Supplementary Information

Wang et al.

The Aryl hydrocarbon receptor mediates tobacco-induced PD-L1 expression and is associated with response to immunotherapy

Supplementary Table 1. The 422 genes sequenced in tumor samples harvested before the patients received pembrolizumab.

ABCB1(MDR1)	CDK10	ERCC1	IDH2	МҮС	PRKAR1A	SPOP
ABCB4	CDK12	ERCC2	IGF1R	MYCL	PRKCI	SPRY4
ABCC2(MRP2)	CDK4	ERCC3	IGF2	MYCN	PRKDC	SRC
ADH1A	CDK6	ERCC4	IKBK	MYD88	PRSS1	SRY
ADH1B	CDK8	ERCC5	IKZF1	МҮН9	PRSS3	STAG2
ADH1C	CDKN1A	ESR1	IL7R	NAT1	PTCH1	STAT3
AIP	CDKN1B	ETV1	INPP4B	NAT2	PTEN	STK11
AKT1	CDKN1C	ETV4	IRF2	NBN	PTK2	STMN1
AKT2	CDKN2A	EWSR1	JAK1	NCOR1	PTPN11	STT3A
AKT3	CDKN2B	EXT1	JAK2	NF1	PTPN13	SUFU
ALDH2	CDKN2C	EXT2	JAK3	NF2	PTPRD	ТЕК
ALK	CEBPA	EZH2	JARID2	NFE2L2	QKI	TEKT4
AMER1	CEBPB	FANCA	JUN	NFKBIA	RAC1	TERC
APC	CEBPD	FANCC	KDM5A	NKX2-1	RAC3	TERT
AR	CEP57	FANCD2	KDM6A	NKX2-2	RAD50	TET2
ARAF	CHD4	FANCE	KDR(VEGFR2)	NKX2-4	RAD51	TGFBR2
ARID1A	CHEK1	FANCF	KEAP1	NOTCH1	RAD51C	THADA
ARID1B	CHEK2	FANCG	KIF1	NOTCH2	RAD51D	TMEM127
ARID2	CLEC2D	FANCL	KIF5	NOTCH3	RAF1	TMPRSS2
ARID5B	CREBBP	FANCM	KIT	NPM1	RARA	TNFAIP3
ASCL4	CRKL	FAT1	KITL	NQO1	RARG	TNFRSF11A
ASXL1	CSF1R	FBXW7	KLLN	NRAS	RASGEF1A	TNFRSF14
ATF1	CT CF	FGF19	KMT2A(MLL)	NRG1	RB1	TNFRSF19
ATIC	CTLA4	FGFR1	KMT2B	NSD1	RECQL4	TNFSF11
ATM	CTNNB1	FGFR2	KMT2C	NTRK1	RELN	TOP1
ATR	CUL3	FGFR3	KMT2D(MLL2)	NTRK3	RET	TOP2A
ATRX	CUX1	FGFR4	KRAS	РАКЗ	RHOA	TP53
AURKA	CXCR4	FH	LHCGR	PALB2	RICTOR	TP63
AURKB	CYLD	FLCN	LMO1	PALLD	RNF43	ТРМТ
AXIN2	CYP19A1	FLT1(VEGFR1)	LRP1B	PARK2	ROS1	TSC1
AXL	CYP2A13	FLT3	LYN	PARP1	RPTOR	TSC2
BAI3	CYP2A6	FLT4	LZTR1	PARP2	RRM1	TSHR
BAK1	CYP2A7	FOXA1	MAP2K1(MEK1)	PAX5	RUNX1	TTF1
BAP1	<i>CYP2B6*6</i>	FOXP1	MAP2K2(MEK2)	PBRM1	RUNX1T1	TUBB

BARD1	<i>CYP2C19*2</i>	FRG1	MAP2K4	PDCD1(PD1)	RUNX3	TUBB2A
BCL	CYP2C9*3	GATA1	MAP3K1	PDCD1LG2(PD-L2)	SBDS	TUBB2B
BCL2L11(BIM)	CYP2D6	GATA2	MAP3K4	PDE11A	SDC4	TUBB3
BCR	CYP3A4*4	GATA3	MAP4K3	PDGFRA	SDHA	TUBB4A
BIRC3	CYP3A5	GATA4	MAX	PDGFRB	SDHB	TUBB4B
BLM	DAXX	GATA6	MCL1	PDK1	SDHC	TUBB6
BMPR1A	DDR2	GNA11	MDM2	PGR	SDHD	TYMS
BRA	DENND1A	GNA15	MDM4	РНОХ2В	SEPT9	U2AF1
BRCA1	DHFR	GNAQ	МЕСОМ	РІКЗСЗ	SETBP1	UGT1A1
BRCA2	DHFRL1	GNAS	MED12	<i>РІКЗСА</i>	SETD2	VEGFA
BRD4	DICER1	GRIN2A	MEF2B	PIK3R1	SF3B1	VHL
BRIP1	DNMT3A	GRM3	MEN1	PIK3R2	SGK1	WAS
BTG2	DPYD	GRM8	MET	PKHD1	SLC34A2	WISP3
BT	DUSP2	GSTM1	MGMT	PLAG1	SLC7A8	WRN
BUB1B	EGFR	GSTM4	MIT	PLK1	SMAD2	WT1
c11orf30	EML4	GSTM5	MLH1	PMS1	SMAD3	XPA
CASP8	EP300	GSTP1	MLH3	PMS2	SMAD4	XPC
СВ	EPAS1	GSTT1	MLLT1	POLD1	SMAD7	XRCC1
CBL	EPCAM	HDAC2	MLLT3	POLD3	SMARCA	YAP1
CC2D2B	EPHA2	HDAC9	MLLT4	POLE	SMARCB	ZNF2
CCND1	EPHA3	HG	MPL	POLH	SMO	ZNF217
CCNE1	EPHA5	HLA-A	MRE11A	POT1	SOS1	ZNF703
CD274(PD-L1)	EPHB2	HNF1A	MSH2	PPP2R1A	SOX1	
CD74	ERBB2(HER2	HNF1B	MSH6	PRDM1	SOX14	
CDA	ERBB2IP	HRAS	MTHFR	PRF1	SOX2	
CDC73	ERBB3	HSD3B1	MTOR	PRKACA	SOX21	
CDH1	ERBB4	IDH1	MUTYH	PRKACG	SOX3	

