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Supplementary Methods 

 

Hierarchical learning model  

Although learning about self-performance in the absence of feedback remains poorly characterised, we 

are able to draw upon extensive formal frameworks characterizing learning in the presence of external 

feedback. Here, we developed a candidate hierarchical learning model to characterise the process of 

constructing global self-performance estimates (SPEs) over the course of a variable-duration block (as 

used in Experiments 2 and 3). The model was composed of two hierarchical levels: 1) a perceptual 

module which generates a perceptual choice and confidence on each trial, and 2) a learning module 

which updates global SPEs across trials from local decision confidence and feedback, and is then used 

to make task choices at the end of blocks. 

 

The perceptual module was grounded in signal detection theory (SDT) and generates a perceptual 

choice and confidence estimate on each trial. Sensory evidence X is drawn from one of two Gaussians 

depending on whether the greatest dot number is on the left or right of the screen (𝑑 ∈ [−1 1]) 

(Supplementary Fig. 4a). The distance between the Gaussian means (equivalent to d’ in SDT) is 

controlled by the dot difference δ and a subject-specific sensitivity parameter k: 

𝑋~ 𝑁 𝑑𝑘𝛿, 1  
(Equation 1) 

Under flat priors (no prior preference towards left or right), perceptual choices are made by comparing 

the sample X to 0 (X>0 indicating a choice of the righthand box). Confidence is then computed as a 

posterior probability of having chosen the correct action given the evidence (dot difference): 

𝑃 𝑑 = 𝑐ℎ𝑜𝑖𝑐𝑒 𝑋, 𝑐ℎ𝑜𝑖𝑐𝑒 : 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  𝑃 𝑑 = 1 𝑋, 𝑐ℎ𝑜𝑖𝑐𝑒  𝑖𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 = 1, 

1 − 𝑃 𝑑 = 1 𝑋, 𝑐ℎ𝑜𝑖𝑐𝑒  𝑖𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 =  −1 
(Equation 2) 
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Using Bayes rule and assuming flat priors, the relevant posterior over d can be obtained as:  

𝑃 𝑑 𝑋 =
𝑃 𝑋 𝑑

Σ𝑑 𝑃 𝑋 𝑑
 

(Equation 3) 

We introduced two different sensitivity parameters, one for perceptual choice kch and the other for 

confidence kconf, thereby allowing the possibility that subjects have a differential sensitivity at the 

confidence-rating stage. For instance, subjects may continue to accumulate evidence after they made a 

choice, leading to a ‘better’ use of evidence for confidence than for choice, or additional noise may 

corrupt a metacognitive representation of performance, leading to ‘poorer’ use of evidence for 

confidence than for choice 1. 

 

To determine kch, we computed each participant’s psychophysical capacity d’: 

d’ = 𝜙!! (performance) – 𝜙!! (1-performance) 
(Equation 4) 

where 𝜙!! denotes the inverse of the normal cumulative distribution function. Assuming a neutral 

criterion, we could then extract the mean of each Gaussian: ± d’/2, hence the sensitivity kch for each 

participant is equal to kch = !!
!!

 with the dot difference δ reflecting the average dot difference across 

easy and difficult conditions. We note that for the range of d’ values we observed in our participants, 

the distributions of internal evidence generated from easy and difficult stimuli are expected to overlap 

considerably. This precludes straightforward inference about the difficulty of individual stimuli. 

 

In the learning module, we modeled self-performance estimates (SPE) as beta distributions over 

expected performance for each of both tasks: 

SPE ~ 𝐵(𝛼,𝛽) 
(Equation 5) 

Over the course of a block, the parameters of the beta distributions were updated as follows: 

𝛼 =  𝛼 + 1 𝑓𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑟𝑖𝑎𝑙𝑠
𝛽 =  𝛽 + 1 𝑓𝑜𝑟 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑟𝑖𝑎𝑙𝑠 in the presence of feedback  

𝛼 =  𝛼 + 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒
𝛽 =  𝛽 + 1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒          in the absence of feedback    

(Equation 6) 
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Over the course of trials, the distribution mean !
!!!

  naturally converges towards the true expected 

performance (Supplementary Fig. 4b). An interesting property of this model is that over the course of 

trials, distributions become narrower around expected performance slightly more rapidly with 

feedback than without (Supplementary Fig. 4b). This is due to the confidence update being shared 

between 𝛼 and 𝛽 parameters in the absence of feedback (reflecting uncertainty about the true 

performance), whereas only one of the two parameters is updated in the presence of feedback. At the 

end of the block, one of the two tasks is then chosen via comparing the posterior distributions of SPEs 

across both tasks. The model has one free parameter, kconf. 

 

At the start of each learning block, SPEs for both tasks were initialised at an expected performance of 

66% correct (𝛼=6 and 𝛽=3). This prior embodies the assumption that average performance 

expectations are neither at ceiling nor at floor. We additionally checked that other prior values (e.g. 

𝛼=1, 𝛽=1) did not strongly affect task choices – for all but the shortest block durations, posterior 

distributions converged rapidly on expected accuracy regardless of the choice of initial 𝛼 and 𝛽 

values. 

