Supporting Information

Synthetic and Pre-clinical Characterization of a Cationic Iodinated Imaging Contrast Agent (CA4+) and Its Use for Quantitative Computed Tomography of *Ex Vivo* Human Hip Cartilage

Rachel C. Stewart,^{†,‡} Amit N. Patwa,[§] Hrvoje Lusic,[§] Jonathan D. Freedman,^{‡,§} Michel Wathier,[§] Brian D. Snyder,^{*‡} Ali Guermazi,^{*¶} and Mark W. Grinstaff^{*†,§}

[†]Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States [‡]Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts 02215, United States [§]Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States [¶]Department of Radiology, Boston University School of Medicine, Boston, Massachusetts 02118, United States

Corresponding Author

*For B.D.S.: E-mail, bsnyder@bidmc.harvard.edu. *For A.G.: Tel, (+1)617-414-3893; E-mail, guermazi@bu.edu. *For M.W.G.: Email, mgrin@bu.edu.

Contents

<u>S</u>1

Contents	Page No.
Large scale synthesis and chemical characterization of CA4+-Cl ⁻ salt 5 (Scheme 1)	S3
¹³ C NMR of compound 2 (Figure S1)	S4
¹ H and ¹³ C NMR of compound 3 (Figure S2, S3)	S4-S5
¹ H and ¹³ C NMR of compound 4 (Figure S4, S5)	S5-S6
¹ H, ¹⁹ F and ¹³ C NMR of compound 5a (Figure S6, S7 , S8)	S6-S7
¹ H, ¹³ C and ¹⁹ F NMR of compound 5 (Figure S9 , S10 , S11)	S8-S9
HPLC analysis of compound 5 (Figure S12)	S9
HRMS spectrum of compound 5 (Figure S13)	S10
Table S1 . Procedural differences between the previoussynthesis of CA4+ (ref 46) and the current large scale synthesisof CA4+	S11
Diffusion of Contrast Agents and DMMB assay (Table S2 , Table S3 and Figure S14)	S12-S13
Individual clinical chemistry parameters (Table S4)	S14
Individual clinical chemistry parameters (Table S5)	S15
Normal values, Sprague Dawley 15-16 weeks old males (N = 20) (Table S6)	S16
Clinical Chemistry parameters (normal values, Sprague Dawley 15-16 weeks old females (N = 20)) (Table S7)	S17
Technical data sheet for ¹⁴ C-CA4+ chloride salt 5 * (Radioflow chromatogram (for radiochemical purity) and PDA chromatogram (for chemical purity) for ¹⁴ C-CA4+ chloride salt 5 *) (Figure S15)	S18

Scheme 1. Large scale synthesis of chloride salt of CA4+ 5.

Alternative method for the synthesis of 5-amino-2,4,6-triiodoisophthaloyl chloride **2**: Compound **2** was synthesized using ethylene dichloride as a solvent and only four equivalents of thionyl choride. After quenching the thionyl chloride with ice-cold water, the ethylene dichloride layer (highly concentrated) was separated. The aqueous layer was extracted twice with dichloromethane, and the combined organic layers were washed and concentrated to obtain **2** in 96.3 % yield (this reaction was repeated twice). We have successfully synthesized **2** using both procedures and found that the workup is more convenient and simple in the first case (thionyl chloride as a reagent and solvent) than the alternative procedure because of the tedious workup using the chlorinated solvent and poor visual separation of the two layers.

NMR Spectra

Scanned NMR spectra of the synthesized compounds 2, 3, 4, 5a, and 5. All spectra were recorded by Agilent 500 MHz VNMRS spectrometer with a Varian ultra-shielded magnet at 500 MHz for ¹H NMR, 470 MHz for ¹⁹F NMR, 125 MHz for ¹³C NMR:

NMR Spectra

Figure S1. ¹³C NMR of 5-amino-2,4,6-triiodoisophthaloyl chloride 2

Figure S2. dichloride) 3

Figure S3. ¹³C NMR of 5,5'-[malonylbis(azanediyl)]bis(2,4,6-triiodoisophthaloyl dichloride) **3**

