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SUPPLEMENTARY TEXT 

Prior settings and demographic conditions 

We used a demographic model inferred for Europeans [1] that is characterized by three transitions 

(see a figure below): 1) a 10-fold population reduction from 12,000 to 1,200 individuals (i.e., 

bottleneck) between 1,600 and 1,100 generations ago, 2) a recovery from the bottleneck 1,100 

generations ago and 3) an instantaneous 10-fold population expansion from 12,000 to 120,000 

individuals 500 generations ago. These transitions define four-time intervals with constant population 

size, namely, 0 < 𝑇 ≤ 500, 500 < 𝑇 ≤ 1100, 1100 < 𝑇 ≤ 1600, and 1600 < 𝑇. We number these 

intervals from 1 to 4, from the most recent to the oldest. Under all three models (i.e., selection on 

standing variation, selection on new mutations and neutrality), we assume the prior distribution of 𝑇 is 

a log-normal distribution with a mean of 1,600 and a variance equal to the square of the mean. We 

choose a log-normal distribution to avoid negative time values, but the choice of variance is arbitrary. 

Under the SNM and SSV models we assume logଵ𝑠 has a uniform distribution between −3 and −0.5. 

For the SSV model we also require a prior distribution for 𝑓 , the frequency of the previously neutral 

variant which is subsequently subject to selection. This prior distribution is the SFS of neutral variants 

and will change through time under our model due to the demographic transitions. We estimate this 

SFS at just four time points, 250, 800, 1350 and 2000 generations ago. These times correspond to 

the midpoints of the first three demographic intervals and an arbitrary recent time point in the oldest 

interval. We denote these estimated spectra by SFS, and these time points by 𝑇 where 𝑖 = {1, 2, 3, 4} 

indexes the four time points corresponding to the four demographic intervals. We assume that the 

frequency spectrum at any point within a demographic interval is well approximated by our estimated 

SFS at the midpoint of that interval or at generation 2000 for times in oldest interval. To estimate 

SFS, we draw a random time for the origin of a new neutral mutation from a uniform distribution that 

has the range from 𝑇 to 4𝑁 generations ago, where 𝑁 is the current population size of 120,000 in 

our demographic model. We then generated a neutral trajectory forward in time from our random time 

to 𝑇, and if the neutral variant has not been fixed or lost, we record its frequency. We repeated this 

process until we obtained 1 million replicates of allele 

frequency at 𝑇. 

As an alternative demographic scenario, we also 

included a constant size model (𝑁 = 12,000) into our 

simulation study. The prior settings for 𝑇 and 𝑠 were the 

same as the complex demography. For 𝑓 , we used 

SFSୀସ regardless of 𝑇 as the expected SFS is not 

expected to depend on 𝑇 under the constant size model.  
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Simulation scheme 

Step 1: Simulating trajectory under the Write-Fisher model. 

We simultaneously sampled values of the parameters from the priors and simulated trajectories 

under different models as described below (Figure S1). 

1) Natural selection on a new mutation (SNM): Using the selection coefficient 𝑠 starting 𝑇 

generations ago at 𝑓 = 1 2𝑁ୣ⁄ , an allele frequency trajectory was generated forward in time under a 

simple additive selective model (i.e., 1, 1 + 𝑠/2, and 1 + 𝑠 for aa, Aa, AA, where A is a derived and 

beneficial allele and a is an ancestral allele) with genetic drift scaled with the effective population 

size. The simulated trajectory was accepted based on the final frequency of the simulated allele with a 

probability proportional to the binomial probability based on allele frequency at present (𝑓) and 

numbers of derived (𝑛ୢୣ୰) and ancestral alleles (𝑛ୟ୬ୡ). If the simulated trajectory was rejected, a new 

set of 𝑠 and 𝑇 was sampled from the priors, so that the accepted samples of both 𝑠 and 𝑇 were 

conditional on 𝑓. 

2) Natural selection on a standing variant (SSV): The simulation scheme for the selection phase 

was the same as the SNM model, with the exception that 𝑓 ~SFS. For the neutral phase, we started 

simulation at time 𝑇 with frequency 𝑓  and generated trajectory backwards in time with genetic drift 

only. We accepted the trajectory if the allele went extinct in the backward direction. 

3) Neutral: A frequency path was conditional only on 𝑓. We simulated the trajectory backwards in 

time without any selection parameters, so the change of allele frequency was dependent on genetic 

drift scaled with the effective population size. The trajectory was accepted if the allele went extinct. 

Otherwise, we re-started the simulation at 𝑓. 

Step 2: Simulating neutral variation under the coalescent model. 

