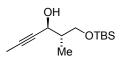
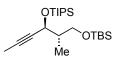
Total Synthesis of (-)-Archazolid B.

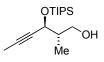

Paul A. Roethle, Ingrid T. Chen, and Dirk Trauner*

Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460.

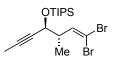
Supporting Information


General Experimental Details: All reactions were carried out under an inert N₂ atmosphere in oven-dried glassware. Flash column chromatography was carried out with EcoChrom ICN SiliTech 32-63 D 60 Å silica gel. Reactions and chromatography fractions were monitored with Merck silica gel 60 F_{254} plates and visualized with potassium permanganate, ceric ammonium molybdate, and anisaldehyde. Tetrahydrofuran (THF), toluene (PhCH₃), diethyl ether (Et₂O), and methylene chloride (CH₂Cl₂) were dried by passage through activated alumina columns. *N*-Butyllithium (*n*BuLi) was titrated with diphenylacetic acid prior to use. All other reagents and solvents were used without further purification from commercial sources. Organic extracts were dried over MgSO₄ unless otherwise noted.

Instrumentation: FT-IR spectra were obtained on NaCl plates with an ATI Mattson Gemini spectrometer. Proton and carbon NMR spectra (¹H NMR and ¹³C NMR) were recorded in deuterated chloroform (CDCl₃) on a Bruker DRX-500 spectrometer and calibrated to residual solvent peaks. Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet. Melting points were determined with an electrothermal apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer 241 Polarimeter.

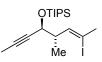

(2S,3S)-1-(*tert*-Butyl-dimethyl-silanyloxy)-2-methyl-hex-4-yn-3-ol (S1). To neat 9 (16.2 g, 67.4 mmol) was added a solution of (*S*)-Alpine Borane (0.5 M in THF, 270 mL, 135 mmol). The solution was concentrated to make the reaction mixture approximately 1 M in THF. The reaction was stirred at 40 °C for 42 h. The reaction was cooled to rt and propionaldehyde (10 mL) was added. After 30 min, the reaction was cooled to 0 °C, diluted with Et₂O (135 mL) and a 3:2 mixture of 3 M NaOH and 30% aqueous H_2O_2 (70 mL) was added slowly. After stirring at rt for 18 h, the reaction mixture was poured onto a saturated K₂CO₃ solution (100 mL). The layers were separated, and the aqueous was extracted 1 x Et₂O (100 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography twice (7-9% EtOAc/Hex) to give 14.5 g (89%) of S1 as a colorless oil.

R_f 0.42, 20% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 4.35 (m, 1 H), 3.89 (dd, 1 H, *J* = 10, 4 Hz), 3.56 (dd, 1 H, *J* = 10, 6.5 Hz), 3.46 (br d, 1 H, *J* = 5 Hz), 1.88 (m, 1 H), 1.86 (s, 3 H), 0.99 (d, 3 H, *J* = 7 Hz), 0.90 (s, 9 H), 0.76 (s, 6 H). ¹³C (125 MHz): δ 81.3, 79.2, 67.1, 66.9, 40.8, 25.7, 18.1, 13.0, 3.5, -5.6, -5.7. IR: 3417, 2956, 2929, 2858.

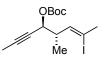

(4S,5S)-6-(*tert*-Butyl-dimethyl-silanyloxy)-5-methyl-4-triisopropylsilanyloxy-hex-2-yne (S2). To a solution of S1 (9.70 g, 40.0 mmol) in CH_2Cl_2 was added imidazole (3.27 g, 48.0 mmol), triisopropylsilyl chloride (9.42 mL, 44.0 mmol), and DMAP (49 mg, 0.40 mmol). After stirring at rt for 18 h, filtered through celite with CH_2Cl_2 . The solution was concentrated *in vacuo*. The crude oil was purified by flash column chromatography (1% EtOAc/Hex) to give 14.8 g (93%) of S2 as a colorless oil.

R_f 0.48, 100% Hexanes. ¹H NMR (500 MHz): δ 4.64 (m, 1 H), 3.52 (m, 2 H), 1.94 (m, 1 H), 1.81 (m, 3 H), 1.11 (m, 21 H), 0.93 (d, 3 H, J = 7 Hz), 0.89 (s, 9 H), 0.04 (s, 3 H), 0.03 (s, 3 H). ¹³C (125 MHz): δ 80.8, 78.9, 65.0, 64.5, 43.2, 25.8, 18.2, 18.0, 12.3, 11.2, 3.4, -5.5, -5.6. IR: 2944, 2893, 2866, 1464, 1255 1084 cm⁻¹. $[\alpha]^{25}_{D}$ +3.1° (c = 0.97, CHCl₃). HRMS (EI+) calcd for C₂₁H₄₃O₂Si₂ [(M – Me)⁺] 383.2802, found 383.2807.

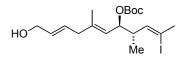
(2S,3S)-2-Methyl-3-triisopropylsilanyloxy-hex-4-yn-1-ol (10). A solution of S2 (11.3 g, 28.3 mmol) in 2:1:1 acetic acid/THF/H₂O (160 mL total) was stirred at rt 16 h. The reaction mixture was then poured onto H₂O (200 mL) and Et₂O (150 mL). The layers were separated. The organics were washed 2 x H₂O (200 mL) and 1 x saturated NaHCO₃ solution (200 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (10% EtOAc/Hexanes) to give 7.77 g (97%) of **10** as a colorless oil.


R_f 0.31, 10% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 4.49 (m, 1 H), 3.77 (dd, 1 H, J = 11, 4 Hz), 3.62 (dd, 1 H, J = 11, 7 Hz), 2.48 (br s, 1 H), 1.92 (m, 1 H), 1.82 (s, 3 H), 1.15 (m, 3 H), 1.10, (m, 18 H), 1.01 (d, 3 H, J = 7 Hz). ¹³C (125 MHz): δ 81.7, 79.6, 67.4, 65.9, 42.4, 18.0, 13.0, 12.3, 3.4. IR: 3385, 2943, 2866, 1462 cm⁻¹. [α]²⁵_D –34.0° (c = 0.77, CHCl₃). HRMS (EI+) calcd for C₁₃H₂₅O₂Si [(M – C₃H₇)⁺] 241.1624, found 241.1625.

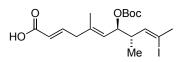
((1S,2S)-4,4-Dibromo-2-methyl-1-prop-1-ynyl-but-3-enyloxy)-triisopropyl-silane (11). To a solution of S2 (10.2 g, 36.0 mmol) in CH₂Cl₂ (144 mL) was added NaHCO₃ (15.1 g, 180 mmol) followed by Dess-Martin periodinane (16.0 g, 37.8 mmol). After 20 min, a 1:1:1 solution of saturated NaHCO₃, saturated Na₂S₂O₃, and H₂O (150 mL total) was added. The resulting biphasic mixture was stirred vigorously for 30 min. The layers were separated, and the aqueous was extracted 1 x CH₂Cl₂ (75 mL). The organics were dried, filtered, and concentrated *in vacuo*. Meanwhile, to a solution of PPh₃ (49.1 g, 187 mmol) and K₂CO₃ (6.47 g, 46.8 mmol) in CH₂Cl₂


(187 mL) at 0 °C was added CBr₄ (31.0 g, 93.6 mmol) in CH₂Cl₂ (94 mL) via cannula over 30 min. After 40 min, the aldehyde in CH₂Cl₂ (36 mL) was added over 5-10 min. After 1 h, the reaction mixture was poured onto a saturated NaHCO₃ solution (200 mL). The layers were separated, and the aqueous was extracted 1 x CH₂Cl₂ (100 mL). The organics were dried, filtered, and concentrated *in vacuo*. A 1:1 solution of Et₂O and hexanes was added. The suspension was filtered and washed with Et₂O. The solution was concentrated and this was repeated three times. The resulting oil was purified by flash column chromatography (100 % Hexanes) to give 11.8 g (75%) of **11** as a colorless oil.

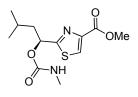
R_f 0.53, 100% Hexanes. ¹H NMR (500 MHz): δ 6.34 (d, 1 H, J = 9.5 Hz), 4.38 (m, 1 H), 2.71 (m, 1 H), 1.83 (s, 3 H), 1.51-1.07 (m, 24 H). ¹³C (125 MHz): δ 140.4, 88.7, 81.5, 78.7, 65.1, 45.7, 18.0, 13.7, 12.2, 3.5. IR: 3423, 2943, 2866, 1463, 1095, 1066 cm⁻¹. [α]²⁵_D +38.5° (c = 1.11, CHCl₃). HRMS (EI+) calcd for C₁₄H₂₃OSiBr₂ [(M – C₃H₇)⁺] 396.9844, found 396.9845.


((Z)-(1S,2S)-4-Iodo-2-methyl-1-prop-1-ynyl-pent-3-enyloxy)-triisopropyl-silane (S3). To a suspension of CuI (14.3 g, 75.0 mmol) in Et₂O (214 mL) at 0 °C was added MeLi (1.60 M in Et₂O, 93.8 mL, 150 mmol) over 30 min via syringe pump. After 5 min, cooled to -78 °C. A solution of 11 (11.0 g, 25.0 mmol) in Et₂O (100 mL) was added via syringe pump with the needle wrapped in dry ice over 1 h. After 30 min, I₂ (38.0 g, 150 mmol) in Et₂O (150 mL) was added via cannula over 20 min. The reaction mixture had difficulty stirring after addition of the I₂ solution. After 10 min, the reaction was warmed to 0 °C upon which stirring resumed. The reaction was poured onto a saturated NH₄Cl solution (400 mL). The layers were separated, and the aqueous was extracted 1 x Et₂O (200 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (100% hexanes) to give 8.91 g (72%) of S3. (77% on 2.7 g scale). The product was often contaminated with dimethyl adduct and/or vinyl bromide as noted by Tanino and Miyashita. Analytically pure material could be obtained by flash column chromatography with 6% by weight AgNO₃ on SiO₂ and eluted with 100% hexanes.

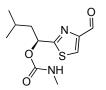
R_f 0.46, 100% Hexanes. ¹H NMR (500 MHz): δ 5.32 (dd, 1 H, J = 9, 1.5 Hz), 4.39 (m, 1 H), 2.61 (m, 1 H), 2.50 (s, 3 H), 1.83 (s, 3 H), 1.17-1.04 (m, 24 H). ¹³C (125 MHz): δ 137.3, 100.5, 80.9, 79.2, 65.5, 48.7, 33.8, 18.0, 13.7, 12.3, 3.5. IR: 2943, 2891, 2866, 1462, 1085, 1065 cm⁻¹. $[\alpha]^{25}{}_{D}$ +80.0° (c = 1.03, CHCl₃). HRMS (EI+) calcd for C₁₅H₂₆OSiI [(M – C₃H₇)⁺] 377.0798, found 377.0787.


Carbonic acid *tert*-butyl ester (Z)-(1S,2S)-4-iodo-2-methyl-1-prop-1-ynyl-pent-3-enyl ester (12). To a solution of S3 (7.50 g, 17.8 mmol) in THF (49 mL) at 0 °C was added tetrabutylammonium fluoride (1.0 M in THF, 22.3 mL, 22.3 mmol) over 5 min. After 20 min at 0 °C, the reaction was warmed to rt. Then after 15 min, the mixture was poured onto a saturated NaHCO₃ solution (75 mL). The layers were separated, and the aqueous was extracted 1 x Et₂O (50 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was dissolved in CH₂Cl₂ (59 mL) and pyridine (4.33 mL, 53.5 mmol), di-*tert*-butyl dicarbonate (Boc₂O) (8.55 g, 39.2 mmol), and DMAP (218 mg, 1.78 mmol) were added sequentially. After 1.5 h, the reaction mixture was poured onto 0.5 M citric acid solution (75 mL). The layers were separated, and the aqueous was extracted 1 x CH₂Cl₂ (50 mL). The organics were dried, filtered, 1 x CH₂Cl₂ (50 mL). The organics were dried, filtered, 1 x CH₂Cl₂ (50 mL). The layers were separated, and the aqueous was extracted 1 x CH₂Cl₂ (50 mL). The organics were dried, filtered, 1 x CH₂Cl₂ (50 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (3% EtOAc/Hexanes) to give 6.45 g (99%) of **12** as a colorless oil.

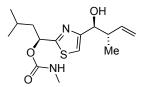
R_f 0.42, 5% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 5.35 (dd, 1 H, J = 9, 1.5 Hz), 5.11 (m, 1 H), 2.78 (m, 1 H), 2.50 (s, 3 H), 1.86 (s, 3 H), 1.49 (s, 9 H), 1.11 (d, 3 H, J = 6.5 Hz). ¹³C (125 MHz): δ 152.7, 135.6, 101.9, 83.3, 82.4, 74.8, 69.5, 46.0, 33.8, 27.7, 14.8, 3.7. IR: 2978, 1743, 1275, 1254 cm⁻¹. [α]²⁵_D +49.2° (c = 0.65, CHCl₃). HRMS (FAB+) calcd for C₁₄H₂₂O₃I [(M + H)⁺] 365.0614, found 365.0610.


Carbonic acid *tert*-butyl ester (2E,5E)-(S)-7-hydroxy-1-((Z)-(S)-3-iodo-1-methyl-but-2-enyl)-3-methyl-hepta-2,5-dienyl ester (13). To a solution of 12 (1.00 g, 2.75 mmol) in acetone (5.5 mL) was added 3-buten-1-ol (709 μ L, 8.24 mmol) followed by RuCp(MeCN)₃PF₆ (60 mg, 0.14 mmol). After 25 min, the reaction mixture was concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (25% EtOAc/Hexanes) to give 1.05 g (88%) of 13 as a light yellow oil.

