosity,
Perimeter, RFV) aggregate biomarker for the total population of cells. N) Quantitative measure
of MAPP10 (Area, MGSV, RFV, Tortuosity) aggregate biomarker for the total population of cells.
0) Quantitative measure of MAPP17 (Migration velocity, Tortuosity) aggregate biomarker for
the total population of cells.
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Supplementary Fig. 2: STRAT-AP’s breast cancer machine learning algorithms trained to
predict specific surgical adverse pathology features classify positive and negative single-cells
and predict patient surgical adverse pathology features in blinded, test sample sets based on
machine learning-derived thresholds. (A) A ‘cell-level’ plot stratifying negative (blue circles)
and positive (red circles) cells for positive surgical margins (PSM). Black dashed line indicate the
machine-derived threshold. (B) A ‘patient-level’ plot stratifying positive (red circles) and
negative (blue circles) for patients positive or negative for PSM. Results are obtained by
summarizing cell level results. Black dashed line indicates machine-derived threshold set by
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algorithmic analysis. (C) Cell-level plot stratifying negative and positive cells for Her2/Neu
positive (H/NP). (D) Patient-level plot stratifying for patients positive or negative for H/NP
results. (E) Cell-level plot stratifying negative and positive cells for ductal carcinoma in situ
(DCIS). (F) Patient-level plot stratifying for patients positive or negative for DCIS. (G) Cell-level
plot stratifying negative and positive cells for lobular carcinoma in situ (LCIS). (H) Patient-level
plot stratifying for patients positive or negative for LCIS. (I) Cell-level plot stratifying negative
and positive cells for grade (Gr). (J) Patient-level plot stratifying for patients positive or negative
for Gr. (K) Cell-level plot stratifying negative and positive cells for lympho-vascular invasion
(LVI). (L) Patient-level plot stratifying for patients positive or negative for LVI results. (M) Cell-
level plot stratifying negative and positive cells for lymph node invasion (LI). (N) Patient-level
plot stratifying for patients positive or negative for LI.
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Supplementary Fig. 3: A Receiver Operating Characteristic (ROC) curve was calculated for
Biochemical Recurrence (BCR) to quantify how well the algorithmically derived metrics could
predict disease recurrence. (A) The optimal sensitivity and specificity was calculated based on
ROC curve analysis. (B) The platform is able to predict BCR with high sensitivity and specificity.
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Supplementary Fig. 4: A Receiver Operating Characteristic (ROC) curve was calculated for
upgrading between biopsy Gleason score and RP Gleason score to quantify how well machine
learning-derived metrics could predict RP Gleason. (A) ROC curve analysis. (B) The platform is
able to predict BCR with high sensitivity and specificity.
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Supplementary Table 1: Summary of adverse pathology data for prostate cancer patients
positive for Biochemical Recurrence.

BCR Positive Sample Adverse Pathology Data

Sample Number

Adverse
Pathology 1 2 3 4 5 6

Positive
surgical - + + + - -
margin

Seminal
vesicle - + + ND - -
invasion

Extra-
prostatic + + + + + -
extension

Perineural
invasion

Lymph
node - ND ND ND - +
positive

Lymph
vascular - ND + ND - -
invasion

Supplementary Table 1: Samples Positive for BCR and Their Associated Adverse Pathologies:
(+) positive for indicated pathology prediction, (-) negative for indicated pathology prediction,
ND for that sample adverse pathology was available from the path report.
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Supplementary Fig. 5: Various cell types are cultured in the STRAT-AP platform. Fresh primary
prostate cells were seeded onto ECM coated surfaces incubated overnight at 37°C with 5% CO,
The cells were stained with prostate specific membrane antigen (PSMA) as an epithelial cell
marker, Cytokeratin 8 + 18 as a luminal epithelial cell marker, and alpha-smooth muscle actin as
a fibroblast marker. Controls were treated with secondary antibody only and treated with the
same conditions as the primary antibodies. All images are at 20x magnification. Graph of
percentage of each type of cell found in the culture system. 500 cells were counted as either
epithelial, luminal, or fibroblasts based on staining patterns for cultures derived from RP tissue
samples (n=3 samples). Then the percentage of each cell type was calculated. Graph shows the
percentage of each cell type.
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Supplementary Fig. 6: Fluorescence staining of molecular biomarkers and corresponding

Fluorescence Control DIC Fluorescence Control DIC

staining controls. Each sample was treated with either secondary antibodies only as control for

background and non-specific staining (upper two image panels) or corresponding primary
antibodies and secondary antibodies (lower two image panels).
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Supplementary Fig. 7: Fluorescence staining of molecular biomarkers in cancer cell lines. Each
cell line was treated with focal adhesion staining primary antibodies and corresponding
secondary antibodies. INCAP = human prostate cancer cell line,HEC1 = human endometrial
cancer cell line, A431 = epidermoid carcinoma cell line, MDA-MB-231 = breast cancer cell line
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Supplementary Fig. 8: Flow diagram of machine learning sample training, classification and
blinded predictions. Live-cell and fixed-cell primary biomarkers and measured by machine
vision software at single cell resolution. Machine learning algorithms are trained using 70% of
the cells across all samples associating biomarkers with corresponding adverse pathology
reports where several iterations are run to optimize cell and sample level classification and
train for biomarker ranking based on accuracy of adverse pathology prediction. Once optimal
biomarker rankings are established for the highest accuracy of predictions at the cell and
sample level the remaining 30% of cells across samples are analyzed in a blinded fashion and
classified at the cell level and sample level for their likelihood of having a particular adverse
pathology with the pathology reports remaining blinded to the system. After the prediction is
made at the cell and sample level based on the machine vision measured biomarkers and
machine learning analysis predictions are checked against the unblinded pathology reports to
test prediction performance. ROC curve analysis and AUC calculations are made as a read out
prediction performance and accuracy.
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Supplementary Fig. 9: STRAT-AP Microfluidic Device. Image of the top of STRAT-AP’s
microfluidic device and schematic drawing of the glass, plastic, glass layers of STRAT-AP’s
microfluidic device.
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Supplementary Fig. 10: Immediate cell attachment (viability) after transport and dissociation
in alternative media: DMEM with 10 mM glutamine. The percentage number of cells were
counted that attached to the surface of the microfluidic device upon initial seeding relative to
the total possible based on seeding density (n=9).
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Supplementary Fig. 11: Cell survival after 3 days in culture using alternative media: DMEM
with 10 mM glutamine. Percent confluence of cells after 3 days in culture (n=3).
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Quantification of Live-Cell Biomarkers Quantification of Aggregate Biomarkers
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Supplementary Fig. 12: Biomarker measurement from cells cultured and imaged in alternative