Supplementary Table 2. Primers used in the study.

Target	Forward primer (5'→3')	Reverse primer (5'→3')	
HUMAN			
GAPDH	GAAGGTGAAGGTCGGAGTC	GAAGATGGTGATGGGATTTC	
Pd-l1	AGTGGTAAGACCACCACCACCAAT	TCATTTGGAGGATGTGCCAGAGGT	
MOUSE			
GAPDH	AGTATGACTCCACTCACGGCAA	TCTCGCTCCTGGAAGATGGT	
Pd-l1	GCTCCAAAGGACTTGTACGTG	TGATCTGAAGGGCAGCATTTC	
TNFa	CCTCCACTTGGTGGTTTGCTA	CAGACCCTCACACTCAGATCATCT	
ΙΕΝγ	TCAAGTGGCATAGATGTGGAAGAA	TGGCTCTGCAGGATTTTCATG	
ChIP			
Pd-l1 (region 1)	CTGAAAGCTTCCGCCGATT	CTACCTGCAGGCGGACAGA	
Pd-l1 (region 2)	CCCATTCACTAACCCAAAGCT	AAAAGAACTTCCCATCCCGA	
siRNA	Sequence 1 (5'→3')	Sequence 2 (5'→3')	
siAhR	GGAUUAAAUUAGUUUGUGAdTdT	UCACAAACUAAUUUAAUCCdAdA	

Supplementary figures and legends

Supplementary Figure 1. The effects of DBA (a) and BzP (b) on the expression PD-L1 in

16HBE cells.

Supplementary Figure 2. AhR expression levels are not associated with mutation loads

of the patients. Data are from TCGA datasets. (a) Mutation loads of patients with LUAD, LUSC, esophageal carcinoma (ESCA), and stomach adenocarcinoma (STAD). (b) *AhR* expression levels of the patients.

Supplementary Figure 3. AhR inhibitor exhibits anti-lung cancer activity and low toxicity in C57BL/6. mice. (a) The C57BL/6 mice were intravenously injected with LLC cells, and 3 days later randomized to receive vehicle or ANF treatment. Micro-CT scanning images of the mice are shown. (b) Treatment of ANF at 50 to 200 mg/kg did not affect the body weight of

C57BL/6 mice. (c) Treatment of ANF and/or anti-PD-L1 antibody did not significantly affect the body weight of the mice.

Supplementary Figure 4. Effects of AhR inhibitor on colon cancer murine model. (a)

C57BL/6 mice were subcutaneously inoculated with 5×10^5 MC38 cells, and then treated with ANF and/or anti-PD-L1 antibody. Tumor volume was estimated every two days. (b) Images of xenograft tumors obtained from the mice. (c) Weight of xenograft tumors obtained from the mice. (d) HE staining and IHC analyses of lung sections of the mice. (e) Flow cytometry

analysis of CD45⁺CD3⁺, CD8⁺, CD4⁺, and B220⁺ cells in the lung tissues. (f) The expression of *IFN* γ and *TNF* α in the lung tissues was detected by real-time PCR. (g) Body weight of C57BL/6 mice treated with ANF and/or anti-PD-L1 antibody. Error bars, sd.

Supplementary Figure 5. The therapeutic efficacy of AhR inhibition in fibrosarcoma murine model. (a) B6C3F1 mice were subcutaneously injected with Ag104Ld (5×10^5) cells and treated with ANF and/or an anti-PD-L1 antibody. Images showed xenograft tumors obtained from the mice. (b) Flow cytometry analysis of CD8⁺ and CD3⁺ cells in the lung tissues. Error bars, sd.

Supplementary Fig. 6. Uncropped and unprocessed scans of Fig. 1h.

Supplementary Fig. 7. Uncropped and unprocessed scans of Fig. 2e.

Supplementary Fig. 8. Uncropped and unprocessed scans of Fig. 31.