R_f 0.33, 25% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 5.66 (m, 2 H), 5.33 (d, 1 H, J = 8 Hz), 5.29 (m, 1 H), 5.18 (m, 1 H), 4.09 (m, 2 H), 2.74 (m, 2 H), 2.61 (m, 1 H), 2.49 (s, 3 H), 1.72 (s, 3 H), 1.46 (s, 9 H), 0.97 (d, 3 H, J = 7 Hz). ¹³C (125 MHz): δ 153.2, 139.7, 136.4, 131.1, 129.8, 122.6, 101.5, 81.7, 76.4, 63.5, 46.3, 42.1, 33.7, 27.8, 17.1, 15.6. IR: 3385, 2977, 2931, 2872, 1736, 1276, 1254, 1159 cm⁻¹. [α]²⁵_D +44.4° (c = 0.50, CHCl₃). HRMS (FAB+) calcd for C₁₈H₂₉O₄ILi [(M + Li)⁺] 443.1271, found 443.1273.


(2E,5E,9Z)-(7S,8S)-7-*tert*-Butoxycarbonyloxy-10-iodo-5,8-dimethyl-undeca-2,5,9-trienoic acid (6). To a solution of 13 (2.32 g, 5.32 mmol) in CH₂Cl₂ (27 mL) was added NaHCO₃ (2.23 g, 26.6 mmol) followed by Dess-Martin periodinane (2.37 g, 5.58 mmol). After 20 min, a 1:1:1 solution of saturated NaHCO₃, saturated Na₂S₂O₃, and H₂O (30 mL total) was added. The resulting biphasic mixture was stirred vigorously for 30 min. The layers were separated, and the aqueous was extracted 1 x CH₂Cl₂ (25 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was dissolved in *t*BuOH (20.2 mL) and 2-methyl-2-butene (1.06 mL). To the solution was added a solution of NaClO₂ (80% purity, 5.41 g, 47.9 mmol) and NaH₂PO₄ in H₂O (21.3 mL). After 45 min, the yellow, biphasic reaction mixture was poured onto H₂O (30 mL) and Et₂O (60 mL). The mixture was acidified using a 1 M HCl solution (~5 mL). The layers were separated. The organics were dried, filtered, and concentrated *in vacuo*. This gave 2.38 g (99%) of **6** as a light yellow oil and was taken on without further purification.

R_f 0.48, 40% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 7.03 (dt, 1 H, *J* = 15.5, 7 Hz), 5.85 (d, 1 H, *J* = 15.5 Hz), 5.34 (d, 1 H, *J* = 9 Hz), 5.28 (m, 1 H), 5.24 (m, 1 H), 2.92 (d, 2 H, *J* = 7 Hz), 2.63 (m, 1 H), 2.49 (s, 3 H), 1.75 (s, 3 H), 1.48 (s, 9 H), 0.95 (d, 3 H, *J* = 7 Hz). ¹³C (125 MHz): δ 171.2, 153.1, 148.7, 137.2, 136.0, 124.5, 122.1, 101.8, 81.9, 76.1, 46.1, 42.0, 33.7, 27.8, 17.3, 15.6. IR: 2977, 1736, 1698, 1276, 1254, 1157 cm⁻¹. $[\alpha]^{25}_{D}$ +46.5° (*c* = 1.26, CHCl₃). HRMS (FAB+) calcd for C₁₈H₂₇O₅ILi [(M + Li)⁺] 457.1063, found 457.1069.

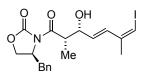

2-((S)-3-Methyl-1-methylcarbamoyloxy-butyl)-thiazole-4-carboxylic acid methyl ester (S4). To a solution of **14** (17.2 g, 75.0 mmol) in CH_2Cl_2 (150 mL) was added carbonyldiimidazole (CDI) (24.3 g, 150 mmol) in portions over 1.5 h. The reaction was cooled to 0 °C and a solution of MeNH₂ (2.0 M in THF, 46.9 mL, 93.8 mmol) was added. The reaction was warmed to rt and after 10 min, a saturated NaHCO₃ solution (200 mL) was added. The layers were separated, and the aqueous was extracted 1 x CH_2Cl_2 (100 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (40-45% EtOAc/Hexanes) to give 16.9 g (79%) of **S4** as a white solid. (88% on 2.3 g scale)

mp 77-79 °C. R_f 0.45, 50% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 8.11 (s, 1 H) 6.08 (m, 1 H), 4.89 (br s, 1 H) 3.92 (s, 3 H), 2.80 (d, 3 H, J = 4.5 Hz) 1.87 (m, 2 H), 1.74 (m, 1 H), 0.95 (d, 3 H, J = 6.5 Hz), 0.92 (d, 3 H, J = 6.5 Hz). ¹³C (125 MHz): δ 172.7, 161.8, 155.8, 146.7, 127.5, 72.1, 52.4, 44.2, 27.6, 24.6, 23.1, 21.7. IR: 3358, 2957, 1724, 1533, 1244 cm⁻¹. [α]²⁵_D -36.7° (c = 1.01, CHCl₃). HRMS (EI+) calcd for C₁₂H₁₉N₂O₄S [(M + H)⁺] 287.1066, found 287.1076.

Methyl-carbamic acid (S)-1-(4-formyl-thiazol-2-yl)-3-methyl-butyl ester (S5). To a solution of S4 (9.70 g, 33.9 mmol) in THF (68 mL) at -78 °C was added a solution of DIBAL-H (1.0 M in PhCH₃, 81.3 mL, 81.3 mmol) via cannula over 45 min. After 1.5 h, a ½ saturated Rochelle's salt solution (150 mL) was added. The reaction mixture was stirred vigorously for 2 h at rt. The layers were separated, and the aqueous was extracted 1 x Et₂O (100 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (40% EtOAc/Hexanes) to give 6.92 g (80%) of S5 as a white solid.

mp 57-59 °C. R_f 0.47, 40% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 10.0 (s, 1 H), 8.13 (s, 1 H), 6.07 (m, 1 H), 4.87 (br s, 1 H), 2.82 (d, 3 H, J = 5 Hz), 1.93 (m, 1 H), 1.86 (m, 1 H), 1.74 (m, 1 H), 0.99 (m, 6 H). ¹³C (125 MHz): δ 184.7, 173.0, 155.8, 154.7, 127.4, 71.9, 44.1, 27.6, 24.5, 23.0, 21.8. IR: 3355, 2958, 1701, 1539, 1253, 1132 cm⁻¹. [α]²⁵_D –32.1° (c = 0.93, CHCl₃). HRMS (EI+) calcd for C₁₁H₁₇N₂O₃S [(M + H)⁺] 257.0960, found 257.0967.

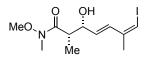
Methyl-carbamic acid (S)-1-[4-((1S,2S)-1-hydroxy-2-methyl-but-3-enyl)-thiazol-2-yl]-3methyl-butyl ester (7). To a solution of trans-2-butene (condensed) in THF (26 mL) at -78 °C was added a solution of KOtBu (3.37 g, 30.0 mmol) in THF (30 mL) via cannula over 15 min. A solution of *n*BuLi (2.50 M in hexanes, 12.0 mL, 30.0 mmol) was then added dropwise to give a bright yellow solution. After warming to -45 °C and stirring for 45 min, the mixture was cooled to -78 °C. A solution of (–)-MeOB(Ipc)₂ (10.3 g, 32.5 mmol) in THF (33 mL) was added over 5 min. The reaction mixture became clear upon this addition. After 1 h at -78 °C, a solution of S5 (6.41 g, 25.0 mmol) in THF (25 mL) was added dropwise. The reaction was warmed to -30 °C over 3 h. A 3:2 mixture of 3 M NaOH/30% aqueous H₂O₂ (50 mL total) was added slowly. The reaction mixture was stirred at rt for 18 h. The layers were separated, and the aqueous was extracted 1 x Et₂O (150 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (40% EtOAc/Hexanes) to give 7.01 g (90%) of 7 as a clear, viscous oil.


R_f 0.36, 40% EtOAc/Hexanes. ¹H NMR (500 MHz): δ 7.07 (s, 1 H), 6.01 (m, 1 H), 5.76 (m, 1 H), 5.11 (s, 1 H), 5.09 (s, 1 H), 4.86 (br s, 1 H), 4.60 (d, 1 H, J = 6 Hz), 2.79 (d, 3 H, J = 5 Hz), 2.73 (m, 1 H), 2.63 (br s, 1 H), 1.88 (m, 1 H), 1.81 (m, 1 H), 1.68 (m, 1 H), 0.98 (d, 3 H, J = 6.5 Hz), 0.94 (m, 6 H). ¹³C (125 MHz): δ 170.8, 158.0, 156.0, 139.5, 116.5, 114.2, 74.0, 72.0, 44.3, 44.1, 27.6, 24.5, 22.9, 22.0, 16.0. IR: 3346, 2959, 2871, 1709, 1527, 1258, 1131 cm⁻¹. [α]²⁵_D –

79.6° (c = 2.00, CHCl₃). HRMS (EI+) calcd for C₁₅H₂₅N₂O₃S [(M+H)+] 313.1586, found 313.1583.

(2E,4Z)-5-Iodo-4-methyl-penta-2,4-dien-1-ol (S6). To a solution of 15 (16.8 g, 66.7 mmol) in CH_2Cl_2 (500 mL) at -78 °C was added DIBAL-H (1.5 M in PhCH₃, 161 mL, 241 mmol) via cannula. The reaction was stirred at -78 °C for 15 min then diluted with CH_2Cl_2 (500 mL), and a $\frac{1}{2}$ saturated Rochelle's salt solution (1200 mL) was added. The biphasic mixture was vigorously stirred at rt for 2 h. The layers were separated, and the aqueous was extracted 1 x Et₂O (200 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (25% EtOAc/Hexanes) to give 14.3 g (96%) of S6 as a yellow oil.

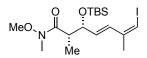
 R_f 0.28, 25 % EtOAc/Hexanes. ¹H NMR (500 MHz): δ 6.61 (d, 1 H, *J* = 15.5 Hz), 6.32 (s, 1 H), 6.02 (dt, 1 H, *J* = 16.0, 5.5 Hz), 4.26 (dd, 1 H, *J* = 5.5, 1.0 Hz), 2.15 (s, 1 H), 1.95 (s, 3 H). ¹³C NMR (125 MHz): δ 141.3, 133.4, 132.1, 79.8, 63.1, 21.2. IR: 3331, 3120, 2914, 2852, 1675, 1439, 1295, 1156, 1096, 1025, 1005, 966 cm⁻¹. HRMS (FAB+) calcd for C₆H₉IO (M⁺) 223.9698, found 223.9697. Anal. Calcd for C₆H₉IO: C, 32.17; H, 4.05. Found: C, 32.34; H, 4.01.



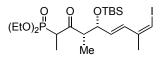
(S)-4-Benzyl-3-((4E,6Z)-(2S,3R)-3-hydroxy-7-iodo-2,6-dimethyl-hepta-4,6-dienoyl)oxazolidin-2-one (17). To a solution of S6 (14.4 g, 64.1 mmol) in CH_2Cl_2 (500 mL) was added NaHCO₃ (18.8 g, 224 mmol). The reaction was cooled to 0 °C, covered in foil to protect from light, and then added Dess-Martin periodinane (25.8 g, 160 mmol). After 20 min, a 1:1:1 solution of saturated NaHCO₃, saturated Na₂S₂O₃, and H₂O (600 mL total) was added. The resulting biphasic mixture was stirred vigorously for 30 min. The layers were separated, and the aqueous was extracted 1 x Et₂O (200 mL). The organics were dried, filtered, and concentrated *in vacuo*. The crude material was filtered through a pad of silica to give 14.2 g (>99%) of an unstable aldehyde as white solid, (note that product was generally taken on crude and that isomerization and polymerization were observed on exposure to light).

R_f 0.50, 25 % EtOAc/Hexanes. ¹H NMR (400MHz): δ 9.73 (d, 1 H, J = 7.6 Hz), 7.48 (d, 1 H, J = 15.6 Hz), 6.78 (s, 1 H), 6.29 (dd, 1 H, J = 15.6, 7.6 Hz), 2.03 (s, 3 H). ¹³C NMR (100 MHz): δ 193.9, 152.1, 141.1, 132.1, 90.8, 21.0. IR: 3055.5, 2980, 2820, 2720, 1681, 1608, 1441, 1304, 1265, 1165, 1122, 970, 742, 705 cm⁻¹. HRMS (FAB+) calcd for C₆H₇IO (M⁺) 221.9542, found 221.9537.