Next, for each accepted trajectory, neutral variation surrounding the selected site was generated by 

coalescent simulation conditional on the trajectory. To model the uncertainty in mutation rate (µ), µ 

was sampled from a truncated normal distribution with mean equal to the divergence-based µ estimate 

(from the comparison of human with the other primates) and a variance equal to the square of the 

mean; values less than a half of µ and greater than 1.5 times µ were excluded. The above procedure 

was repeated until 1 million sets of data and parameter values (i.e., 𝑇 and 𝑠 under the SNM model; 𝑇, 

𝑠, and 𝑓  under the SSV model) were generated. 

Our simulation iterates the procedures as follows: 

for i = 1 to n (i.e., the total number of simulations) do 



3 
 

 if m = 0 then   # SSV model 

1a. Sample 𝑡, 𝑠, and 𝑓  from the priors. 

  2a. Simulate trajectory at the selection phase, 𝑡𝑟𝑎𝑗,ୱୣ୪ୣୡ୲୧୭୬. 

3a. Accept 𝑡𝑟𝑎𝑗,ୱୣ୪ୣୡ୲୧୭୬ if the final allele frequency at present matches 𝑓, with 

probability proportional to the binomial probability of 𝑓. Otherwise go back to 1a. 

  4a. Simulate trajectory at the neutral phase, 𝑡𝑟𝑎𝑗,୬ୣ୳୲୰ୟ୪ 

  5a. Accept 𝑡𝑟𝑎𝑗,୬ୣ୳୲୰ୟ୪ if the allele goes extinct. Otherwise go back to 4a. 

  6a. Merge 𝑡𝑟𝑎𝑗,ୱୣ୪ୣୡ୲୧୭୬ and 𝑡𝑟𝑎𝑗,୬ୣ୳୲୰ୟ୪ to generate 𝑡𝑟𝑎𝑗, 

 else if m = 1 then  # SNM model 

1b. Sample 𝑡 and 𝑠 from the priors. 

  2b. Simulate trajectory, 𝑡𝑟𝑎𝑗,ଵ. 

3b. Accept 𝑡𝑟𝑎𝑗 ,ଵ with the probability proportional to the binomial probability of 𝑓. 

Otherwise go back to 1b. 

 else if m = 2 then  # Neutral model 

  1c. Simulate trajectory, 𝑡𝑟𝑎𝑗,ଶ. 

  2c. Accept 𝑡𝑟𝑎𝑗,ଶ if the allele goes extinct. Otherwise go back to 1c. 

Simulate neutral variation, 𝐺,, with 𝑡𝑟𝑎𝑗, and µ that is sampled from the truncated 

normal distribution. 

 Calculate summary statistics, 𝑆൫𝐺,൯. 

Additional condition at Step 1: Incorporating ancient DNA data into simulation.  

To incorporate information from ancient DNA data we modified the procedure by retaining only 

trajectories with a specified allele frequency, 𝑓
౦౩౪

, at an additional time point, 𝑇୮ୟୱ୲. The values of 

these additional parameters are obtained from published ancient DNA data from specimens with 

dating information and where the numbers of sequence reads carrying reference and alternative alleles 

were provided. We estimated 𝑓
౦౩౪

 at a given time using a likelihood function described in [2]. To 

allow for uncertainty in the estimate due to the limited number of samples, we accepted trajectories in 

which the allele frequency at 𝑇୮ୟୱ୲ fell within a range (𝑓
౦౩౪

± 5.0%). All other conditions were the 

same as those without ancient DNA as described above. Because all frequency paths have to pass 

through 𝑓
౦౩౪

 at 𝑇୮ୟୱ୲ and reach a frequency close to 𝑓 at present, accepted samples of the 

parameters from this procedure were conditional on 𝑓
౦౩౪

, as well as 𝑓. However, if the difference 

between 𝑓
౦౩౪

 and 𝑓 is large, it may be difficult to generate trajectories under the neutral model. In 

turn, this implies that a given change of allele frequency is unlikely to be explained by neutrality. 

Even though the allele frequency path would include all information regarding selection, the path 

captured only by two time points (i.e., 𝑇୮ୟୱ୲ and 𝑇) may not be sufficient to infer the strength of 
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selection. Therefore, we simulated trajectories with the conditions of 𝑓
౦౩౪

 and 𝑓 under the SNM and 

SSV models with the goal of distinguishing between the types of selection rather than to test the 

deviation from neutral model. 

The simulation procedures are almost the same as those without ancient DNA, except for “3a” or 

“5a” under the SSV model and “3b” under the SNM model. Depending on 𝑇 sampled from the prior, 

the condition on 𝑓
౦౩౪

 was given for the trajectory at the selection phase or the neutral phase in the 

SSV model. If 𝑇 < 𝑇୮ୟୱ୲ or 𝑇 > 𝑇୮ୟୱ୲, 3a or 5a was replaced with 3a’ or 5a’ as follows: 

3a’. Accept 𝑡𝑟𝑎𝑗,ୱୣ୪ୣୡ୲୧୭୬ if the final allele frequency at present matches 𝑓, with probability 

proportional to the binomial probability of 𝑓, and the frequency at 𝑇୮ୟୱ୲ is within 𝑓
౦౩౪

± 5.0%. 