Figure S4. ¹H NMR of tetra-*tert*-butyl [({5,5'-[malonylbis(azanediyl)]bis(2,4,6-triiodoisophthaloyl)}tetrakis(azanediyl))tetrakis(ethane-2,1-diyl)]tetracarbamate **4**

Figure S5. ¹³C NMR of tetra-*tert*-butyl [({5,5'-[malonylbis(azanediyl)]bis(2,4,6-triiodoisophthaloyl)}tetrakis(azanediyl))tetrakis(ethane-2,1-diyl)]tetracarbamate **4**

Figure S6. ¹H NMR of 5,5'-[malonylbis(azanediyl)]bis[*N1,N3*-bis(2-aminoethyl)-2,4,6-triiodoisophthalamide] TFA salt **5a**

Figure S7. ¹⁹F NMR spectra of 5,5'-[malonylbis(azanediyl)]bis[*N1,N3*-bis(2-aminoethyl)-2,4,6-triiodoisophthalamide] TFA salt **5a**

Figure S8. ¹³C NMR of 5,5'-[malonylbis(azanediyl)]bis[*N1,N3*-bis(2-aminoethyl)-2,4,6-triiodoisophthalamide] TFA salt **5a**

Figure S9. ¹H NMR of 5,5'-[malonylbis(azanediyl)]bis[*N1,N3*-bis(2-aminoethyl)-2,4,6-triiodoisophthalamide] chloride salt **5**

Figure S10. ¹³C NMR of 5,5'-[malonylbis(azanediyl)]bis[*N1,N3*-bis(2-aminoethyl)-2,4,6-triiodoisophthalamide] chloride salt **5**

Figure S11. ¹⁹F NMR spectra of 5,5'-[malonylbis(azanediyl)]bis[*N1,N3*-bis(2-aminoethyl)-2,4,6-triiodoisophthalamide] chloride salt **5**

HPLC analysis of 5,5'-[malonylbis(azanediyl)]bis[*N1,N3*-bis(2-aminoethyl)-2,4,6-triiodoisophthalamide] chloride salt **5** (CA4+)

The purity of **5** salt was determined by analytical reverse-phase HPLC. Briefly, a Varian ProStar HPLC pump and UV-vis detector with Hamilton C18 HxSil 5mm 250x4.6 mm column was used with 1 mL/min flow rate of 95/5 water/ACN (isocratic). Product **5** was detected as a single peak at 245 nm with a retention time of 2.5 minutes. Shelf life of CA4+ **5** powder and aqueous solution of CA4+ **5** (12 or 24 mgl/mL, pH=7.4, 400 mOsm/kg), was determined by recording HPLC profile after one year. Both, CA4+ **5** powder and its aqueous solution remain unaltered (eluted as single peak at the same retention time) when stored for one year in refrigerator (+4 °C). CA4+ **5** powder can be stored unaltered even at room temperature for a year.

Table S1. Procedural differences between the previous synthesis of CA4+ (ref 45) andthe current large scale synthesis of CA4+

	Old procedure	New procedure			
	(SI of Reference 46)		(This manuscript)		
	3 g scale		150 g scale		
	30 equiv. thionyl chloride used		19.1 equiv. thionyl chloride used		
	removal of thionyl chloride on		quenching of thionyl chloride		
Step-1	rotary evaporator (handling is		(easy to handle)		
Synthesis of 2	difficult on large scale)		Use of ethyl acetate is almost one		
	excess use of ethyl acetate for		third (15 mL/g of starting material		
	extraction (50 mL/g of starting		 of previous usage 		
	material 1)		Work-up is more convenient		
	Use of excess of hexanes for		Precipitation was achieved by		
Sten-2	precipitation		cooling at -20 °C		
Synthesis of 3	Yield was 60-65 %		Yield 89 %		
	Pale yellow solid		White solid (better purity than		
			previous procedure)		
	Excess use of DMA (6 mL/g of		Use of DMA is half (3 mL/g of 3)		
	3)		of previous usage		
	Removal of DMA on rotary		No removal of DMA, precipitation		
Step-3	evaporator is very tedious		in 1 mol/L aqueous HCl		
Svnthesis of 4	(because of high boiling point of		Removal of all excess reagent		
,	DMA)		and bases through filtration		
	Use of excess of nexanes for		YIEID 89 %		
	Hea of execce of DCM:TEA (1:1)		Lippage of DCM:TEA (1:1) only 2.5		
	Dise of excess of DCM.TFA (1.1)		DSage of DCM.TFA (1.1) only 3.5		
Stop 1	Perceval of DCM:TEA on rotary		No use of rotary evaporator		
Synthesis of	evanorator		product 5 2 was precipitated out		
5a	Product 5a was obtained as		from ether		
54	alassy solid		Product 5a was obtained as white		
	glabby bolia		free flow solid (easy to handle)		
	Lyophilization method was used		Lyophilization was not convenient		
	Procedure was not optimized;		on larger scale, CA4+ 5 was		
Step-5	yield was not measured		precipitated from Acetone		
Synthesis of 5			Optimization of the procedure		
-			and yield is more than 93 %		
			(isolated)		

