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Computer aided diagnosis of congenital abnormalities of the kidney 

and urinary tract in children based on ultrasound imaging data by 

integrating texture image features and deep transfer learning image 

features 

 

Feature extraction methods 

1. Image normalization  

We normalized ultrasound kidney images of different subjects using as following. First, 

the orientation of kidneys in ultrasound images was estimated based on ellipse fitting, 

including the ellipse’s major axis, minor axis, and the orientation 𝜃 between the major axis 

and X-axis, as illustrated in Figure S1. Second, based on the estimated ellipse information, 

each ultrasound kidney image was reoriented along the major axis based on a rotation 

matrix estimated from the ellipse fitting, as formulated by Eq. (1) 

𝑇 = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃) 0
−𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0

0 0 1

] .                                                        (1) 

 
Figure S1. Kidney image normalization based on ellipse estimation of kidney boundary.  

(a) Estimation of an ellipse of the kidney boundary; (b) Reorientation of the kidney image 

based on the estimated ellipse of kidney. 

 

2. Transfer learning based imaging feature extraction 

A pre-trained CNN model (imagenet-caffe-alex)1 was adopted from MatConvNet2 to 

extract deep learning features from the kidney images in a transfer learning setting. The 

imagenet-caffe-alex model was trained on 1.2 million 3-channel images of the ImageNet 
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LSVRC-2010 for classifying images into 1000 different classes. The model has 5 

convolutional layers, followed by max-pooling layers and 3 fully-connected layers with a 

final 1000-way softmax output. Figure S2 shows architecture of the imagenet-caffe-alex 

model, including 5 layers of convolutional neural networks, 3 fully connected layers, and 

a softmax output layer.  

 

Figure S2. Architecture of the imagenet-caffe-alex model, including 5 layers of convolutional 

(conv) neural networks, 3 fully connected (fc) layers, and a softmax output layer. Rectified linear 

unit (relu), normalization (norm), pooling (pool), and dropout operators are used in different layers. 

Since the imagenet-caffe-alex network needs 3-channel (RGB) images as its input, 

we generated 3-channel images from the kidney ultrasound images by adopting the 

original kidney image  𝑓𝐼(𝑥, 𝑦), a gradient feature map 𝑓𝐺(𝑥, 𝑦), and a distanced transform 

map 𝑓𝐷(𝑥, 𝑦) with 𝑥 and 𝑦 be coordinates of ultrasound image pixels as 3 channels, as 

illustrated in Figure S3.  

 

Figure S3. Feature extraction by transfer learning from pseudo color images with ① image 

intensity map, ② gradient feature map, and ③ distanced transform feature map as RGB-

channels respectively.  
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Particularly, the image intensity map 𝑓𝐼(𝑥, 𝑦)  was obtained from the original 

ultrasound kidney image intensity values after normalized into [0, 255]. Based on the 

image intensity map 𝑓𝐼(𝑥, 𝑦), a gradient feature map 𝑓𝐺(𝑥, 𝑦) was computed as: 

𝑓𝐺(𝑥, 𝑦) =
𝑔(𝑥,𝑦)

𝑓𝐼(𝑥,𝑦)
=

√𝑔𝑥
2(𝑥,𝑦)+𝑔𝑦

2(𝑥,𝑦)

𝑓𝐼(𝑥,𝑦)
,                                                        (2) 

where 𝑔𝑥(𝑥, 𝑦) = (𝑓𝐼(𝑥 + 1, 𝑦) − 𝑓𝐼(𝑥 − 1, 𝑦)) 2⁄ , 𝑔𝑦(𝑥, 𝑦) = (𝑓𝐼(𝑥, 𝑦 + 1) − 𝑓𝐼(𝑥, 𝑦 − 1)) 2⁄ , 

and 𝑥  and 𝑦  are coordinates of pixels. A distance transform feature map for 

characterizing the distance of each pixel to its nearest element in an edge map3 was 

computed using the VLfeat toolbox 4 as  

𝑓𝐷(𝑥, 𝑦) = min
𝑥′,𝑦′∈{𝑓𝑒𝑑𝑔𝑒(𝑥

′,𝑦′)>0}
(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2,                                  (3) 

where 𝑓𝑒𝑑𝑔𝑒(𝑥
′, 𝑦′)  is an edge image of the original image obtained by Canny edge 

detector3,  and (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 is the distance between pixel (𝑥, 𝑦) and (𝑥′, 𝑦′).  