media: DMEM with 10 mM glutamine and via alternative machine vision software: manual
Imagel-based biomarker quantification. Histograms of biomarker measurements collected from
cells exposed to DMEM + 10 mM glutamine media demonstrate biomarkers can be measured in

alternative media and alternative machine vision techniques.
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Primary Biomarkers

Migration velocity

Cell area

Cell perimeter

Cell tortuosity

Cell aspect ratio

Nuclear area

Nuclear perimeter

Nuclear tortuosity

Cell mean gray square value

Actin retrograde flow velocity

Focal adhesion number

Focal adhesion intensity

Focal adhesion distance from cell edge

Cell spreading velocity

Supplementary Table 2: List of primary biomarkers measured using STRAT-AP.
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Mathematical Functions to Compute Aggregate
Biomarkers

OP1 = Tortuosity / RFV

OP2 = Tortuosity * Perimeter / RFV

OP3 = Area * RFV / Tortuosity

OP4 = FA Size / RFV

MP2 = OP3 * Migration Velocity

P4 = Area / RFV

P5 =RFV / Area

P6 = FA Size / Area

P7 = Area / FA Size

P8 = Area / (RFV * Tortuosity)

P9 = RFV * Tortuosity / Area

P10 = Area * MGSV / (RFV * Tortuosity)

P11 = Area / ( RFV * Tortuosity * MGSV)

P12 = FA Size * Tortuosity / Area

P13 = Area * FA Size / Tortuosity

P14 = Area / Migration Velocity

P15 = FA Size / Tortuosity

P16 = Migration Velocity * Tortuosity

P17 = Migration Velocity / Tortuosity

P18 = Tortuosity / FA Size

P19 = Area * Migration Velocity

PAC1 = FAS® * Spreading Velocity

PAC2 = FAS® / Spreading Velocity

PAC3 = (FAS / Migration Velocity) * CA

PAC4 = (CA * FAS * RFS) / Migration Velocity

PACS5 = (Spreading Velocity) / (Migration Velocity)

PAC6 = (CA * FAS ( Migration Velocity)) / RFS

Supplementary Table 3: List of aggregate biomarkers and mathematical formulas utilized to
derive aggregate biomarkers measured using STRAT-AP. After all primary biomarkers are
collected and aggregate biomarkers the following statistical functions are applied to each
biomarker measurement:
1. All timepoints

a. Median

b. Mean

c. Standard deviation
2. Top quartile of values

a. Median

b. Mean

c. Standard deviation



3. Bottom quartile of values
a. Median
b. Mean
c. Standard deviation
After statistical functions are performed ~600 different biomarker measurements are

generated that are then input into the machine learning training algorithm.
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Prostate Tissue Biomarker Ranking for
Local Adverse Pathology (LAPP) Prediction

1 MGSV median

2 MGSV median inverse

bottom quartile FA intensity mean inverse

MGSV mean inverse

MGSV stdev

MGSYV stdev inverse

N o v bW

bottom quartile MGSV median inverse

0o

bottom quartile FA intensity mean

9 FA intensity mean inverse

10 FA intensity median

Prostate Tissue Biomarker Ranking for
Metastatic Adverse Pathology (MAPP) Prediction
1 PAC4 bottom quartile mean
2 PAC3 mean inverse
3 P18 bottom quartile mean inverse
4 P15 stdev inverse
5 P13 median
6 OP3 top quartile mean
7 P16 bottom quartile mean inverse
8 bottom Cell Perimeter median
9 Nucleus Perimeter stdev
10 PAC6 top quartile median

Supplementary Table 4: Biomarker rankings determined by objective machine learning algorithms are
presented and demonstrate that different biomarkers are utilized for different predictions within
prostate tissue analysis.



Breast Tissue Biomarker Ranking for Local Adverse
Pathology (LAPP) Prediction

MGSV median

MGSV median inverse

bottom quartile MGSV median inverse

top quartile MGSV std

bottom quartile Cell Tortuosity mean

Cell Tortuosity median

top quartile FA mean

top quartile MGSV median inverse

Ol 0| Nl O 0| | W[ N|

top quartile MGSV median

[EEY
o

PAC2 top quartile mean

Breast Tissue Biomarker Ranking for Metastatic
Adverse Pathology (MAPP) Prediction

bottom quartile FA Intensity median

bottom quartile FA Intensity mean inverse

top quartile FA Intensity median inverse

FA Intensity mean inverse

FA Intensity median inverse

FA Intensity median

bottom quartile FA Intensity median inverse

top quartile FA Intensity mean inverse

O 00| N oo | | W| N| B

bottom quartile FA intensity mean

(IR
o

top quartile FA intensity mean

Supplementary Table 5: Biomarker rankings determined by objective machine learning
algorithms are presented and demonstrate that different biomarkers are utilized for different
predictions within breast tissue analysis.
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