Diffusion of Contrast Agents

Cationic, anionic and neutral contrast agents were diffused into six osteochondral plugs over 48 hours. Each contrast agent diffusion series was fit to the model:

CECT Attenuation = $\alpha(1 - e^{-\frac{t}{\tau}})$ (Equation 1).

Contrast Agent	Maximum attenuation (α) (HU)	Equilibrium attenuation (0.95α) (HU)	Time constant (т) (hours)	Time required to reach equilibrium (t = 3τ) (hours)
CA4	2417	2291.15	12.5	37.5
lodixanol	2053	1950.35	3.91	11.73
loxaglate	1918	1822.1	3.03	9.09

 Table S2. Equilibrium Attenuation and Time Constants as Fit to Equation 1.

1,9-dimethylmethylene blue (DMMB) assay for glycosaminoglycan (GAG) content

A buffer solution of 50 mM sodium phosphate, 5 mM EDTA, 2 mM dithiothreitol (DTT), pH 6.8 was prepared for all solutions in this section. The cartilage was excised from the subchondral bone using a scalpel (#22 blade). Care was taken to remove all of the cartilage tissue by gently brushing the scalpel against the subchondral bone. The wet weight of the cartilage was measured, followed by lyophilization for 12 hours and then the dry weight of the cartilage was measured. Dry samples were digested in papain (0.5 mg/mL in the buffer solution) at 65 °C for 24 h. The GAG content of each cartilage sample was determined using the 1,9-dimethylmethylene blue (DMMB) colorimetric assay. A linear calibration curve (absorbance vs. GAG) was generated using concentrations of chondroitin-4-sulfate (Sigma 27042, St. Louis, MO) ranging from 10 to 100 mg/mL in the buffer solution. Each cartilage digestion solution was diluted 40 to 60 times for the assay. In triplicate, ten microliters of each chondroitin-4-sulfate calibration solution and each diluted sample digestion solution were added and mixed with 100 µL of DMMB dye solution in a 96-well plate. The absorbance (520 nm) was measured using a plate reader (Beckman Coulter AD340, Fullerton, CA). The total GAG mass of each sample was calculated using the calibration curve and a GAG concentration was computed by dividing the total GAG mass (mg) by the wet weight (mg) of the cartilage.

Figure S14. Diffusion and partition of loxaglate, lodixanol and CA4+ into bovine osteochondral plugs divided into superficial, middle and deep zones of cartilage.

Contrast agents with different valance charges were diffused into bovine osteochondral plugs (n = 6) over 48 hours: (A) CA4+ with +4 valance, (B) lodixanol, a neutral agent, and (C) loxaglate with a -1 valance. The cartilage was segmented into three different zones: superficial zone (top 10% from articular surface), middle zone (middle 50%) and deep (40% from bone-cartilage interface). Both lodixanol and loxaglate appear to diffuse throughout the cartilage tissue with the greatest contribution from the middle zone and secondarily from the deep zone of cartilage with a lesser contribution from the superficial zone. For CA4+, the main zone of highest attenuation is the deep zone followed by the middle zone, with no significant contribution from the superficial zone.

The attenuation and equilibrium time calculated from **Equation 1** is summarized for each cartilage zone in **Table S2**.