Otherwise go back to 1a. 

5a’. Accept 𝑡𝑟𝑎𝑗,୬ୣ୳୲୰ୟ୪ if the allele goes extinct and the frequency at 𝑇୮ୟୱ୲ is within 𝑓
౦౩౪

± 5.0%. 

Otherwise go back to 4a. 

On the other hand, no condition was given for the trajectory in the SNM model if 𝑇 is younger 

than 𝑇୮ୟୱ୲. Therefore, 3b was replaced with 3b’ only if 𝑇 < 𝑇୮ୟୱ୲: 

3b’. Accept 𝑡𝑟𝑎𝑗 ,ଵ with the probability proportional to the binomial probability of 𝑓 and the 

frequency at 𝑇୮ୟୱ୲ is within 𝑓
౦౩౪

± 5.0%. Otherwise go back to 1b. 

Summarizing patterns of neutral variation in to a set of statistics 

The rapid increase in allele frequency due to selection is expected to result in a skewed SFS and 

increased linkage disequilibrium (LD) [3-5]. Commonly used summaries of the SFS include the 

number of segregating sites, nucleotide diversity, Tajima’s D, Fu and Li’s D and F, and Fay and Wu’s 

H [6-9], which are not independent. In contrast, using the full SFS, which covers the entire range of 

allele frequency from singletons to mutations shared in all chromosomes, provides complete and non-

redundant information on the local reduction in nucleotide diversity and on the distortion of the SFS 

in a population. The spatial distribution of mutations within a genomic region can also provide 

information on the strength of selection as stronger selection will affect patterns of variation over 

longer genetic distances. To develop our ABC approach, we focused on a 300kb genomic region 

centered on a focal site and calculated the full SFS separately for sequences carrying derived (i.e., 

beneficial) and ancestral alleles at the focal site. Examples of the full SFS obtained by simulations 

under selection and neutral models are shown in Figure S2. 

Another aspect of sequence variation that is impacted by natural selection is the extent of LD. The 

extended haplotype homozygosity (EHH) is defined as a probability that two randomly chosen 

haplotypes are homozygous at all SNPs within a given distance from the focal SNP site, taking a 

value in between 0 (i.e., all haplotypes are different) and 1 (i.e., all haplotypes are identical) [10]. To 
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fully capture the haplotype structure in a genomic region containing a beneficial allele, we recorded 

the physical positions of the variable sites on each side of the focal site where the EHH value 

decreased from 0.9 to 0.1, in steps of 0.1, for the derived and ancestral alleles separately. This is 

similar to integrated haplotype scores that have been widely used for selection scans [11]. However, 

instead of summarizing the decay of EHH into a single statistic by integration, we generated the 

vector of physical positions as additional summary statistics to characterize in detail the breakdown of 

LD with the distance from the focal site (Figure S2). 

Implementation of ABC for the inference on onsets of natural selection 

Our ABC framework is designed to first choose a model the best fit to the observed data and then 

estimate the parameters of interest under the model. To take advantage of using high-dimensional 

summaries in the inference [12], we employed a specific ABC method that incorporates kernel 

methods into its framework to achieve a better approximation [13-15]. Kernel methods, which has 

been widely used in machine learning, provide systematic ways of analysing high-dimensional data 

by transforming the data into high or potentially infinite space, which is called reproducing kernel 

Hilbert space [16]. In this space, the similarity of summary statistics is evaluated as the inner product 

between pairs of data points, which is simply computed by a kernel function such as the Gaussian 

radial base function kernel. 

Kernel density estimation (KDE) is a smoothing method commonly used to estimate probability 

density at a given data point from random samples. This method has been extended into ABC model 

selection with high-dimensional summaries to calculate approximate marginal likelihoods (aMLs), 

𝑃(𝑆(𝒟)|𝑀), where 𝑆(𝒟) is a set of summary data and 𝑀 is a given model [15]. The basic form of 

ABC is a rejection-based method, which gives an estimator of aML as an acceptance rate under a 

model. If a set of summaries is high-dimensional or continuous, however, it becomes hard to find an 

exact match between observed and simulated summaries. The model selection with KDE provides a 

simple way to overcome this limitation by replacing an indicator function to accept or reject 

simulation data with a kernel function to estimate the density from all simulated data. We used 1 

million data sets to calculate aMLs under the SNM, SSV, and neutral models. A bandwidth of a 

Gaussian radial base function kernel was chosen based on the 10-fold cross-validation with 30,000 

simulated samples [15]. Fitting to the models was then evaluated with approximate Bayes factors 

(aBFs), a ratio of aML in one model to that in the other, to test the deviation from neutrality and to 

distinguish the two selection models. 