 

We performed model fitting and simulations of this hierarchical learning model. The single free 

parameter kconf was fitted for each subject by maximising the log-likelihood of task choices observed 

in Experiment 2. Note that this is a relatively simple optimisation problem over a single free 

parameter. Specifically, 5000 possible kconf values were randomly sampled from a uniform distribution 

between upper and lower bounds set at 0.028 and 0.0001 respectively, which corresponds to a range 

between 2.35 and 0.008 in d’ units, and log-likelihood was calculated for each kconf value. The model’s 

perceptual choices were conditioned on subjects’ actual choices during parameter fitting. To obtain 

predictions for task choices, we then performed 200 simulations using each subjects’ kch and best-

fitting kconf (Supplementary Fig. 4c). One subject was removed here for an unreliable fit. In these 

simulations, the model made both perceptual choices on each trial and task choices at the end of block; 
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the final distributions used for predicting task choices in each simulation were averages over 1000 

iterations of each block to accommodate variability in sequences of perceptual choice. 

 

Generalisation of hierarchical learning model to Experiment 3 

In Experiment 3, instead of getting no feedback, participants were asked to report their confidence in 

their performance on a trial-by-trial basis. We were able to use this direct confidence report in place of 

the confidence derived from the perceptual module in simulations for Experiment 3, removing the 

need for fitting a sensitivity parameter. As for Experiment 2, we performed simulations of the learning 

module using participants’ actual trial sequences, including perceptual choices, feedback and 

confidence data, and plotted the obtained simulations (n=200) on top of participants’ learning curves 

for the six types of block (Supplementary Fig. 4e and Supplementary Notes). 

 

Alternative accounts 

While the proposed model constitutes a possible formalization of how SPEs are built, the current 

experimental protocol was not designed to discriminate amongst competing models. Due to the 

blocked structure of our experiments, only one task choice per condition per subject was available in 

Experiments 2 and 3 (and two per subject in Experiment 1), leading to limited data points for model 

fitting and parameter recovery 2. This block structure was necessary to probe aggregation of 

confidence over time, and to examine whether subjects use variability in local confidence across 

blocks when forming global SPEs. Our simulations instead provide a proof of principle that a 

Bayesian learning scheme similar to the one suggested here could account for the formation of SPEs 

(Supplementary Fig. 4 and Supplementary Notes).  
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Supplementary Notes 

 

In Experiment 1, we examined whether variability in objective performance affected SPEs. In a linear 

regression on subjective task ratings we obtained a main effect of objective performance (mean β=.40, 

p<10-11) and a main effect of feedback presence (mean β=.42, p<10-8) together with a significant 

interaction (mean β=.23, p<10-10), again due to SPEs increasing in the presence of feedback, an 

increase which was most prominent for tasks in which subjects performed better. 

 

Critically, variations in global self-performance estimates (SPEs) could not be trivially explained by 

differential fluctuations in objective performance over time in a subset of blocks. First, performance 

did not improve or degrade between the first and second halves of the experiment (|t28|<.57, p>.58; 

except for an improvement on Easy-No-Feedback tasks: t28=-2.78, p=.01). We found a small but 

significant decrease in overall RTs (all t28>2.30, all p<.03), but importantly RTs did not decrease more 

rapidly in any of the four experimental conditions (effect sizes: all t28<0.64, all p>.53). 

 

In addition, we investigated whether subjects considered the whole learning block when forming end-

of-block SPEs or whether they gave more weight to information from the most recent trials (see 

Methods). We found that the recent difference in accuracy (last quartile) strongly influenced task 

choices (t28=3.10, p=.002), but there was no monotonic trend with more recent trials consistently 

influencing more task choices (Supplementary Fig. 1). 

 

In Experiment 2, replicating Experiment 1, subjects chose easy tasks more often than difficult ones, 

again indicating that SPEs were related to fluctuations in difficulty level (Supplementary Fig. 2b). For 

instance, subjects were equally likely to choose a Feedback-Difficult task when paired with a No-

Feedback-Easy task, despite performing significantly better at the latter (Fig. 4b). 

 



7	
	

In Experiment 3, we sought further support for our proposed hierarchical learning model in explaining 

global SPEs formation on an independent data set. In Experiment 3, instead estimates of trial-by-trial 

confidence obtained from the model’s perceptual module, we directly entered subjects’ confidence 

ratings into simulations of the learning module. In keeping with our results for Experiment 2, the 

model was (1) able to capture qualitative features of subjects’ SPEs across most of the block types 

(Supplementary Fig. 4d) and (2) tasks with external feedback were chosen more frequently by the 

model than by subjects (Supplementary Fig. 4d, lower-left panels), indicating that more work is 

required to understand the origin of this stronger inclination for tasks with external feedback. 