To a solution of **16** (5.92 g, 25.4 mmol) in CH₂Cl₂ (60 mL) at 0 °C was added freshly distilled Bu₂BOTf (6.73 mL, 26.9 mmol) dropwise, followed by Et₃N (4.70 mL, 34.0 mmol). The light orange solution was stirred at 0 °C for 40 min, then cooled to -78 °C and covered flask in foil to protect from light. A solution of the crude aldehyde (6.21 g, 29.0 mmol) in CH₂Cl₂ (15 mL) was added dropwise over 15 min. The reaction was stirred at -78 °C for 10 min, then a 1:3 solution of pH 7 phosphate buffer (20 mL) and MeOH (60 mL) was added. The mixture was warmed to 0 °C, stirred for 10 min, the mixture was warmed to rt and stirred for an additional 90 min. The solution was diluted with EtOAc (200 mL), washed with a saturated NaHCO₃ solution (2 x 200 mL), then brine (100 mL). The organics were dried, filtered, and concentrated *in vacuo*. The crude product was recrystallized from ether and hexanes (1:20). The condensed mother liquor was purified by flash column chromatography (25% EtOAc/Hexanes) to afford 8.12 g (70%) of **17** as a white crystalline solid and a single diastereomer. (76% on 1.0 g scale)

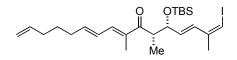

mp 92-93 °C. R_f 0.49, 5 % EtOAc/CH₂Cl₂. ¹H NMR (500 MHz): δ 7.32 (m, 1 H), 7.26 (m, 1 H), 7.19 (d, 1 H, J = 7.5 Hz), 6.65 (d, 1 H, J = 15.5 Hz), 6.14 (s, 1 H), 5.89 (dd, 1 H, J = 15.5, 6.0 Hz), 4.71 (m, 1 H), 4.60 (s, 1 H), 4.18 (m, 2 H), 3.93 (m, 1 H), 3.22 (dd, 1 H, J = 13.5, 3.0 Hz), 3.13 (s, 1 H), 2.79 (dd, 1 H, J = 12.5, 9.5 Hz), 2.07 (s, 3 H), 1.24 (d, 3 H, J = 7.0 Hz). ¹³C NMR (125 MHz): δ 176.0, 153.2, 141.3, 135.1, 134.0, 132.6, 129.5, 128.9, 127.4, 80.3, 72.6, 66.3, 55.1, 42.9, 37.7, 21.2, 11.7. IR: 3691, 3054, 2987, 2685, 2305, 1782, 1551, 1422, 1263, 1157, 896, 750 cm⁻¹. [α]²⁵_D +38.0° (c = 1.00, CHCl₃). HRMS (FAB+) calcd for C₁₉H₂₂INO₄Li [(M + Li)⁺] 462.0754, found 462.0745. Anal. Calcd for C₁₉H₂₂INO₄: C, 50.12; H, 4.87; N, 3.08. Found: C, 50.28; H, 4.77; N, 3.00.

(4E,6Z)-(2S,3R)-3-Hydroxy-7-iodo-2,6-dimethyl-hepta-4,6-dienoic acid methoxy-methylamide (S7). To a solution of N,O-dimethylhydroxylamine hydrochloride (6.87 g, 70.4 mmol) in THF (30 mL) at 0 °C was added a solution of Me₃Al (2.0 M in toluene, 35.2 mL, 70.4 mmol) dropwise. Methane gas evolved. The reaction mixture was warmed to rt for 15 min, then cooled to -20 °C. A solution of 17 (8.02 g, 17.6 mmol) in THF (30 mL) was added. A white precipitate formed in the reaction. The mixture was warmed to 0 °C and stirred for 1 h. A solution of 0.5 N HCl (100 mL) in CH₂Cl₂ (100 mL) at 0 °C was added via cannula. Vigorous gas evolution was observed. The layers were separated, and the aqueous was extracted 1 x CH₂Cl₂ (100 mL). The combined organic layers were washed with a saturated NaHCO₃ solution (2 x 100mL), and brine (50 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (50% EtOAc/Hexanes) to give 4.80 g (80%) of S7 as a light yellow solid.

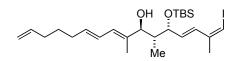

mp 70-71 °C. $R_f 0.42$, 55 % EtOAc/Hexanes. ¹H NMR (500 MHz): $\delta 6.67$ (d, 1 H, J = 15.5 Hz), 6.14 (s, 1 H), 5.88 (dd, 1 H, J = 15.5, 5.5 Hz), 4.56 (s, 1 H), 3.94 (s, 1 H), 3.66 (s, 3 H), 3.20 (s, 3 H), 3.00 (br s, 1 H), 1.95 (s, 3 H), 1.18 (d, 3 H, J = 7.0 Hz). ¹³C NMR (125 MHz): $\delta 177.4$, 141.3, 134.1, 132.4, 79.7, 72.2, 61.6, 39.6, 31.9, 21.1, 10.8. IR: 3451, 3054, 2984, 2940, 2305,

1658, 1641, 1631, 1422, 1390, 1265, 1179, 1158, 995, 969, 896, 822, 738 cm⁻¹. $[\alpha]_{D}^{25}$ –1.4° (c = 1.00, CHCl₃). HRMS (FAB+) calcd for C₁₁H₁₉INO₃ [(M + H)⁺] 340.0410, found 340.0420. Anal. Calcd for C₁₁H₁₈INO₃: C, 38.95; H, 5.35; N, 4.13. Found: C, 39.06; H, 5.40; N, 4.01.

(4E,6Z)-(2S,3R)-3-(*tert*-Butyl-dimethyl-silanyloxy)-7-iodo-2,6-dimethyl-hepta-4,6-dienoic acid methoxy-methyl-amide (S8). To a solution of S7 (4.70g, 13.9 mmol) in CH₂Cl₂ (70 mL) was added imidazole (2.08 g, 30.5 mmol) followed by TBSCl (4.18 g, 27.7 mmol). The reaction mixture was stirred at rt for 16 h. It was then diluted with Et₂O (50 mL). The organics were washed with a saturated NaHCO₃ solution (2 x 40 mL) and brine (30 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (12 % EtOAc/Hexanes) to give 5.58 g (89%) of S8 as yellow oil.

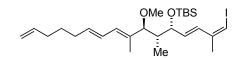

R_f 0.48, 25 % EtOAc/Hexanes. ¹H NMR (500 MHz): δ 6.55 (d, 1 H, J = 16.0 Hz), 6.08 (s, 1 H), 5.91 (dd, 1 H, J = 15.5, 6.0 Hz), 4.36 (t, 1 H, J = 7.0 Hz), 3.77 (s, 3 H), 3.13 (s, 3 H), 3.04 (br s, 1 H), 1.90 (s, 3 H), 1.19 (d, 3 H, J = 7.0 Hz), 0.92 (s, 9 H), 0.20 (s, 3 H), 0.15 (s, 3 H). ¹³C NMR (125 MHz): δ 175.5, 141.4, 136.3, 131.4, 79.0, 74.6, 61.5, 43.1, 32.1, 25.9, 21.2, 18.1, 14.4, -4.0, -4.9. IR: 3054, 2958, 2932, 2896, 2857, 2306, 1653, 1472, 1463, 1421, 1387, 1264, 1158, 1129, 1066, 1019, 995, 895, 838, 740 cm⁻¹. [α]²⁵_D -1.2° (c = 1.00, CHCl₃). HRMS (FAB+) calcd for C₁₇H₃₂INO₃Si (M⁺) 453.1196, found 453.1193. Anal. Calcd for C₁₇H₃₂INO₃Si: C, 45.03; H, 7.11; N, 3.09. Found: C, 44.73; H, 7.22; N, 3.08.

[(5E,7Z)-(3S,4R)-4-(*tert*-Butyl-dimethyl-silanyloxy)-8-iodo-1,3,7-trimethyl-2-oxo-octa-5,7dienyl]-phosphonic acid diethyl ester (18). To a solution of diethylethylphosphonate (1.56 mL, 9.70 mmol) in THF (20 mL) at -78 °C was added *n*BuLi (2.50 M in hexanes, 3.57 mL, 8.92 mmol) dropwise. The reaction was stirred for 15 min and then a solution of S7 (1.76 g, 3.88 mmol) in THF (20 mL) was added dropwise. The dark yellow solution was stirred at -78 °C for 15 min, then a saturated NH₄Cl solution (20 mL) was added. The mixture was warmed to rt and diluted with H₂O (20 mL). The layers were separated, and the aqueous was extracted 2 x CH₂Cl₂ (20 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (25 % to 50% EtOAc/Hexanes) to afford 2.05 g (95%) of S8 as yellow oil and mixture of diastereomers of stereocenter alpha to phosphonate ester.

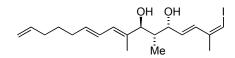

R_f 0.42, 65 % EtOAc/Hexanes. ¹H NMR (500 MHz) of major diastereomer: δ 6.47 (d, 1 H, J = 15.5 Hz), 6.12 (s, 1 H), 5.73 (dd, 1H, J = 15.5, 7.0 Hz), 4.25 (t, 1 H, J = 6.0 Hz), 4.10 (m, 4 H), 3.58 (m, 1 H), 3.38 (m, 1 H), 1.91 (s, 3 H), 1.28 (m, 10 H), 1.04 (d, 2 H, J = 7.0 Hz), 0.88 (s, 9 H), 0.02 (d, 6 H, J = 16.5 Hz). ¹³C NMR (125 MHz), major diastereomer: δ 208.1, 141.1, 133.7,

132.5, 79.8, 76.1, 62.3, 62.3, 53.6, 48.8, 47.8, 25.8, 25.7, 21.1, 18.1, 16.4, 13.1, 11.4, -3.92, -4.23. IR: 3054, 2986, 2958, 2686, 2356, 1305, 1710, 1422, 1266, 1158, 1053, 1025, 1025, 972, 896, 838, 703 cm⁻¹. [α]²⁵_D +42.1° (c = 1.00, CHCl₃) for 3:1 mixture of diastereomers. HRMS (FAB+) calcd for C₂₁H₄₀IO₅PSiLi [(M + Li)⁺] 565.1587, found 565.1576. Anal. Calcd for C₂₁H₄₀IO₅PSi: C, 45.16; H, 7.22. Found: C, 45.57; H, 7.47.

(1Z,3E,8E,10E)-(5R,6S)-5-(*tert*-Butyl-dimethyl-silanyloxy)-1-iodo-2,6,8-trimethyl-hexadeca-1,3,8,10,15-pentaen-7-one (20). Ba(OH)₂ (6.59 g, 11.8 mmol) was dried *in vacuo* at 120 °C for 5 hours then cooled to rt and added to a solution of 18 (2.81 g, 5.03 mmol) in THF (35 mL). The light yellow suspension was stirred for 30 min. Then a solution of 19¹ in wet THF (40:1 THF/ H₂O, 41 mL) was added. The bright orange solution was stirred for 12 h. A saturated NaHCO₃ solution (50 mL) was added and followed by Et₂O (100 mL). The organics were washed with a saturated NaHCO₃ solution (2 x 100 mL) and brine (50 mL). The organics were dried, filtered, and concentrated *in vacuo*. The crude product was purified by flash column chromatography (2.5 % EtOAc/Hexanes) to afford 4.95 g (79 %) of 20 as yellow oil. Product should be used promptly upon purification due to instability.

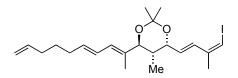

R_f 0.47, 10 % EtOAc/Hexanes. ¹H NMR (500 MHz): δ 6.99 (d, 1 H, J = 10.5 Hz), 6.51 (d, 1 H, J = 16.0 Hz), 6.41 (t, 1 H, J = 14.0 Hz), 6.12 (m, 1 H), 6.06 (s, 1 H), 5.80 (dd, 2 H, J = 15.5, 6.0 Hz), 5.02 (d, 1 H, J = 17.0 Hz), 4.97 (d, 1 H, J = 10.5 Hz), 4.35 (t, 1 H, J = 6.5 Hz), 3.40 (t, 1 H, J = 7.0 Hz), 2.22 (d, 1 H, J = 7.5 Hz), 2.08 (d, 1 H, J = 7.0 Hz), 1.84 (d, 6 H, J = 2.0 Hz), 1.55 (m, 2 H), 1.16 (d, 3 H, J = 6.5 Hz), 0.93 (s, 9 H), 0.07 (s, 3 H), 0.03 (s, 3 H). ¹³C NMR (125 MHz): δ 204.2, 143.5, 141.4, 139.0, 138.2, 136.1, 134.5, 131.3, 126.9, 114.9, 79.0, 75.2, 46.7, 33.1, 32.7, 28.0, 25.9, 21.1, 18.1, 15.2, 11.7, -4.0, -4.9. IR: 3054, 2986, 2957, 2931, 2857, 2685, 2360, 2306, 1654, 1631, 1472, 1422, 1362, 1265, 1158, 1127, 1026, 971, 896, 838, 739 cm⁻¹. [α]²⁵_D -28.3° (c = 1.00, CHCl₃).

(1Z,3E,8E,10E)-(5R,6R,7S)-5-(*tert*-Butyl-dimethyl-silanyloxy)-1-iodo-2,6,8-trimethylhexadeca-1,3,8,10,15-pentaen-7-ol (S9). To a solution of 20 (4.95 g, 9.36 mmol) in methanol (120 mL) at 0 °C was added NaBH₄ (2.12 g, 56.2 mmol). There was vigorous evolution of gas. The reaction was stirred at 0 °C for 20 min. Then a saturated NH₄Cl solution (50 mL) was added. The mixture was extracted with 2 x Et₂O (100 mL). The organics were washed with brine (75 mL), then dried, filtered, and concentrated *in vacuo*. The crude oil was purified by flash column chromatography (10 % EtOAc/Hexanes) to give 4.55 g (92 %) of S9 as yellow oil with > 95 : 5 diastereoselectivity.

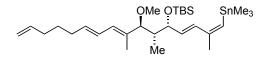

¹ Singh, O. V.; Han, H., Org. Lett. 2004, 6, 3067-3070.