Contrast Agent		Maximum attenuation (α) (HU)	Equilibrium attenuation (0.95α) (HU)	Time constant (τ) (hours)	Time required to reach equilibrium $(t = 3\tau)$ (hours)	
	Superficial Zone (10%)	-40350	-38332.50	15200	45510	
CA4+	Middle Zone (50%)	1979	1880.05	12.21	36.63	
	Deep Zone (40%)	2745	2607.75	13.37	40.11	
	Superficial Zone (10%)	1017	966.15	4.97	14.92	
Iodixanol	Middle Zone (50%)	2167	2085.65	3.54	10.61	
	Deep Zone (40%)	1721	1634.95	4.79	14.36	
loxaglate	Superficial Zone (10%)	erficial Zone 950 (10%)		3.07	9.21	
	Middle Zone (50%)	1946	1848.70	2.76	8.27	
	Deep Zone (40%)	1700	1615.00	4.31	12.92	

Table S3. Equilibrium Attenuation and Time Constants as Fit to **Equation 1** by Zone of Cartilage.

ĺ	0	Na	K	CI	Calcium 2	TG	CHOL	TP	ALB	GLOB		TB
	Sex	(mmol/L)	(mmol/L)	(mmol/L)	(mmol/L)	(mg/dL)	(mg/dL)	(g/dL)	(g/dL)	(g/dL)	A/G	(mg/dL)
	Male	143	10.59	98.4	12.2	44	99	7.0	4.4	3	2	0.1
	Male	141	12.00	96.5	13.0	30	97	7.4	4.8	3.0	2	0.1
Group 1	Male	140	11.08	95.1	14.0	60	108	8.1	5.2	3.0	2	0.1
Group 1	Female	139	14.23	98.7	11.9	48	94	7.1	4.7	2.0	2	0.1
	Female	139	13.13	97.2	12.3	54	109	7.1	4.9	2.0	2	0.1
	Female	141	11.74	95.4	12.6	59	151	7.7	4.9	3.0	2	0.1
	Male	141	11.20	97.0	12.6	42	114	7.5	4.9	3.0	2	0.1
	Male	140	10.94	94.6	13.7	81	156	7.6	4.8	3.0	2	0.1
Group 2	Male	143	9.88	93.6	14.4	64	129	8.5	5.5	3.0	2	0.1
	Female	136	16.32	97.6	12.7	57	95	7.1	5.0	2.0	2	0.1
	Female	138	14.54	98.2	12.8	48	105	7.5	5.0	3.0	2	0.1
	Female	143	10.88	97.8	13.7	48	141	8.0	5.4	3.0	2	0.1
	Male	139	9.98	91.5	15.1	64	131	9.4	5.9	4.0	2	0.1
	Male	144	9.38	92.4	14.6	88	156	8.6	5.3	3.0	2	0.1
Group 3	Male	139	12.82	95.7	13.8	63	115	8.2	5.2	3.0	2	0.1
Group 3	Female	138	13.66	98.9	12.6	50	145	7.6	5.4	2.0	2	0.1
	Female	139	12.87	97.9	12.3	45	125	7.2	4.9	2.0	2	0.1
Group 3	Female	139	11.96	96.9	12.9	60	146	7.6	5.2	2.0	2	0.1
	Male	139	12.96	94.8	13.0	69	120	7.4	4.6	3.0	2	0.1
	Male	141	11.44	95.9	14.2	58	129	7.8	4.8	3.0	2	0.1
Group 4	Male	144	10.13	93.4	16.6	84	152	10.1	6.8	4.0	2	0.1
	Female	137	12.25	97.7	12.5	70	121	6.8	4.7	2.0	2	0.1
	Female	140	10.81	96.7	13.8	73	133	8.4	5.6	3.0	2	0.1
	Female	142	11.03	97.2	13.3	58	166	8.4	5.6	3	2	0.1
Na = Sodium TB = Total Bilirubin GLOB = Globulin (= TP- /					TP- ALB)							
K = Potassiun	n			ALB = Albur	min				A/G = Alk	o/Glob ratio		
CI = Chloride				TP = Total F	Protein				CHOL =	Cholesterol		