The image intensity map 𝑓𝐼(𝑥, 𝑦), gradient feature map 𝑓𝐺(𝑥, 𝑦), and distanced 

transform feature map 𝑓𝐷(𝑥, 𝑦) of  each kidney scan were finally normalized as 

𝑓(𝑥, 𝑦) =
𝑓(𝑥,𝑦)−𝑚𝑒𝑎𝑛(𝑓(𝑥,𝑦) )

𝑠𝑡𝑑(𝑓(𝑥,𝑦) )
, 𝑓(𝑥, 𝑦) ∈ {𝑓𝐼(𝑥, 𝑦), 𝑓𝐺(𝑥, 𝑦), 𝑓𝐷(𝑥, 𝑦)}.                              (4) 

The normalization was only applied to pixels within the kidney region and the feature 

values were finally linearly scaled into [0, 255].  

After cropped based on a bounding box of the reoriented kidney mask, the 3 

feature maps were resized to have the same size as the images used in the imagenet-

caffe-alex net. Particularly, given the input image size of the deep learning model, [𝑁0, 𝑁0], 

and a ultrasound kidney image’s 𝑟𝑎𝑡𝑖𝑜 = 𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠⁄  of its estimated ellipse, 

the cropped feature images were resized to [𝑁𝑟 , 𝑁0], where 𝑁0 is the length of the major 

axes, and 𝑁𝑟 = 𝑟𝑎𝑡𝑖𝑜 × 𝑁0 is to guarantee the ratio of kidney fitting shape. The resized 

feature maps of [𝑁𝑟 , 𝑁0] were finally padded with zeroes to have an image size of [𝑁0, 𝑁0]. 

For the imagenet-caffe-alex model, 𝑁0=227. 

Finally, the image intensity map, gradient feature map, and distanced transform 

feature map are used as R-channel, G-channel, and B-channel respectively to form a 3-

channel image so that the imagenet-caffe-alex model could be adopted to extract deep 

learning features. Figure S4 shows 4 randomly selected ultrasound images and their 

corresponding RGB channels, as well as their pseudo color images. Since a permute of 
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the order of feature maps generates different 3-channel images, we evaluated how the 

classification performance changed with the order of feature maps.  

 
Figure S4. Four example ultrasound kidney images, feature maps, and pseudo color images. (a) 

ultrasound images with kidney contours in red; (b) image intensity maps 𝑓𝐼(𝑥, 𝑦); (c) gradient 

feature maps 𝑓𝐺(𝑥, 𝑦) ; (d) distanced transform feature maps 𝑓𝐷(𝑥, 𝑦) , and (e) pseudo color 

images. 

3. Conventional imaging feature extraction 

Conventional image features were also extracted from the image intensity map 𝑓𝐼(𝑥, 𝑦), 

including geometrical features5 and histogram of oriented gradients (HOG) features6 of 

the kidneys.   

Geometrical feature extraction 

The geometrical features included shape-related measures and hole-related measures 

of the kidneys. The shape-related features were computed based on major axis and minor 

axis estimated based on the ellipse fitting results, defined as Vshape = [L1, L2, L1 L2⁄ , L1 ×

L2, L1 + L2, L1
2 + L2

2 , L1 − L2, L1
2 − L2

2 ], where 𝐿1 and 𝐿2 are lengths of the major and minor 

axes of the kidney. The hole-related features were ratios of areas of black holes inside 

kidney to the whole kidney region, surrogate measures of renal parenchymal area5. Since 

no suitable threshold was available for segmenting holes in all kidney images, we 

uniformly set 10 thresholds of [3: 3: 30] to segment black holes, and obtained hole-related 
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features  𝑽ℎ𝑜𝑙𝑒 = [𝑟𝑎𝑡𝑖𝑜1, ⋯ , 𝑟𝑎𝑡𝑖𝑜10 ]. Finally, from each kidney image, we obtained a set 

of geometric features 𝑽𝒈𝒆𝒐𝒎𝒆𝒕𝒓𝒊𝒄 = [𝑽𝑠ℎ𝑎𝑝𝑒 , 𝑽ℎ𝑜𝑙𝑒] with 18 elements. 

 

Figure S5. HOG feature extraction. (a) Cells and blocks. (b) orientation-based histogram. 

HOG feature extraction 

The HOG feature extraction method typically decomposes an image into small squared 

cells, computes histogram of oriented gradients in each cell, normalizes the result using 

a block-wise pattern, and yields a descriptor for each cell, as illustrated in Figure S5. 