R_f 0.35, 10 % EtOAc/Hexanes. ¹H NMR (500 MHz): δ 6.58 (d, 1 H, J = 15.5 Hz), 6.24 (m, 1 H), 6.13 (s, 1 H), 5.93 (m, 2 H), 5.79 (m, 1 H), 5.65 (m, 1 H), 4.99 (d, 1 H, J = 17.5 Hz), 4.94 (d, 1 H, J = 10.0 Hz), 4.55 (s, 1 H), 3.89 (d, 1 H, J = 9.5 Hz), 3.56 (s, 1 H), 2.11 (m, 2 H), 2.05 (m, 2 H), 1.97 (s, 1 H), 1.90 (m, 1 H), 1.71 (s, 3 H), 1.48 (dt, 2 H, J = 15.0, 7.5 Hz), 0.95 (s, 9 H), 0.67 (d, 3H, J = 7.0 Hz), 0.12 (s, 3 H), 0.08 (s, 3 H). ¹³C NMR (125 MHz): δ 141.3, 138.6, 135.8, 134.5, 134.3, 132.4, 127.7, 126.3, 114.5, 80.4, 79.3, 75.8, 41.6, 33.2, 32.3, 28.6, 25.9, 25.9, 21.3, 18.1, 12.2, 11.2, -4.1, -5.2. IR: 3459, 3053, 2955, 2930, 2857, 2360, 1767, 1640, 1471, 1462, 1441, 1362, 1297, 1265, 1157, 1074, 1039, 1005, 970, 914, 894, 838, 811, 778, 740, 705 cm⁻¹. $[\alpha]^{25}_{\ D} + 0.41^{\circ}$ (c = 1.00, CHCl₃). HRMS (EI+) calcd for C₂₅H₄₃IO₂Si (M⁺) 530.2077, found.

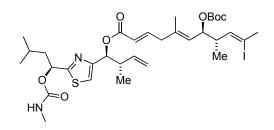
tert-Butyl-[(4E,6E)-(1R,2R,3S)-1-((1E,3Z)-4-iodo-3-methyl-buta-1,3-dienyl)-3-methoxy-2,4dimethyl-dodeca-4,6,11-trienyloxy]-dimethyl-silane (S10). To a solution of S9 (4.70 g, 8.85 mmol) in CH₂Cl₂ (180 mL) was added proton sponge (7.59 g, 35.4 mmol) and Me₃OBF₄ (3.93 g, 26.6 mmol). The tan solution was stirred for 2 h and then ice cold H₂O (150 mL) was added. The organics were washed with a saturated NaHCO₃ solution (2 x 150 mL) and brine (100 mL). The aqueous layer was extracted 1 x Et₂O (100 mL). The combined organics were dried, filtered, and concentrated *in vacuo*. The oil was purified by flash column chromatography (2.5 % to 12 % EtOAc/Hexanes) to give 4.28 g (89 %) of S10 as yellow oil.


R_f 0.55, 10 % EtOAc / Hexanes. ¹H NMR (500 MHz): δ 6.57 (d, 1 H, J = 16.0 Hz), 6.27 (m, 1 H), 6.06 (s, 1 H), 5.90 (m, 2 H), 5.81 (m, 1 H), 5.71 (dt, 1 H, J = 15.0, 7.5 Hz), 5.02 (d, 1 H, J = 17.5 Hz), 4.96 (d, 1 H, J = 10.5 Hz), 4.80 (d, 1 H, J = 5.5 Hz), 3.77 (d, 1 H, J = 10.0 Hz), 3.16 (s, 3 H), 2.14 (m, 2 H), 2.08 (m, 2 H), 1.94 (s, 3 H), 1.66 (m, 1 H), 1.62 (s, 3 H), 1.52 (dt, 2 H, J = 15.0, 7.5 Hz), 0.98 (s, 9 H), 0.63 (d, 3 H, J = 7.0 Hz), 0.09 (s, 3 H), 0.05 (s, 3 H). ¹³C NMR (125 MHz): δ 141.5, 138.5, 138.3, 134.5, 133.2, 131.8, 130.5, 129.9, 126.2, 114.7, 88.1, 78.1, 70.7, 55.6, 41.8, 33.3, 32.4, 28.7, 26.1, 21.3, 18.2, 10.6, 9.0, -3.6, -5.3. IR: 2928, 2856, 1461, 1440, 1383, 1251, 1131, 1085, 1093, 969, 912, 876, 838, 808, 775, 743 cm⁻¹. [α]²⁵_D -0.11° (c = 0.93, CHCl₃). Anal. Calcd for C₂₆H₄₅IO₂Si: C, 57.34; H, 8.33. Found: C, 57.36; H, 8.34.

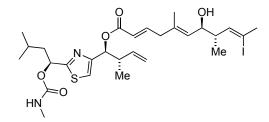
(1Z,3E,8E,10E)-(5R,6S,7S)-1-Iodo-2,6,8-trimethyl-hexadeca-1,3,8,10,15-pentaene-5,7-diol (S11). To a solution of S9 (120 mg, 0.226 mmol) in THF (3.5 mL) at 0 °C was added tetrabutylammonium fluoride (1.0 M in THF, 0.25 mL 0.25 mmol). After 20 min, a saturated NaHCO₃ solution (2 mL) was added. The mixture was diluted with Et₂O (5 mL). The layers were separated. The organics were washed with brine (5 mL). The organics were dried, filtered,


and concentrated *in vacuo*. The crude material was purified by flash column chromatography (65% Et₂O/Hexanes) to give 90.0 mg (96%) of **S11** as yellow oil.

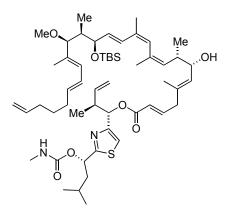
R_f 0.19, 25 % EtOAc/Hexanes. ¹H NMR (500 MHz): δ 6.63 (d, 1 H, J = 16.0 Hz), 6.25 (m, 1 H), 6.14 (s, 1 H), 5.98 (m, 2 H), 5.80 (m, 1 H), 5.70 (m, 1 H), 5.01 (d, 1 H, J = 17.0 Hz), 4.95 (d, 1 H, J = 10.5 Hz), 4.48 (s, 1 H), 4.01 (d, 1 H, J = 8.0 Hz), 3.25 (br s, 1 H), 2.45 (br s, 1 H), 2.07 (m, 2 H), 2.04 (m, 3 H), 2.00 (s, 3 H), 1.74 (s, 3 H), 1.50 (dt, 2 H, J = 15.0, 7.5 Hz), 0.80 (d, 3 H, J = 7.0 Hz). ¹³C NMR (500 MHz): δ 141.3, 138.6, 135.4, 135.3, 134.7, 132.3, 127.5, 126.0, 114.6, 81.1, 79.4, 74.4, 40.1, 33.2, 32.3, 28.5, 21.3, 12.3, 11.8. IR: 3346, 3061, 2975, 2925, 2855, 1640, 1439, 1376, 1297, 1265, 1218, 1157, 1085, 1009, 966, 912, 756, 703, 686 cm⁻¹. [α]²⁵_D +0.59° (c = 1.0, CHCl₃). HRMS (FAB+) calcd for C₁₉H₂₉IO₂ [(M + Li⁺)] 423.1372, found 423.1371.


(4R,5S,6S)-4-((1E,3Z)-4-Iodo-3-methyl-buta-1,3-dienyl)-2,2,5-trimethyl-6-((1E,3E)-1methyl-nona-1,3,8-trienyl)-[1,3]dioxane (S12). To a solution of S11 (28 mg, 0.067 mmol) in CH_2Cl_2 (0.8 mL) was added 2-methoxypropene (0.013 mL, 0.13 mmol) and pyridinium paratoluenesulfonate (PPTS) (< 0.5 mg). After 20 min, a saturated NaHCO₃ solution (2 mL) and CH_2Cl_2 (5 mL) were added. The layers were separated. The organic was washed 1 x brine (5 mL). The organics were dried, filtered, and concentrated *in vacuo*. The crude material was purified by flash column chromatography (10 % EtOAc/Hexanes) to give 21 mg (67%) of S12 as yellow oil.

R_f 0.62, 25 % EtOAc/Hexanes. ¹H NMR (500 MHz): δ 6.59 (d, 1 H, J = 16.0 Hz), 6.25 (m, 1 H), 6.14 (s, 1 H), 6.02 (d, 1 H, J = 11.0 Hz), 5.87 (dd, 1 H, J = 15.5, 7.0 Hz), 5.71 (m, 1 H), 5.70 (m, 1 H), 5.01 (d, 1 H, J = 17.0 Hz), 4.95 (d, 1 H, J = 10.0 Hz), 4.58 (t, 1 H, J = 6.0 Hz), 3.76 (d, 1 H, J = 8.0 Hz), 2.12 (m, 2 H), 2.07 (m, 3 H), 1.97 (s, 3 H), 1.49 (m, 2H), 1.25 (s, 6 H), 0.82 (d, 3 H, J = 7.0). ¹³C NMR (500 MHz): δ 141.4, 138.6, 135.1, 133.2, 132.5, 132.2, 127.4, 126.2, 114.6, 100.8, 80.5, 79.5, 71.0, 38.1, 33.2, 32.3, 28.5, 25.3, 24.2, 21.1, 12.6, 12.5. IR: 2984, 2926, 2854, 1640, 1455, 1439, 1378, 1338, 1313, 1221, 1173, 1159, 1122, 1088, 1070, 1014, 992, 967, 936, 910, 753, 675 cm⁻¹. [α]²⁵_D -0.77° (c = 1.0, CHCl₃). Anal. Calcd for C₂₂H₃₃IO₂: C, 57.90; H, 7.29. Found: C, 57.89; H, 7.58.

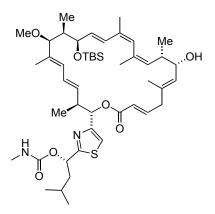

tert-Butyl-[(4E,6E)-(1R,2R,3S)-3-methoxy-2,4-dimethyl-1-((1E,3Z)-3-methyl-4trimethylstannanyl-buta-1,3-dienyl)-dodeca-4,6,11-trienyloxy]-dimethyl-silane (5). To a solution of S10 (1.09 g, 2.00 mmol) in THF (13 mL) at -78 °C was added *n*BuLi (2.44 M in hexanes, 902 μL, 2.20 mmol) dropwise. After 20 min, a solution of Me₃SnCl (1.0 M in THF,

3.00 mL, 3.00 mmol) was added over 2 min. After 1.5 h at -78 °C, the reaction was poured onto H₂O (20 mL) and Et₂O (10 mL). The layers were separated. The organics were dried, filtered, and concentrated *in vacuo* to give ~1.1 g of **5**. This material was taken on without further purification and not fully characterized due to extreme sensitivity.

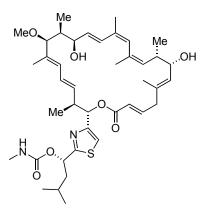

(2E,5E,9Z)-(7S,8S)-7-*tert*-Butoxycarbonyloxy-10-iodo-5,8-dimethyl-undeca-2,5,9-trienoic acid (1S,2S)-2-methyl-1-[2-((S)-3-methyl-1-methylcarbamoyloxy-butyl)-thiazol-4-yl]-but-3enyl ester (21). To a solution a solution of 6 (2.00 g, 4.44 mmol) in PhCH₃ (22 mL) at 0 °C was added [RuCl₂(cymene)]₂ (136 mg, 0.222 mmol) followed by ethoxyacetylene (50% w/w in hexanes, 2.60 mL, 13.3 mmol) dropwise. After 10 min, the reaction was warmed to rt. Then after 20 min, the mixture was filtered through a plug of SiO₂ (30% EtOAc/Hex). After concentration, the resulting oil was added via syringe pump in CH₂Cl₂ (6.3 mL) to a solution of 7 (1.80 g, 5.77 mmol) and dry *p*-toluenesulfonic acid (TsOH) (153 mg, 0.888 mmol) in CH₂Cl₂ (11.5 mL) over 3 h. After stirring at rt for 16 h, the mixture was concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (25% EtOAc/Hexanes) to give 1.80 g (54%) of **21** as a yellow oil. All excess 7 could be recovered and reused.

R_f 0.48, 30 % EtOAc/Hexanes. ¹H NMR (500 MHz): 7.07 (s, 1 H), 6.92 (dt, 1 H, J = 15.5, 7 Hz), 6.03 (m, 1 H), 5.86 (m, 2 H), 5.73 (m, 1 H), 5.31 (d, 1 H, J = 8 Hz), 5.18 (m, 2 H), 4.99 (m, 2 H), 4.81 (br s, 1 H), 2.99 (m, 1 H), 2.87 (m, 2 H), 2.80 (d, 3 H, J = 5 Hz), 2.60 (m, 1 H), 2.46 (s, 3 H), 1.85 (m, 2 H), 1.83 (s, 3 H), 1.82 (m, 1 H), 1.47 (s, 9 H), 0.96 (m, 12 H). ¹³C NMR (500 MHz): δ 171.2, 164.4, 155.9, 154.1, 153.1, 146.5, 139.0, 137.5, 136.0, 124.2, 122.6, 116.1, 115.7, 101.8, 81.8, 76.1, 75.0, 72.1, 46.1, 44.3, 42.0, 41.6, 33.7, 27.8, 27.6, 24.5, 23.0, 22.1, 17.2, 16.3, 15.5. IR: 3388, 2967, 2933, 1737, 1728, 1716, 1272, 1255, 1158 cm⁻¹. [α]²⁵_D -11.2° (c = 1.51, CHCl₃). HRMS (FAB+) calcd for C₃₃H₅₀IO₇N₂S [(M + H)⁺] 745.2384, found 745.2382.