Table S4. Individual clinical chemistry parameters

TG = Triglycerides

Ca = Calcium

S14

	C	PHOS	GLU	BUN	CREAT	ALK	ALT	AST	GGT	1.1		Interio
	Sex	(mg/dL)	(mg/dL)	(mg/dL)	(mg/dL)	(U/L)	(U/L)	(U/L)	(U/L)	Lipemia	nemolysis	Icteric
	Male	14.8	154	21	0.41	105	58	93	-3	11	32	0
Group 1	Male	16.3	145	19	0.36	108	82	126	-2	6	25	0
	Male	15.1	199	16	0.38	159	81	136	-2	9	24	0
	Female	12.5	90	20	0.45	56	68	131	-3	5	54	0
	Female	12.6	92	17	0.41	53	56	83	-2	7	24	0
	Female	12.8	83	18	0.43	73	62	102	-2	11	27	0
Group 2	Male	13.2	223	23	0.38	119	93	97	م	10	27	0
	Male	12.4	282	18	0.36	145	67	85	-1	8	18	0
	Male	14.3	258	18	0.40	140	63	81	-1	4	16	0
	Female	15.4	75	19	0.47	79	73	114	-2	7	24	0
	Female	13.8	153	19	0.44	61	59	92	4	7	85	0
	Female	14.2	87	19	0.42	81	53	101	-1	10	20	0
	Male	13.4	306	23	0.43	148	82	105	-2	8	21	0
	Male	14.1	274	17	0.36	117	59	93	-1	9	16	0
Group 3	Male	14.2	156	20	0.35	145	93	125	-2	8	26	0
aroup o	Female	11.0	119	17	0.43	87	42	90	-2	10	22	0
	Female	12.3	87	18	0.39	70	68	91	-1	8	21	0
	Female	12.0	103	18	0.38	67	63	81	-2	13	18	0
	Male	15.9	176	21	0.41	113	324	533	γ	6	101	0
	Male	15.9	219	18	0.39	157	60	94	4	8	61	0
Crown 4	Male	16.1	273	20	0.44	193	87	101	-5	9	52	0
Group 4	Female	12.1	138	19	0.38	65	59	99	-4	10	66	0
	Female	12.7	138	18	0.47	93	64	103	-2	8	30	0
	Female	10.9	117	16	0.46	101	66	95	-3	14	37	0
ALK = Alkalin	Alkaline Phosphatase PHOS = Phosphorus (inorganic) CREAT = Creatinine					•						

Table S5. Individual clinical chemistry parameters

ALK = Alkaline Phosphatase ALT = Alanine Aminotransferase

AST = Aspartate Aminotransferase

GLU = Glucose GGTL = Gamma-Glutamyl Transferase Level BUN = Blood Urea Nitrogen

Table S6. Normal values, Sprague Dawley 15-16 week old males (N = 20)

		Units	Mean	Std Dev
Glucose		mg/dL	118.4	30.4
Blood Urea Nitrogen (BUN)		mg/dL	17.8	1.9
Creatinine		mg/dL	0.4	0.1
BUN/Creatinine		Ratio	45.6	6.6
Cholesterol		mg/dL	114.9	11.6
Total Protein (TP)		g/dL	6.5	0.2
Albumin (Alb)		g/dL	4.2	0.2
Globulin (Glb)		g/dL	2.3	0.1
Alb/Glb		Ratio	1.8	0.1
Total Bilirubin		mg/dL	0.1	0.0
Alkaline Phosphatase (ALP)		U/L	65.5	10.1
Aspartate Aminotransferase (AST)		U/L	118.1	56.7
Alanine Aminotransferase (ALT)		U/L	56.7	11
AST/ALT		Ratio	2.1	0.9
Calcium (Ca)		mg/dL	10.9	0.5
Phosphorus (P)		mg/dL	9.0	0.7
Sodium (Na)		mmol/L	146.8	2.9
Potassium (K)		mmol/L	6.4	0.7
Chloride (Cl)		mmol/L	96.7	2.4
HCO,		mmol/L	42.4	3.6
Anion Gap		mmol/L	14.2	3.9
	Hematology			
		Unite	Moon	Std Der