Particularly, the magnitude and the orientation of the gradient of image pixel at (𝑥, 𝑦) were 

computed as |𝐺| = √𝐼𝑥2 + 𝐼𝑦2  and 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝐼𝑥 𝐼𝑦⁄ ) , where 𝐼𝑥 = 𝑓𝐼(𝑥, 𝑦) ∗ 𝐷𝑥  and 𝐼𝑦 =

𝑓𝐼(𝑥, 𝑦) ∗ 𝐷𝑦 are 𝑥 and 𝑦 derivatives, computed by convolution operations based on 1-D 

horizontal and vertical derivative masks 𝐷𝑥 = [−1 0 1]  and 𝐷𝑦 = [−1 0 1]𝑇 . By 

splitting the image intensity map into 𝑁𝑐𝑒𝑙𝑙 × 𝑁𝑐𝑒𝑙𝑙 cells, as illustrated in Figure S5(a), an 

orientation-based histogram was estimated for each cell based on the gradient orientation 

information of pixels within the cell as illustrated in Figure S5(b), and each bin was 

weighted by their voxels’ gradient magnitude information.  

In our study, 9 orientation bins over 0-180 degrees were adopted to estimate the 

histogram of oriented gradient for each cell as recommended in a previous study7. Based 

on the cell definition, blocks were built by grouping 4 neighbored cells into a larger 

overlapped block with size 2𝑁𝑐𝑒𝑙𝑙 × 2𝑁𝑐𝑒𝑙𝑙 , and block features 𝑣  were computed by 

integrating the 4 neighbored cells’ features. The block features were normalized as 

𝑣

√‖𝑣‖2
2+𝑒2

, where 𝑣 is a block feature vector before normalization, ‖∙‖2 is 𝑙2norm, and 𝑒 is a 
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small constant. By sliding the block on the image with a stride 𝑁𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑁𝑐𝑒𝑙𝑙, a set of 

features were obtained by concatenating all overlapped block features together. We 

utilized the VLFeat toolbox 4 to compute the HOG features with default parameters except 

that the cell size was set to 𝑁𝑐𝑒𝑙𝑙 = 𝑁0 ∕ 10, where 𝑁0 is the size of the input images to the 

deep learning model. The block feature 𝑣 for each block contained 31 elements, and the 

total number of features was 3100. 

4. Support vector machine classification  

A L2-regularized L1-loss support vector machine (SVM) classifier8 was utilized to build 

classifiers based on the extracted image features by optimizing  

min
𝑤

1

2
𝑤⃗⃗ 𝑇𝑤⃗⃗ + 𝐶 ∑ (max(0,1 − 𝑦𝑖𝑤⃗⃗ 

𝑇𝑓 𝑖))
𝑙
𝑖=1                                              (5) 

where 𝑓 𝑖  is the feature vector of the 𝑖𝑡ℎ  ultrasound kidney image,  𝑤⃗⃗  is the weighting 

vector to be learned from training data.  

The L2-regularized L1-loss SVM optimization problem can be solved by using a dual 

coordinate descent method. Particularly, a publicly available software package 

LIBLINEAR with its default parameters can be utilized to build the SVM classifiers8. Once 

we obtained the weighting vector 𝑤⃗⃗ , the category of the 𝑖𝑡ℎ ultrasound kidney image can 

be estimated as 

𝐿𝑖 = 𝑠𝑔𝑛(𝑤⃗⃗ 𝑇𝑓 𝑖) .                                                                (6) 

5. Classification performance of CNN features extracted from different pseudo 

color images 

To obtain pseudo color images with the most discriminative information for the transfer 

learning, 7 different pseudo color images were generated with permuted orders of the 

feature maps including the image intensity map 𝑓𝐼(𝑥, 𝑦), the gradient feature map 𝑓𝐺(𝑥, 𝑦), 

and the distanced transform feature map 𝑓𝐷(𝑥, 𝑦) as well as 3 duplication of the image 

intensity map 𝑓𝐼(𝑥, 𝑦) as the RGB-channels and, as summarized in Table S1.  
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Table S1. Pseudo color images generated for transfer learning 