(2E,5E,9Z)-(7S,8S)-7-Hydroxy-10-iodo-5,8-dimethyl-undeca-2,5,9-trienoic acid (1S,2S)-2methyl-1-[2-((S)-3-methyl-1-methylcarbamoyloxy-butyl)-thiazol-4-yl]-but-3-enyl ester (22). To a solution of 21 (900 mg, 1.21 mmol) in Et₂O (25 mL) was added SiO₂ (14.5 g, 12 g/mmol of substrate). The slurry was concentrated *in vacuo*. The dry SiO₂ was heated under vacuum at 125 °C for 5 min. The SiO₂ was washed and filtered with Et_2O (~100 mL). The solution was concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (40% EtOAc/Hexanes) to give 335 mg (43%) of **22** as a colorless oil. (66% on 60 mg scale)

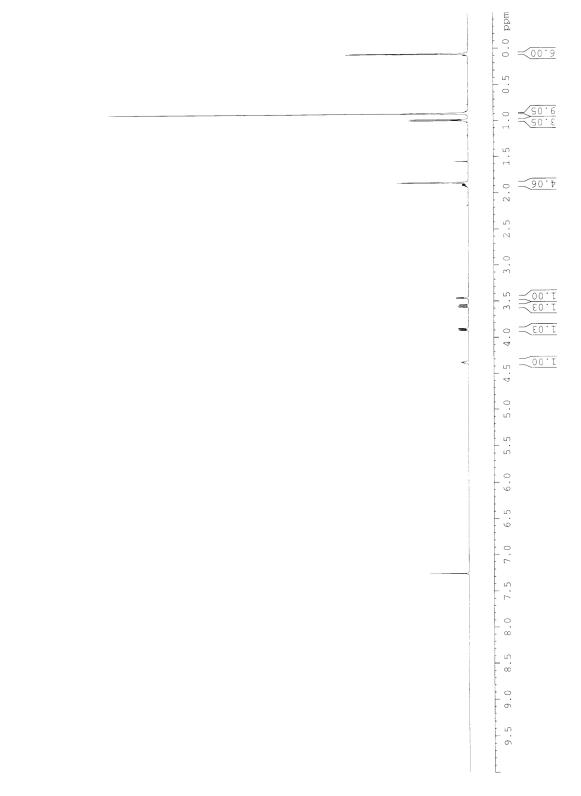

R_f 0.37, 40 % EtOAc/Hexanes. ¹H NMR (500 MHz): 7.08 (s, 1 H), 6.91 (dt, 1 H, J = 15.5, 7 Hz), 6.05 (m, 1 H), 5.88 (m, 2 H), 5.75 (m, 1 H), 5.33 (d, 1 H, J = 9 Hz), 5.25 (d, 1 H, J = 9 Hz), 5.00 (m, 2 H), 4.78 (br s, 1 H), 4.26 (dd, 1 H, J = 9, 6.5 Hz), 3.01 (m, 1 H), 2.89 (d, 2 H, J = 7 Hz), 2.82 (d, 3 H, J = 5 Hz), 2.51 (s, 3 H), 2.48 (m, 1 H), 1.85 (m, 2 H), 1.72 (m, 1 H), 1.69 (s, 3 H), 0.95 (m, 12 H). ¹³C NMR (500 MHz): δ 171.3, 165.5, 155.9, 154.1, 146.8, 139.1, 137.0, 135.9, 128.2, 122.6, 116.2, 115.7, 102.0, 75.0, 72.2, 71.4, 47.9, 44.4, 42.2, 41.6, 33.8, 27.6, 24.5, 23.0, 22.1, 17.0, 16.3, 15.5. IR: 3364, 2960, 2930, 2871, 1716, 1707, 1264 cm⁻¹. [α]²⁵_D-40.6° (c = 0.68, CHCl₃). HRMS (FAB+) calcd for C₂₈H₄₂IO₅N₂S [(M + H)⁺] 645.1859, found 645.1864.

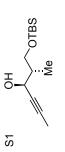
Linear RCM precursor (4b). To a solution of **22** (300 mg, 0.465 mmol) and **5** (338 mg, 0.582 mmol) in DMF (4.7 mL) was added Pd(PPh₃)₄ (54 mg, 0.047 mmol) and copper thiophenecarboxylate (CuTC) (133 mg, 0.698 mmol) simultaneously. After 30 min, a saturated NaHCO₃ solution (15 mL) and Et₂O (15 mL) added. The layers were separated, and the aqueous was extracted 1 x Et₂O (10 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (25% EtOAc/Hexanes) to give 138 mg of **4b** as a yellow oil and 203 mg of **22** was recovered (32%, 92% based on recovered starting material). No conditions attempted saw complete consumption of **22**.


R_f 0.69, 40 % EtOAc/Hexanes. ¹H NMR (500 MHz): 7.07 (s, 1 H), 6.91 (dt, 1 H, J = 15.5, 7 Hz), 6.41 (d, 1 H, J = 16 Hz), 6.27 (dd, 1 H, J = 15, 11 Hz), 5.90-5.66 (m, 8 H), 5.18 (d, 1 H, J = 9 Hz), 5.12 (d, 1 H, J = 10 Hz), 4.98 (m, 4 H), 4.78 (br d, 1 H, J = 4.5 Hz), 4.69 (d, 1 H, J = 6.5 Hz), 4.01 (t, 1 H, J = 8.5 Hz), 3.35 (d, 1 H, J = 10 Hz), 3.12 (s, 3 H), 3.00 (m, 1 H), 2.87 (m, 2 H), 2.80 (d, 3 H, J = 4.5 Hz), 2.36 (m, 1 H), 2.13 (m, 2 H), 2.07 (m, 2 H), 1.85 (m, 2 H), 1.84 (s, 6 H), 1.72 (m, 2 H), 1.69 (s, 3 H), 1.61 (m, 1 H), 1.60 (s, 3 H), 1.52 (m, 2 H), 0.99 (m, 9 H), 0.91 (s, 9 H), 0.83 (d, 3 H, J = 7 Hz), 0.63 (d, 3 H, J = 7 Hz), 0.03 (s, 3 H), -0.02 (s, 3 H). ¹³C NMR (500 MHz): δ 171.2, 165.5, 155.9, 154.2, 147.0, 146.8, 139.0, 138.6, 135.8, 135.7, 135.6, 134.4, 134.3, 133.5, 133.4, 130.6, 129.8, 128.3, 128.0, 127.3, 126.0, 122.4, 122.1, 88.2, 75.0, 72.1, 72.0, 71.9, 71.4, 55.5, 44.4, 42.3, 41.7, 40.3, 33.3, 32.3, 28.5, 27.6, 25.9, 24.9, 24.5, 23.0, 22.1, 20.4, 18.2, 17.1, 16.3, 16.2, 10.5, 9.0, -4.0, -5.1. IR: 3363, 2957, 2928, 1723, 1711, 1255 cm⁻¹. [α]²⁵_D

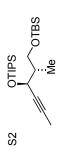
 -31.2° (*c* = 0.92, CHCl₃). HRMS (FAB+) calcd for C₅₄H₈₆O₇N₂SSiNa [(M + Na)⁺] 957.5823, found 957.5815.

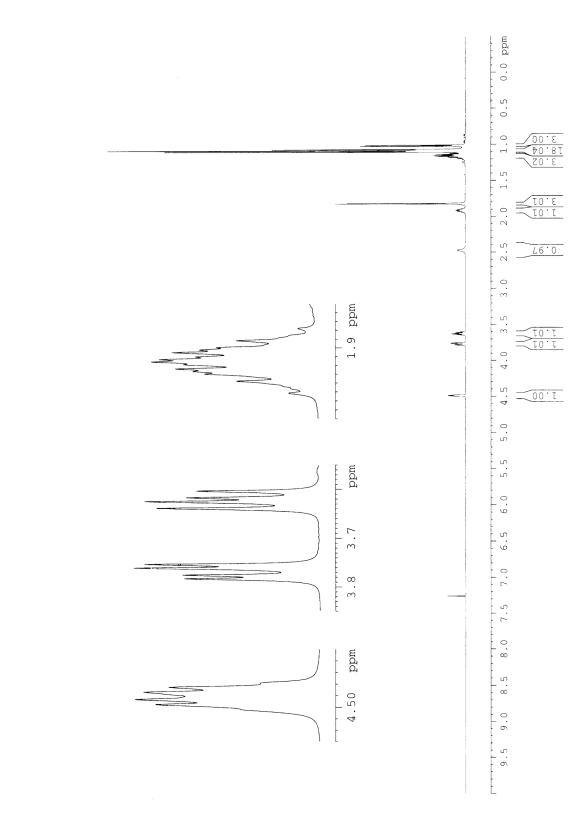
15-O-TBS-Archazolid B (S13). To a solution of **4b** (57 mg, 0.061 mmol) in PhCH₃ (120 mL) at 110 °C was added Grubbs' second generation catalyst (2.6 mg, 3.0×10^{-3} mmol). Over the next 2 h, additional catalyst added each 30 min (3 x 5 mol%). The reaction was cooled to rt and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography (30% EtOAc/Hexanes) to give 14 mg (27%) of **S13** as a yellow foam.

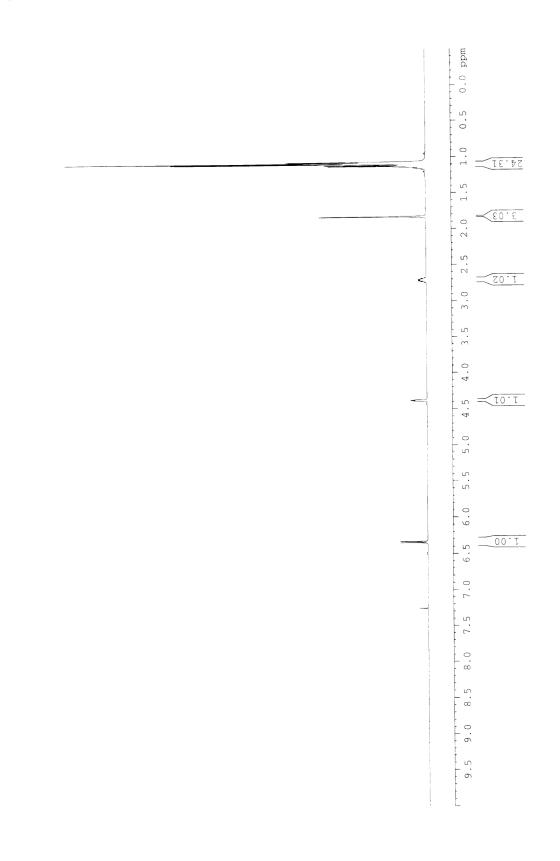

R_f 0.69, 40 % EtOAc/Hexanes. ¹H NMR (500 MHz): 7.05 (s, 1 H), 6.82 (dt, 1 H, J = 15.5, 7.5 Hz), 6.37 (d, 1 H, J = 16 Hz), 6.06 (m, 2 H), 5.99 (d, 1 H, J = 5.5 Hz), 5.83 (m, 2 H), 5.72 (dd, 1 H, J = 16, 6.5 Hz), 5.63 (s, 1 H), 5.55 (m, 1 H), 5.23 (d, 1 H, J = 10 Hz), 5.09 (d, 1 H, J = 9.5 Hz), 4.76 (m, 1 H), 4.62 (br s, 1 H), 3.90 (t, 1 H, J = 9.5 Hz), 3.25 (d, 1 H, J = 9.5 Hz), 3.12 (m, 1 H), 3.09 (s, 3 H), 2.85 (m, 6 H), 2.20 (m, 1 H), 1.91 (m, 2 H), 1.88 (s, 3 H), 1.78 (s, 3 H), 1.73 (m, 2 H), 1.72 (s, 3 H), 1.62 (s, 3 H), 1.56 (m, 2 H), 1.08 (d, 3 H, J = 6.5 Hz), 0.97 (m, 6 H), 0.92 (s, 9 H), 0.84 (d, 3 H, J = 7 Hz), 0.64 (d, 3 H, J = 7 Hz), 0.03 (s, 3 H), -0.01 (s, 3 H). ¹³C NMR (500 MHz): δ 171.2, 165.2, 155.9, 154.7, 147.0, 146.9, 136.0, 135.8, 134.8, 133.3, 132.7, 130.4, 128.9, 128.4, 128.1, 127.0, 126.2, 122.5, 115.6, 86.8, 76.0, 75.7, 72.6, 72.1, 55.7, 44.4, 44.4, 43.3, 40.7, 40.0, 29.7, 27.6, 25.9, 24.6, 24.6, 23.0, 22.0, 21.0, 18.2, 16.9, 16.8, 14.2, 10.5, -4.1, -5.4. IR: 3356, 2957, 2927, 2855, 1723, 1712, 1253 cm⁻¹. [α]²⁵_D -91.7° (c = 0.62, CHCl₃). HRMS (FAB+) calcd for C₄₇H₇₄O₇N₂SSiNa [(M + Na)⁺] 861.4884, found 861.4865.