 

To further assess the reliability of the MLE estimates of meta-d’, we performed additional parameter 

recovery simulations. Specifically, we generated confidence rating data from N=46 simulated subjects 

with 90 trials per subject following the procedures outlined in 3. The group metacognitive efficiency 

was set to 0.8, and individual subject meta-d’/d’ values were sampled from a Gaussian distribution 

centered on d’=1.55 (the mean d’ value we observed for Experiment 3 data across easy and difficult 

conditions) with SD=0.5. We sampled confidence rating counts for known meta-d’/d’ values using the 

metad_sim function from the HMeta-d toolbox (https://github.com/metacoglab/HMeta-d), keeping 

confidence rating criteria fixed across subjects. We observed that the ground truth meta-d’ values were 

recovered much more accurately when using the hierarchical compared to the MLE fits 

(Supplementary Fig. 5d).  
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Supplementary Figures 

 

 

Supplementary Figure 1. Order effects in Experiment 1 (N=29). Stars indicate a significant 
effect of the difference in accuracy between tasks on task choices as assessed by a logistic 
regression (**p<.005, statistical significance of the regression coefficients). The four bars 
correspond to the four quartiles of learning blocks (see Methods). Error bars are SE. 
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Supplementary Figure 2. Behavioral dissociation between objective and perceived performance 
in Experiment 2 (N=29) replicating the findings of Experiment 1. a, Performance (mean percent 
correct) was better for easy (green) than difficult (orange) tasks, but was not different in tasks 
with (plain lines) and without (dotted lines) feedback. b, Self-performance estimates were higher 
in the presence of feedback, despite objective performance being unaffected. Error bars 
represent S.E.M across subjects. Black dashes are individual data points (note that there are 
fewer performance data points visible than N=29 as several subjects had the same performance, 
due to blocks having fewer trials than in Experiment 1). See also Fig. 4. 
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Supplementary Figure 3. Subjects’ behavior in Experiment 3 (N=46) replicating Experiments 1 
and 2 
a, Behavioral dissociation between objective performance and subjective self-performance 
estimates. b, Confidence level (mean confidence rating) was higher for easy than difficult tasks. 
***p<.001. c,  Fluctuations in local performance influenced task choice. The central circle of each 
subplot represents the average task choice frequency over all learning blocks [‘A’]. The leftmost 
and rightmost circles display the same data split into learning blocks with smaller [‘S’] and 
larger [‘L’] differences in objective performance between tasks. Logistic regressions confirmed a 
significant influence of the difference in performance between tasks on task choices with all 
β>3.99, all ***p<.005. d, Task choice frequency as a function of block duration in the six task 
pairings. Subjects traded-off getting explicit feedback against their subjective self-performance 
estimates. *p=.03 indicates significance of logistic regression coefficient; NS indicates that block 
duration had no significant influence on task choice (see Methods). Error bars indicate S.E.M. 
across subjects. Black dashes are individual data points (few task choice data points due to a 
limited number of blocks per subject). See also Fig. 5. 
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Supplementary Figure 4. Hierarchical learning model 
a, A perceptual module grounded in signal detection theory predicted perceptual choice and 
associated (local) confidence on each trial. d is the true state of the world, a the selected action 
and X the evidence sampled on a given trial. Confidence corresponds to the probability that the 
perceptual choice was correct given X. b, Learning module. Self-performance estimates (SPEs) 
were modeled as beta distributions over expected performance and parameters were updated 
using feedback when available or, in the absence of feedback, confidence from the perceptual 
module. Task choices were made by comparing posteriors over SPEs at the end of blocks. 
Posteriors over SPEs at the end of blocks are displayed for an example subject for the five 
possible block durations and the six possible types of block. SPEs converge towards the average 
expected accuracy over the course of learning. See Supplementary Methods for details. c-d, 
Hierarchical learning model simulations (n=200, pink circles) plotted together with subjects’ 
task choice frequencies (curves) as a function of block duration for all six block types in 
Experiment 2 (c) and Experiment 3 (d). Error bars represent S.E.M over simulations and 
participants respectively. e, The difference in frequency of selecting the Easy-No-Feedback task 
over the Difficult-Feedback task (third panel in Supplementary Fig. 4c) correlated with kconf 
parameter for each subject in Experiment 2. See also Results and Supplementary Notes. 
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Supplementary Figure 5. Relationship between three measures of metacognitive ability and 
global SPEs 
Between-subjects correlations between metacognitive ability and task choices. Purple dots are 
subjects’ data (N=46), dotted lines are 95% confidence intervals. Both metacognitive efficiency 
(meta-d’/d’) when estimated hierarchically (c, identical to Fig. 5d) (Pearson ρ=.35, p=.02, 
Spearman ρ=.43, p=.003) and metacognitive ability estimated as the area under the type 2 
receiver operating curve (AUROC2) (b) (Pearson ρ=.44, p=.0024, Spearman ρ=.45, p=.0016) 
showed that subjects with better metacognition were also better at selecting the easiest of both 
tasks in end-of-block task choices, whereas there was no significant association for metacognitive 
efficiency as estimated using a maximum likelihood fit (MLE) (a) (Pearson ρ =.12, p=.45, 
Spearman ρ=.21, p=.18). d. Parameter recovery indicating that meta-d’ estimation was more 
reliable when estimated hierarchically as compared to MLE (see Supplementary Methods). This 
difference in reliability indicates more credence should be given to the correlation identified via 
the hierarchical fit in panel c. 
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