Kernel ABC provides an algorithm to estimate posterior means with a large dimensional summary 

of the data, taking advantage of ridge regression integrated into kernel methods to account for varying 

degrees of correlation among the summary statistics and for non-linear relationships between the 

summaries and parameters of interest [13, 14]. Simulated samples are used as training data to 
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calculate weights, 𝑤, which provides an estimator of the posterior mean as 𝐸[𝜽|𝑆(𝒟)] = ∑ 𝑤𝜽

ୀଵ , 

where, 𝑛 is the total number of simulations, and 𝜽 is a set of the parameters, 𝜽 = {𝑇, 𝑠} for SNM or 

𝜽 = {𝑇, 𝑠, 𝑓 } for SSV models. The weight, 𝑤, is given by 𝑤 = ∑ (𝐺ௌ + 𝑛𝜀𝐼)
ିଵ𝑘 ቀ𝑆൫𝒟൯, 𝑆(𝒟)ቁ

ୀଵ , 

where 𝐺ௌ is a Gram matrix consisting of ൬𝑘 ቀ𝑆(𝒟), 𝑆൫𝒟൯ቁ൰
,ୀଵ



, 𝜀 is a regularization parameter, and 

𝐼 is the 𝑛 × 𝑛 identity matrix. Importantly, 𝑘 ቀ𝑆൫𝒟൯, 𝑆(𝒟)ቁ gives the similarity between the observed 

and each simulated data. The posterior mean is thus estimated as the sum of priors re-weighted with 

the similarity. We chose a bandwidth of the kernel function and 𝜀 by the 10-fold cross-validation [13, 

14]. The weights are further used to estimate credible intervals by calculating the density of parameter 

at any given point, 𝜃; 𝑝(𝜃) = ∑ 𝑤𝐽(𝜃 − 𝜃)
ୀଵ , where 𝐽(𝜃 − 𝜃) is a smoothing kernel and 

given by a Gaussian kernel, భ

ഏభ మ⁄ 
exp(−‖𝜃 − 𝜃‖ଶ ℎଶ⁄ ), and ℎ is a bandwidth [17]. Because 𝑤 is not 

positive-definite and may take a negative value, the density is sometimes estimated to be negative. 

Therefore, we only took account of positive density to calculate 95% credible intervals. 

Analysis of genomic data from modern and ancient Europeans 

We retrieved the Complete Genomics data for a population with European ancestry (noted as 

“CEU”) including 32 trios from 

ftp.1000genomes.ebi.ac.uk:/vol1/ftp/release/20130502/supporting/cgi_variant_calls/filtered_calls/. 

First, we extracted a region spanning 2.5 Mb upstream and downstream to each of the target SNP 

sites. We then removed SNPs with missing genotypes or Mendelian errors. Third, we phased the data 

for the parents of each trio using the SHAPEIT2 using the pedigree information [18, 19], thus 

providing a total of 64 unrelated individuals. This strategy increases phasing accuracy by combining 

both transmission and LD information, and it mirrors the approach used to generate the high-quality 

HapMap CEU haplotypes [20]. We retrieved the sequence data for a region 500 kb upstream and 

downstream of the focal SNP site. In calculating the summary statistics for each SNP, we removed 

flanking regions if there are strong recombination hotspots (i.e., a region with > 20 × the background 

recombination rate). The estimates for the population recombination rate parameter for each region 

were obtained from [21] inferred from HapMap data; because the genomic segments examined did 

not contain strong hot spots, these estimates were assumed to apply uniformly in our simulations. The 

features and summary statistics of each genomic region are summarized in Figure S9. The mean of the 

distribution for μ was set at the estimate based on the number of fixed derived alleles in the 1000 

Genome data identified using the alignment of human, chimpanzee, orangutan, and rhesus macaque, 

assuming a divergence time between human and chimpanzee of 5 million years ago and an ancestral 

population size of 12,500 diploid individuals [22-24]. The parameter values used in the simulations 

are given in Table S2. 
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For ancient DNA data, we first selected sequence data from ancient European samples [2, 25-27] 

that were dated within 10 − 7 thousand years ago (KYA) and then counted the numbers of sequence 

reads carrying derived and ancestral alleles at each SNP site. We only included individuals who had, 

at least, 3 sequence reads, and the numbers used for the estimation of 𝑓
౦౩౪

 are as follows: 46 at 

rs16891982, 22 at rs1426654, 10 at rs642742, and 39 at rs1042602. We used 𝑓
౦౩౪

 to condition 

trajectories in the simulation under the SNM and SSV models. 
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