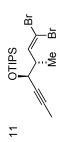


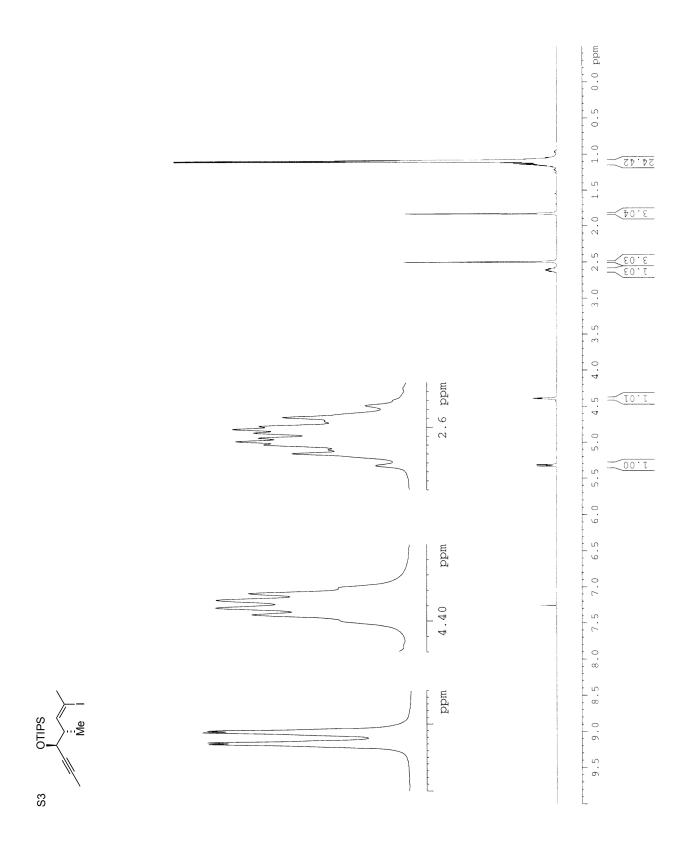
Archazolid B (2). To a solution of S13 (22 mg, 0.026 mmol) in THF (600 μ L) at 0 °C was added H₂O (100 μ L) and formic acid (300 μ L). After 26 h at 0 °C, the reaction mixture was poured onto H₂O (5 mL) and Et₂O (10 mL). A saturated NaHCO₃ solution (5 mL) was added. The layers were separated, and the aqueous was extracted 1 x Et₂O (10 mL). The organics were dried, filtered, and concentrated *in vacuo*. The resulting oil was purified by flash column chromatography to give 16 mg (84%) of archazolid B (2) as a white solid.

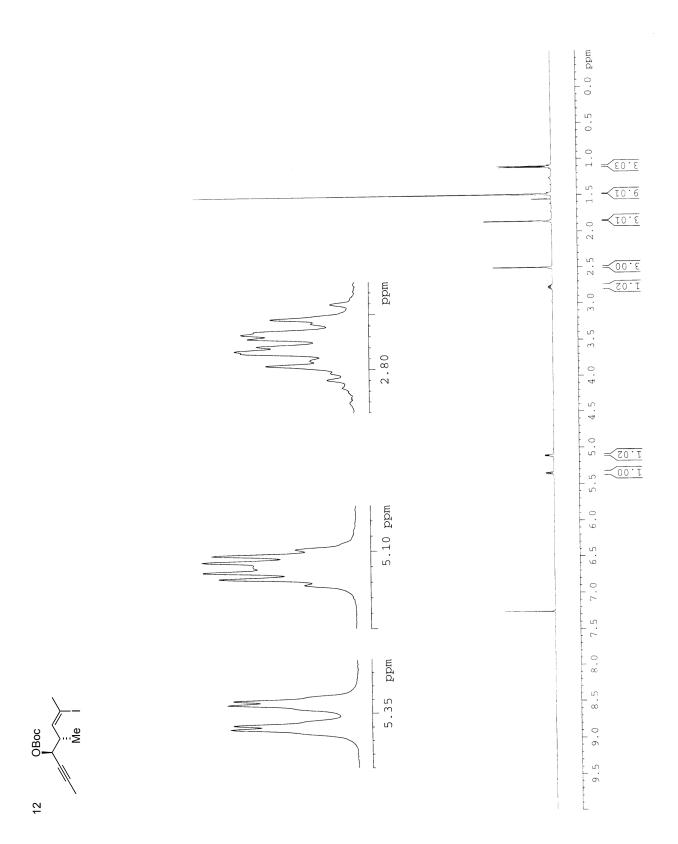

¹ H NMR isolation	¹ H NMR current	¹³ C NMR	¹³ C NMR
		isolation	current
7.31 (s, 1 H)	7.29 (s, 1 H)	174.2	174.4
6.94 (ddd, 1 H, J = 15.5,	6.92 (ddd, 1 H, J = 15, 8.5,	166.7	166.8
8.4, 6.4 Hz)	6.5 Hz)		
6.60 (d, 1 H, J = 15.8 Hz)	6.59 (d, 1 H, J = 16 Hz)	158.3	158.4
6.28 (ddd, 1 H, J = 15.3,	6.26 (dd, 1 H, <i>J</i> = 15, 10.5	155.7	155.9
10.7, 1.0 Hz)	Hz)		
6.03 (dd, 1 H, J = 8.9, 4.8)	6.01 (dd, 1 H, J = 9, 4.5 Hz)	149.0	149.2
Hz)			
5.92 (d, 1 H, J = 15.7 Hz)	5.92-5.88 (m, 3 H)	136.2	136.4
5.90 (d, 1 H, J = 4.4 Hz)		135.6	135.7
5.90 (d, 1 H, J = 10.2 Hz)		135.5	135.6
5.79 (d, 1 H, J = 0.6 Hz)	5.78-5.70 (m, 3 H)	134.6	134.7
5.77 (dd, 1 H, J = 16.2,		133.5	133.6
5.6 Hz)			
5.75 (dd, 1 H, J = 15.3,		133.4	133.5
5.28 (d, 1 H, J = 9.7 Hz)	5.27 (d, 1 H, J = 9.5 Hz)	132.9	133.1
5.18 (dd, 1 H, J = 9.2, 1.0	5.17 (d, 1 H, J = 9.5 Hz)	130.7	130.9
Hz)			
4.38 (dd, 1 H, J = 5.6, 3.2	4.37 (br s, 1 H)	130.7	130.9
Hz)			
4.03 (dd, 1 H, J = 9.2, 9.2	4.02 (t, 1 H, J = 9.5 Hz)	130.0	130.2
Hz)			
3.47 (d, 1 H, J = 9.2 Hz)	3.45 (d, 1 H, J = 9 Hz)	129.4	129.5

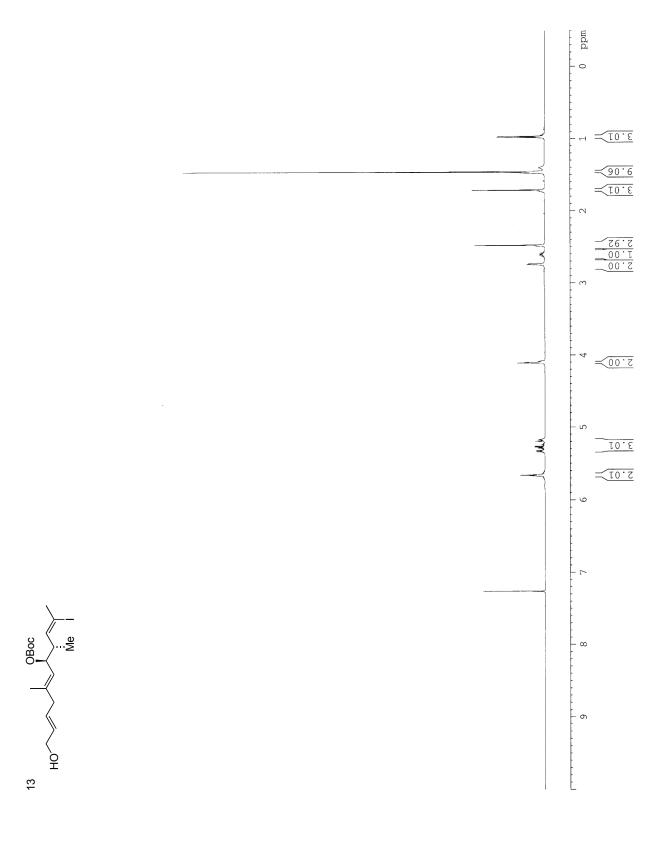

3.19 (s, 3 H)	3.18 (s, 3 H)	127.3	127.4
3.09 (ddq, 1 H, J = 6.6,	3.07 (m, 1 H)	123.3	123.5
4.6, 6.8 Hz)			12010
2.96 (dd, 1 H, J = 14.7,	2.97-2.88 (m, 2 H)	117.5	117.5
8.6 Hz)			
2.91 (dd, 1 H, J = 14.7,		90.0	90.1
6.6 Hz)			
2.75 (s, 3 H)	2.73 (s, 3 H)	77.2	77.4
2.30 (ddq, 1 H, J = 9.5,	2.29 (m, 1 H)	74.8	74.9
9.5, 7.0 Hz)			
1.93 (d, 3 H, J = 1.1 Hz)	1.92 (s, 3 H)	73.8	73.9
1.92 (m, 2 H)	1.92 (m, 1 H), 1.81 (m, 1 H)	73.4	73.5
1.79 (m, 1 H)	1.78 (m, 1 H)	56.4	56.5
1.79 (br s, 3 H)	1.78 (s, 3 H)	46.0	46.1
1.78 (m, 1 H)	1.78 (m, 1 H)	44.0	44.2
1.74 (d, 3 H, J = 1.0 Hz)	1.72 (s, 3 H)	44.0	44.1
1.67 (d, 3 H, J = 1.0 Hz)	1.65 (s, 3 H)	41.5	41.6
1.11 (d, 3 H, J = 6.8 Hz)	1.10 (d, 3 H, J = 7 Hz)	41.3	41.4
1.02 (d, 3 H, J = 6.1 Hz)	1.01 (d, 3 H, J = 6 Hz)	27.5	27.7
1.01 (d, 3 H, J = 6.6 Hz)	1.00 (d, 3 H, J = 6.5 Hz)	25.8	26.0
0.81 (d, 3 H, <i>J</i> =6.6 Hz)	0.79 (d, 3 H, J = 6.5 Hz)	24.7	24.9
0.72 (d, 3 H, J = 7.1 Hz)	0.70 (d, 3 H, J = 7.5 Hz)	23.4	23.5
		22.3	22.5
		19.9	20.1
		17.7	17.9
		17.1	17.2
		16.9	17.1
		12.6	12.7
		12.3	12.5