 C1 C2 C3 C4 C5 C6 C7 

R-channel 𝑓𝐼(𝑥, 𝑦) 𝑓𝐼(𝑥, 𝑦) 𝑓𝐷(𝑥, 𝑦) 𝑓𝐷(𝑥, 𝑦) 𝑓𝐺(𝑥, 𝑦) 𝑓𝐺(𝑥, 𝑦) 𝑓𝐼(𝑥, 𝑦) 
G-channel 𝑓𝐺(𝑥, 𝑦) 𝑓𝐷(𝑥, 𝑦) 𝑓𝐺(𝑥, 𝑦) 𝑓𝐼(𝑥, 𝑦) 𝑓𝐼(𝑥, 𝑦) 𝑓𝐷(𝑥, 𝑦) 𝑓𝐼(𝑥, 𝑦) 
B-channel 𝑓𝐷(𝑥, 𝑦) 𝑓𝐺(𝑥, 𝑦) 𝑓𝐼(𝑥, 𝑦) 𝑓𝐺(𝑥, 𝑦) 𝑓𝐷(𝑥, 𝑦) 𝑓𝐼(𝑥, 𝑦) 𝑓𝐼(𝑥, 𝑦) 

 

Table S2 summarizes their classification performance estimated based on 100 runs of 10 

fold cross-validation of SVM classifiers built upon the transfer learning image features 

learned from different 3-channel images, including accuracy, specificity, sensitivity, and 

AUC. Overall, the pseudo color images generated by scheme C5 (R-channel: gradient 

map, G-channel: US image, B-channel: distance map) yielded the best performance. The 

scheme C5 was finally adopted in this study. Most of the classification models built on the 

transfer learning based features had better classification performance than the best 

classification model built on the conventional imaging features (HOG + Geometrical 

image features), except the classification model built on the transfer learning features 

extracted from pseudo color images of C4 and C7. 

Figure S6 shows the ROC curves of one run of 10-fold cross-validation for different 

pseudo color images.  

 
Figure S6. ROC curves of 7 different pseudo color images, estimated based on one run of 10-
fold cross-validation. 
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Table S2. Classification performance of different pseudo color images, estimated based on 100 

runs of 10-fold cross-validation (mean±std). 

 C1 C2 C3  C4  C5  C6 C7 

Accuracy 

Left *0.80±1.3e-2 *0.81±1.6e-2 *0.84±1.5e-2 0.77±2.1e-2 *0.85±1.8e-2 *0.86±1.6e-2 0.78±2.6e-2 

Right 0.74±2.0e-2 0.71±2.0e-2 0.69±2.4e-2 *0.77±1.4e-2 0.75±2.0e-2 0.69±1.7e-2 0.76±2.4e-2 

Bilateral  *0.82±2.0e-2 *0.83±1.7e-2 *0.86±1.4e-2 *0.83±2.0e-2 *0.85±1.2e-2 *0.85±1.6e-2 0.73±1.7e-2 

AUC 

Left *0.89±1.2e-2 *0.90±1.0e-2 *0.89±0.9e-2 0.85±1.2e-2 *0.88±0.8e-2 *0.89±0.8e-2 0.86±1.2e-2 

Right 0.81±1.2e-2 0.79±1.3e-2 0.75±1.4e-2 0.81±1.0e-2 0.83±1.3e-2 0.78±1.3e-2 0.85±1.2e-2 

Bilateral  *0.90±0.9e-2 *0.89±0.9e-2 *0.88±0.7e-2 0.86±0.8e-2 *0.89±0.8e-2 *0.90±0.7e-2 0.89±1.0e-2 

Specificity 

Left *0.78±1.6e-2 *0.79±2.1e-2 *0.79±1.4e-2 *0.75±2.7e-2 *0.80±2.6e-2 *0.80±2.3e-2 0.82±3.1e-2 

Right 0.63±2.5e-2 *0.65±3.0e-2 *0.68±2.8e-2 *0.77±1.8e-2 *0.66±2.6e-2 *0.67±3.0e-2 0.71±3.0e-2 

Bilateral  *0.84±2.1e-2 0.81±2.5e-2 *0.87±1.6e-2 *0.82±2.9e-2 *0.82±1.4e-2 *0.89±2.2e-2 0.88±0.7e-2 

Sensitivity 

Left 0.82±2.0e-2 0.84±2.4e-2 *0.88±2.3e-2 0.78±3.2e-2 *0.89±2.2e-2 *0.91±2.2e-2 0.74±3.7e-2 

Right 0.84±2.6e-2 0.78±2.8e-2 0.70±3.2e-2 0.76±2.3e-2 0.83±2.8e-2 *0.70±2.2e-2 0.80±3.4e-2 

Bilateral  *0.80±2.9e-2 *0.84±2.2e-2 *0.86±2.2e-2 *0.84±2.5e-2 *0.86±1.9e-2 *0.82±2.1e-2 0.62±2.8e-2 

* CNN feature better than conventional features (HOG + Geometrical); Wilcoxon signed-rank test: 
p<=0.001 
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