ESM Table 1. Comparison of the reported findings of published articles testing for transgenerational effects of nutrition in life-history traits of *Drosophila melanogaster*. (The specific composition of 'standard diet' differs among studies, and in some cases, is not specified. Ingredients sometimes included in *Drosophila* media as preservatives, such as MgSO₄, CaCl₂, propionic acid or Nipagin, have also not been included to save space. DGRP, *Drosophila* Genetic Reference Panel [45]. DSPR, *Drosophila* Synthetic Population Resource [1].

number of	generations	trials	standard food	diet treatment	grandparents	outcomes	reference
genetic lines					diet		
1	F_1	1	agar-banana-	standard,	same	female F_0 fed poor food laid heavier eggs	[15]
			barley flour-	rich (2x yeast)		than rich-fed F_0 (insignificant), and had	
			jaggery-yeast	poor (no yeast, no		offspring that survived better on rich food.	
				jaggery, 2x flour, 2x		No effects on mass	
				banana			
2 lines (one	F_0, F_1	1	cornmeal-	standard or no food	same	F_0 females (from both control line and	[17]
control, one			molasses-yeast	(water-saturated plug)		starvation resistance line), that were	
selected for							
starvation				during adult period		starved as adults for 28 h, birthed F_1	
resistance)						females that had more ovarioles compared	
						to unstarved F_0 females	
1	F_0, F_1	2	cornmeal-yeast-	standard	same	no diet-mediated parental effects on body	[16]
			sucrose-glucose	poor (75% less		size or L1-adult development duration	
				sucrose, 80% less		females raised on poor food laid larger	
				glucose, 75% less dry		eggs than females raised on rich food	

				yeast, 75% less		LP-adult pupal duration unaffected by	
				cornmeal)		parental effects or diet	
					11:22		
	F_0, F_1	1	agar-cornmeal-	standard food	different and	female F_0 fed poor diet birthed larger F_1	[13]
			yeast-syrup	Poor (-87.5% yeast)	same	females that develop slower. Male F_0 fed	
						poor diet sired larger F_1 males	
10 wild-collected	F_0, F_1	1	agar-cornmeal-	(LP) low protein	same	there were genotype-specific effects, but	[11]
isofemale lines			yeast-sucrose	(+60% sucrose, -60%		one prominent pattern was reported: F_1	
				less yeast)		females from HP parents developed more	
				(HP) high yeast		quickly, were heavier, laid more eggs, and	
				(-60% less sucrose, +		had more standing protein and	
				60% more yeast)		triglycerides. F_1 males developed at a	
						similar rate, no effects on weight, but had	
						higher standing protein when F_0 parents	
						were LP	
1	F_0, F_1, F_2	1	cornmeal-molasses	(LS) low sugar (0.15	different and	F_1 male and female F_1 offspring whose	[12]
				mol l ⁻¹)	same	mothers ate HS food accumulated	
						triglycerides quickly, stored less	

				(HS) high sugar (1		cholesterol, and had altered regulation of	
				mol l ⁻¹)		metabolic genes; these patterns were	
						consistent for F_2	
4 and 10 randomly	F_0, F_1, F_2	1	cornmeal-molasses	standard	different and	genotype-specific effects, for at least one	[14]
selected DGRP				high fat (standard +	same	of two descendant generations, of fat	(DGRP;
lines; 3 randomly				3% coconut oil by		treatment on trehalose, protein, and	DSPR)
selected DSPR				weight)		triglyceride levels, female and male pupal	
lines						weight, and egg size	

Reference

1. King EG, Macdonald SJ, Long AD. 2012 Properties and power of the *Drosophila* Synthetic Population Resource for the routine of complex traits. *Genetics* **191**, 935-949.