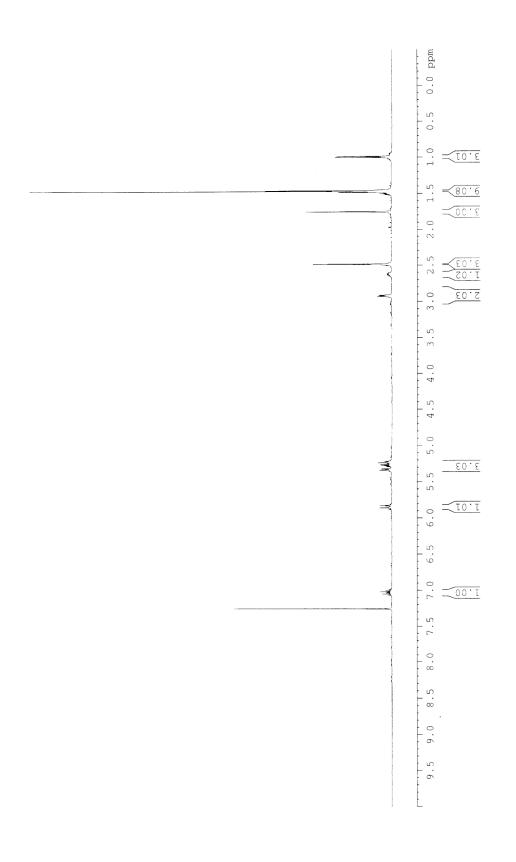


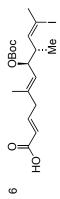

Ю

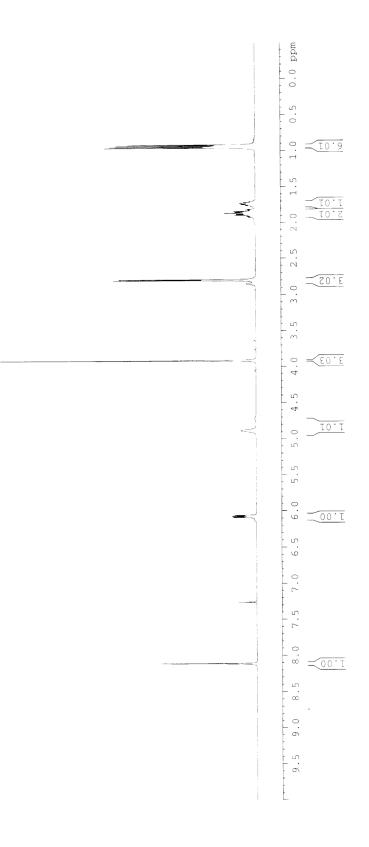

Me

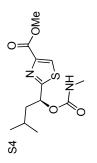

OTIPS

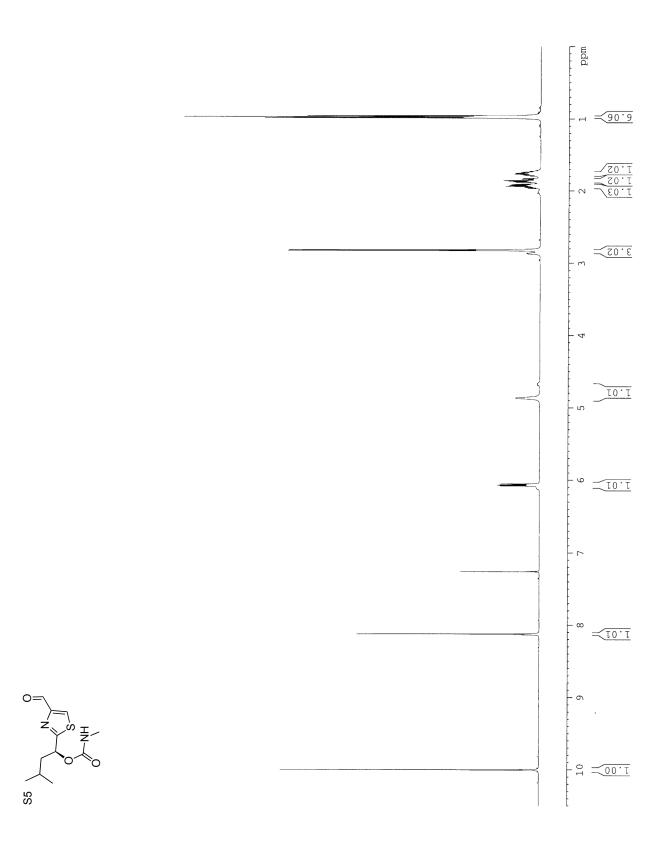

10

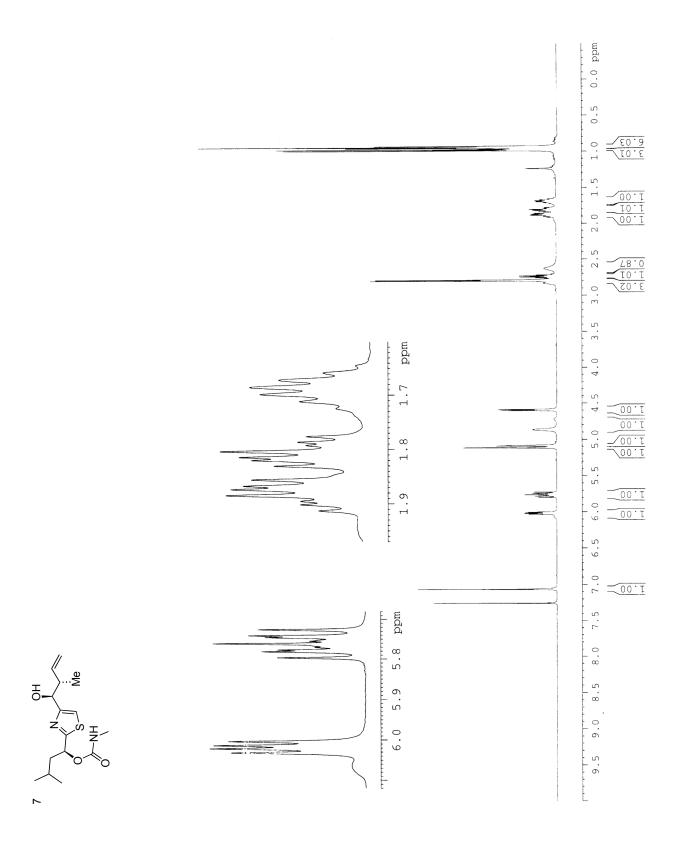


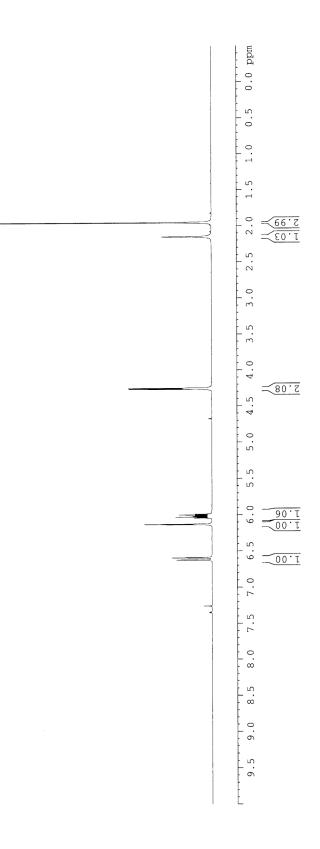


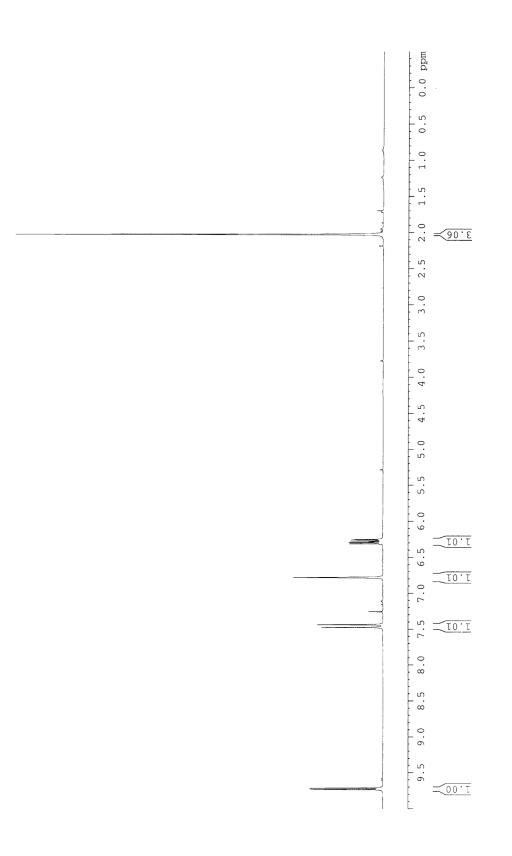




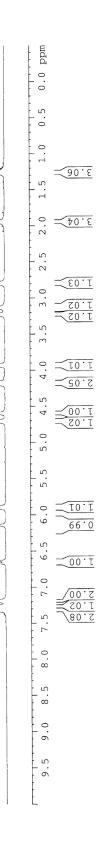


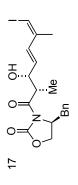


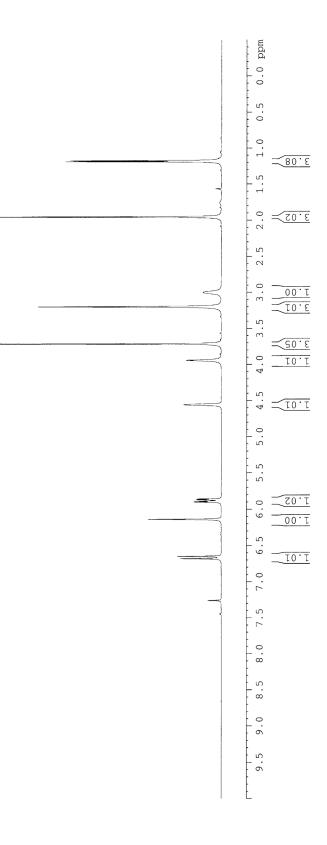




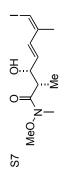
S28

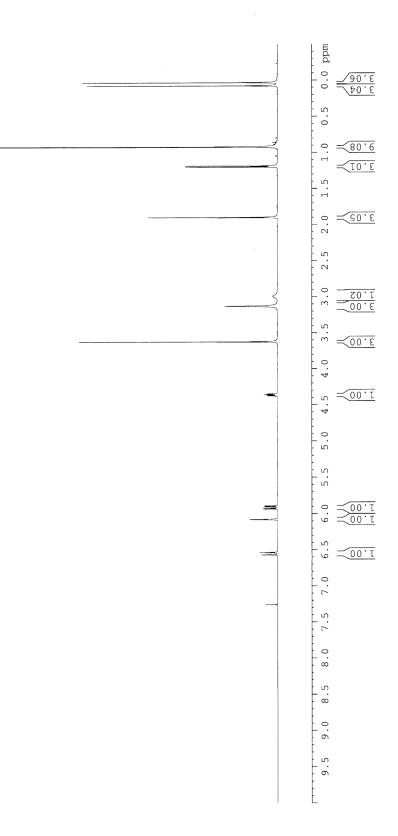


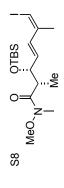


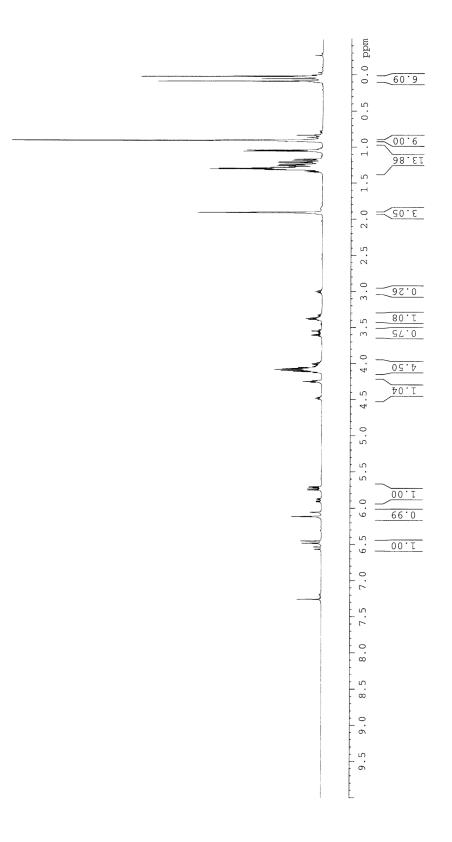

S30

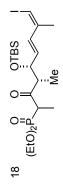
0

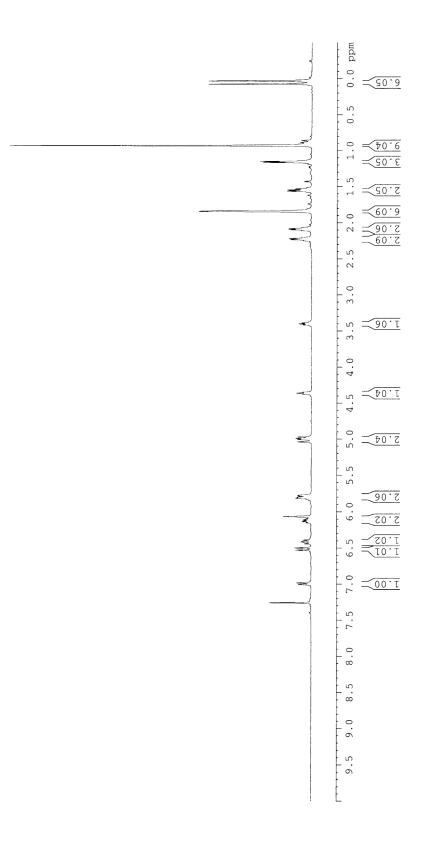

ı.

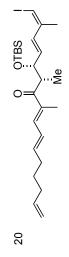


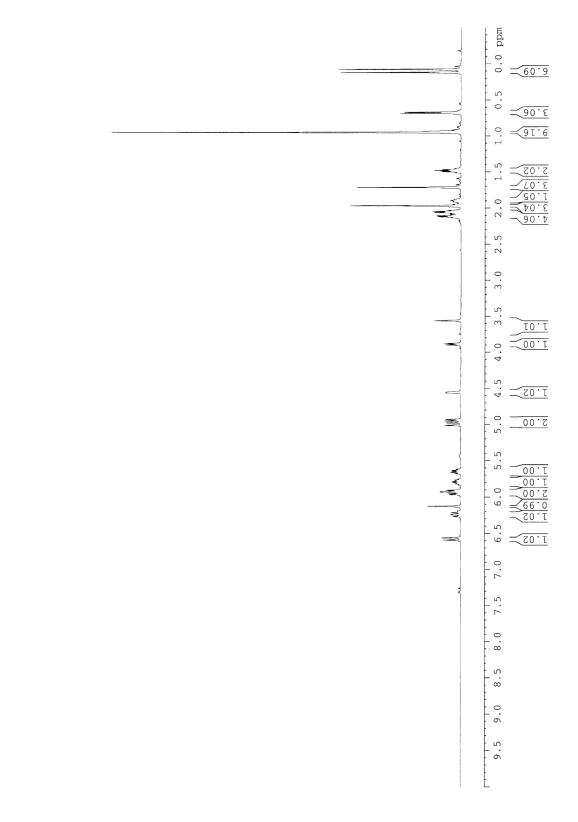


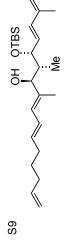


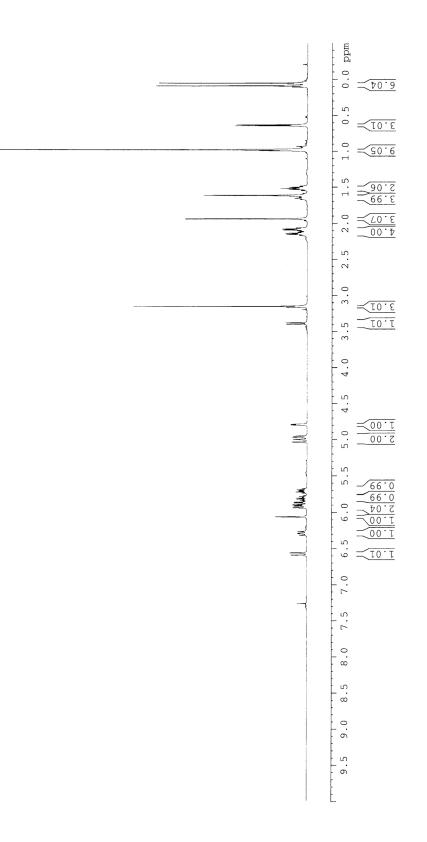

ī.