Clinical Chemistry

	Umits	Mean	Std Dev
White Blood Cells (WBC)	x 10 ³ /uL	7.5	2.6
Red Blood Cells (RBC)	x 10 ⁶ /uL	9.3	0.5
Hemoglobin (Hgb)	g/dL	17.2	0.9
Hematocrit (Hct)	%	58.1	2.8
Mean Corpuscular Volume (MCV)	fL	62.3	1.3
Mean Corpuscular Hemoglobin (MCH)	pg	18.4	0.5
Mean Corpuscular Hemoglobin Concentration (MCHC)	g/dL	29.6	0.4
Red Cell Distribution	%	12.4	0.5
Mean Platelet Volume (MPV)	fL	0.9	0.6
Segmented Neutrophils	%	12.1	5.2

Table S7. Clinical Chemistry parameters (normal values, Sprague Dawley 15-16 week old females (N = 20))

Clinical Chemistry			
	Units	Mean	Std Dev
Ghucose	mg/dL	92.2	16.6
Blood Urea Nitrogen (BUN)	mg/dL	17.1	2.8
Creatinine	mg/dL	0.4	0.1
BUN/Creatinine	Ratio	39.7	3.8
Cholesterol	mg/dL	102.8	21.1
Total Protein (TP)	g/dL	6.4	0.3
Albumin (Alb)	g/dL	4.4	0.2
Globulin (Glb)	g/dL	2.0	0.2
Alb/Glb	Ratio	2.2	0.2
Total Bilirubin	mg/dL	0.2	0.1
Alkaline Phosphatase (ALP)	U/L	52.5	20
Aspartate Aminotransferase (AST)	U/L	172	110.1
Alanine Aminotransferase (ALT)	U/L	49.7	11.3
AST/ALT	Ratio	3.3	1.5
Calcium (Ca)	mg/dL	10.7	0.7
Phosphorus (P)	mg/dL	8.8	0.9
Sodium (Na)	mmol/L	144.1	2.7
Potassium (K)	mmol/L	6.7	1.0
Chloride (Cl)	mmol/L	97.6	2.1
HCO,	mmol/L	38.9	4.0
Anion Gap	mmol/L	14.4	4.1
Hematology			
	Units	Mean	Std Dev
White Blood Cells (WBC)	x 10 ³ /uL	6.7	2.0
Red Blood Cells (RBC)	x 10 ⁶ /uL	8.6	0.4
Hemoglobin (Hgb)	g/dL	16.5	0.8
Hematocrit (Hct)	%	54.2	2.6
Mean Corpuscular Volume (MCV)	fL	63.2	1.5
Mean Corpuscular Hemoglobin (MCH)	pg	19.2	0.5
Mean Corpuscular Hemoglobin Concentration (MCHC)	g/dL	30.4	0.4
Red Cell Distribution	%	12.1	0.7
Segmented Neutrophils	%	10.3	4.0
Lynphocytes	%	86.2	4.5
Monocytes	%	1.8	0.9
Eosinophils	%	1.3	0.9

Technical data sheet for ¹⁴C-labeled CA4+ 5*.

Specific Activity: 8.7 mCi/mmol (5.82 μCi/mg) by gravimetric analysis Identification by MS: Conforms

Packaged: 151.3 µCi (26 mg), white solid

Total Batch Activity: 151.3 μCi Reserve: 0.0 μCi HPLC

Luna C18, 5µm, 250 x 4.6mm Mobile Phase: 0.05% TFA in water Flow Rate: 1.0 mL / min., RC Flow Det. Isocratic

Radiochemical Purity: >99% by HPLC on 03/12/2014 Chemical Purity: >98% by HPLC (UV245) on 03/12/2014

Stability and Storage
Recommendation:The exact rate of decomposition is unknown. However, it can be assumed that the product may
decompose at a rate of approximately 1% per month when stored at -20° C in the original container.

Figure S15. (A) Radioflow chromatogram (for radiochemical purity) and (B) PDA chromatogram (for chemical purity) for ¹⁴C-labeled CA4+ 5^*