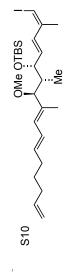


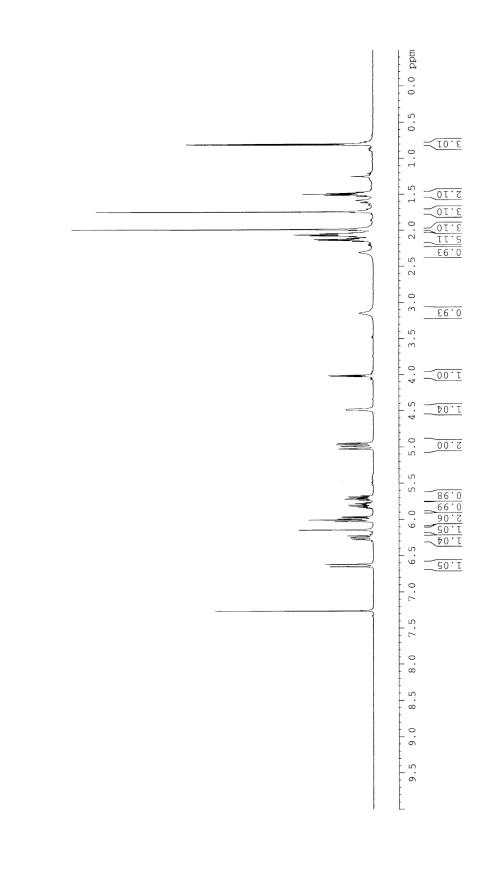


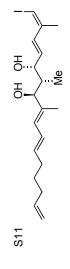


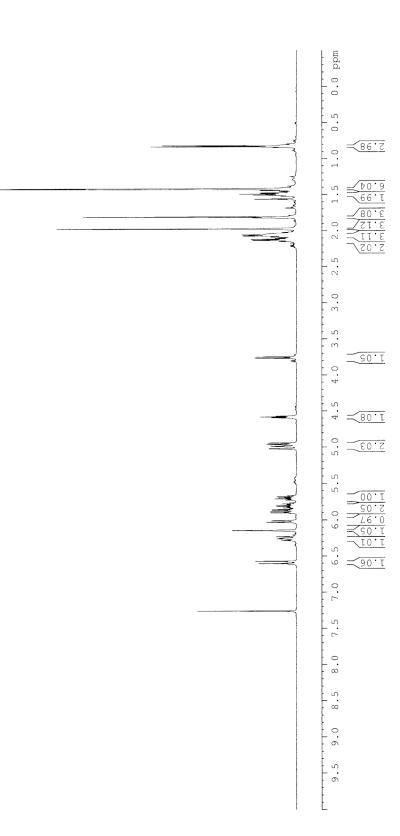


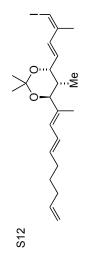


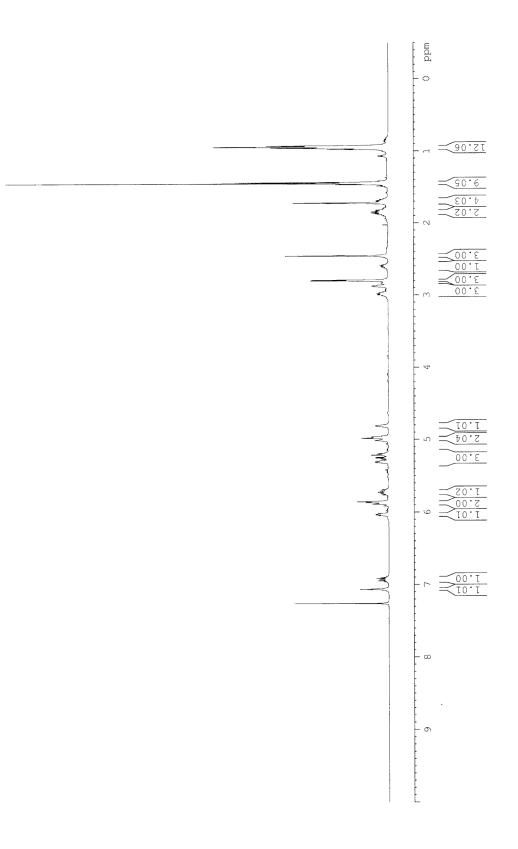


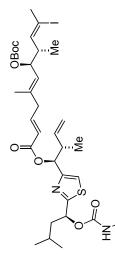


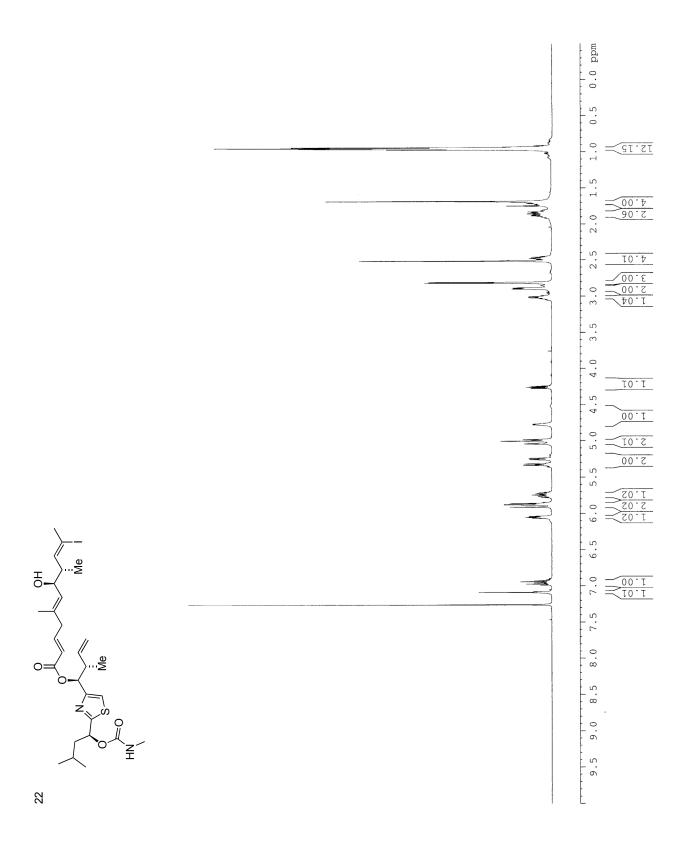


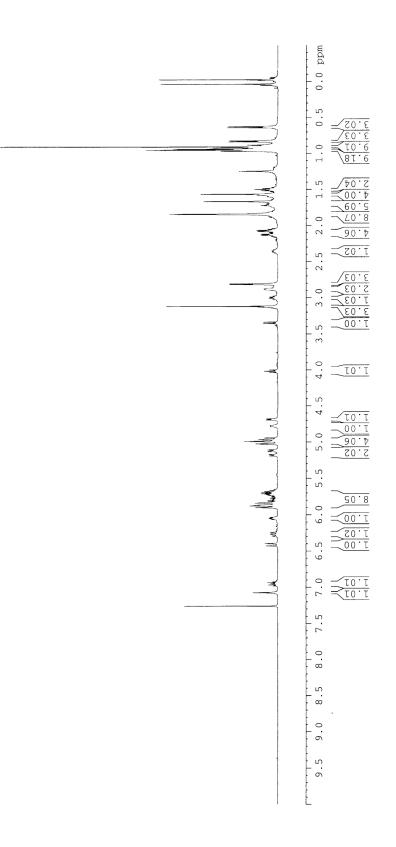

ı.

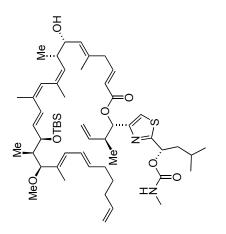




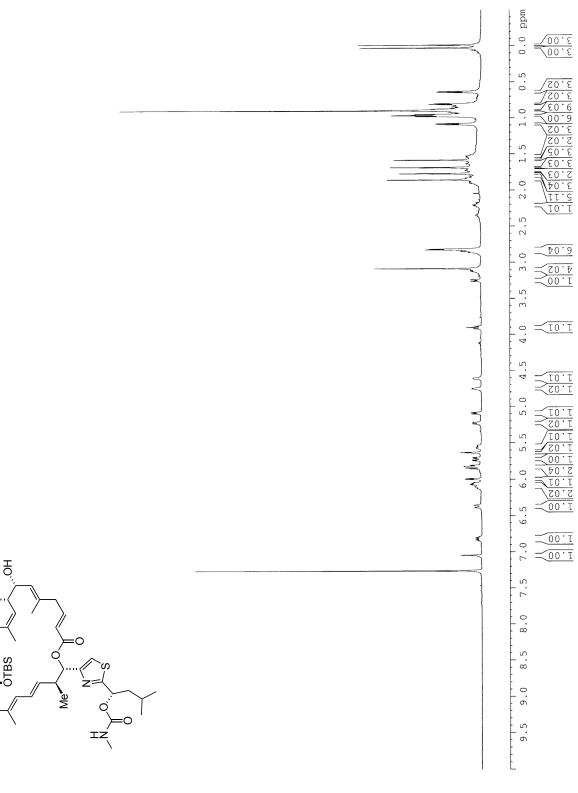


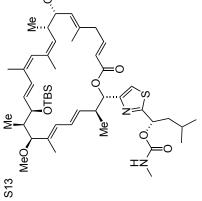


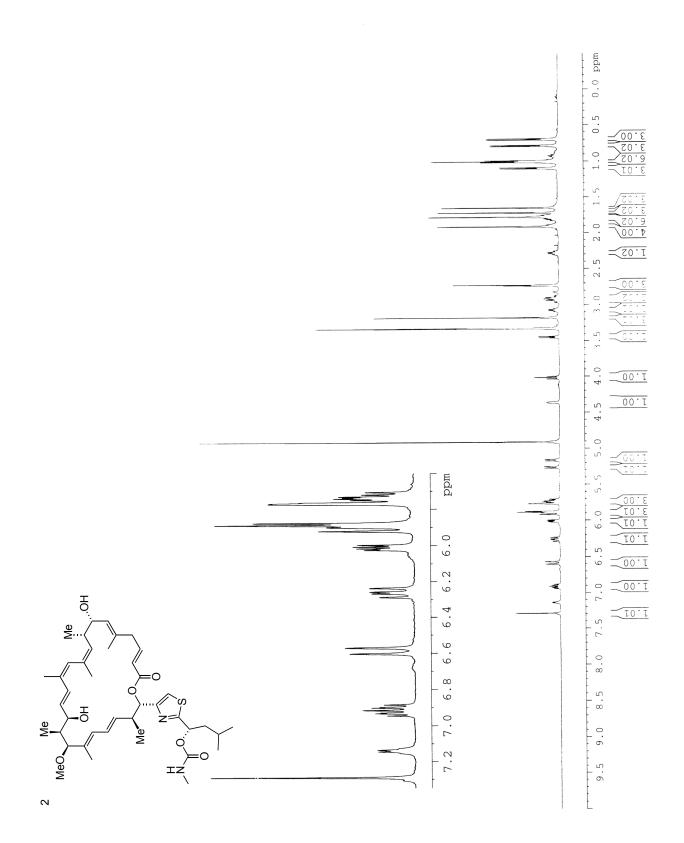


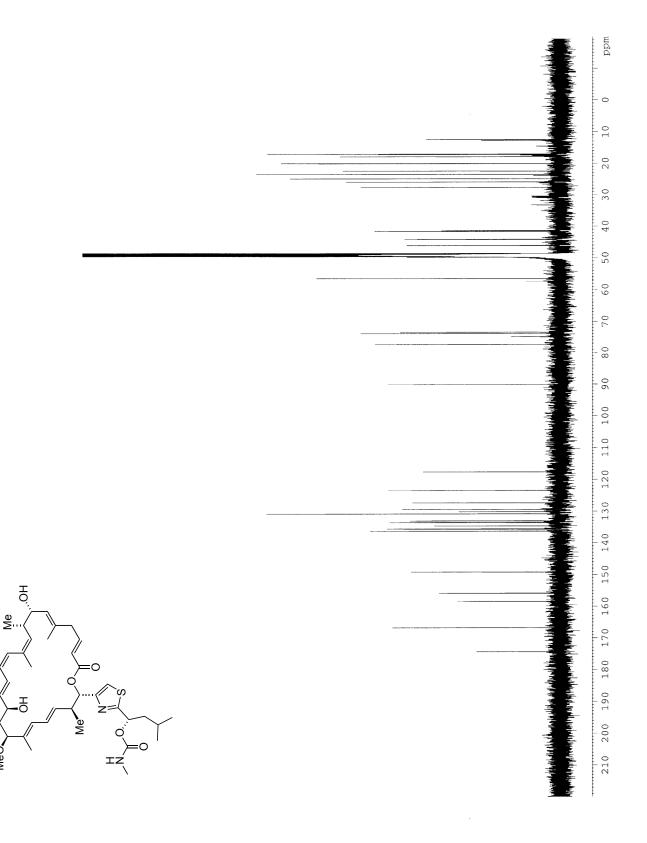


21




S41




4b

S44

₽.

2

MeO